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Abstract: The combination of neural network and beamforming has been proved to be very effective in multi-
channel speech separation. But its performance faces a challenge in complex environment. In this paper, an
iteratively refined multi-channel speech separation method is proposed for the challenge, where the proposed
is composed of initial separation and iterative separation. In initial separation, the time-frequency domain dual-
path recurrent neural network neural network (TFDPRNN), minimum variance distortionless response
(MVDR) beamformer and post-separation (also TFDPRNN) are cascaded for obtaining the first additional
input in iterative separation. In iterative separation, the MVDR beamformer and post-separation are iteratively
used, where the output of the MVDR beamformer is used as an additional input of the post-separation network
and the final output comes from post-separation module. This iteration of the beamformer and post-separation
is fully employed for promoting their individual optimization, which ultimately improves the overall
performance of speech separation in multi-speaker scenarios. Experiments on the spatialized version of the
WSJ0-2mix corpus show that our proposed method is significantly better than the current popular methods. In
addition, the method also has a good effect on the dereverberation task.

Keywords: speech separation; microphone array; minimum variance distortionless response (MVDR);

beamforming; iterative separation

1. Introduction

Currently, the speech separation technology is playing a crucial role in human-computer
interaction, audio processing and communication systems[1,2]. With the advancement of technology,
especially in deep learning, the significant progress has been made in achieving efficient speech
separation, especially in the fields of single-channel based speech separation [3—6]. Although single-
channel based methods perform well in some environments, their effectiveness is limited in the case
of more complex acoustic environments. Therefore, in order to overcome these limitations and
further improve the performance of speech separation, the multi-channel speech separation methods
[7] have been explored. Traditional multi-channel speech separation methods, such as delay-and-sum
beamforming [8], work well in certain situations. However, in the reverberant environments, with
the increase of sound sources, it is often difficult for the traditional methods to effectively separate
speech signals. The difficulty is mainly focused on the fact that traditional beamforming techniques
rely on relatively simple signal processing strategies, which are not ideal in dealing with dynamic
changes of sound source positions or in dealing with complex and variable acoustic environments.

Due to the limitation of conventional multi-channel methods, we particularly pay attention to
the approach based on the neural beamforming, because it combines the powerful nonlinear
modelling capabilities of neural network with the beamformer. In classical neural beamforming, the
neural network is used to obtain an initial speech separation. Subsequently, this initially separated
speech and original speech are together used into the beamformer to compute spatial covariance
matrices (SCM) [9]. In addition, the post filter cascaded to the beamformer is incorporated to further
optimize the quality and intelligibility of the separated speech [10]. Compared with the conventional
beamforming methods, the neural beamforming has been demonstrated to have significant
advantages in dealing with complex acoustic environments, which has made it a mainstream method
in research and application in recent years [9,11-13].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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For example, a masking-based neural beamforming method was developed in [11] and [13], in
which multiple single-channel long short-term memory (LSTM) networks were first used to estimate
the masks of the speakers, then these masks were used to estimate the SCM of speech and noise used
for the MVDR beamformer. This kind of method shows the significant improvement in the
performance of speech separation compared to conventional beamforming methods. In addition, a
signal-based neural beamforming method was proposed in [9], in which a time-domain audio
separation network (TasNet) was used to pre-separate the speech, and the separated speech was used
to calculates the SCM used in the MVDR beamformer. This method achieves a better performance
than using ideal ratio mask in the MVDR beamformer [9]. The research work in [14] indicated that
reverberation has a significant impact on the separation while using the TasNet. This observation
inspired us to explore a speech separation method with the anti-reverberation ability, aiming at
achieving more accurate SCM used in MVDR beamformer for improving beamforming performance.
Consequently, in our previous work [15], a time-frequency domain dual-path recurrent neural
network (TFDPRNN) has been proposed for getting better performance of speech separation in
reverberant environment. A significant performance improvement was achieved by combining the
MVDR beamformer and TFDPRNN (called Beam-TFDPRNN). Although these neural beamforming
methods have a good performance, they are still restricted to the linear filtering operation and the
performance is limited. Therefore, we will explore other ways to improve the performance of neural
beamforming in this paper.

In recent years, a notable trend of speech separation is focused on the iteratively refined
structures. In the fields of single-channel speech separation, the demonstrated results in [16-18] show
that the accuracy of speech separation can be significantly improved through iterative optimization.
In the fields of multi-channel speech separation, the introduction of an iterative structure also
demonstrated great potential. For example, a MVDR beamformer and TasNet was used as the
iterative structure in [19], a time-domain real-valued generalized Wiener filter (TD-GWF) and TasNet
was used as the iterative structure in [14] , and a time-domain dilated convolutional neural network
(TDCN) and multi-channel Wiener filter (MCWF) was used as the iterative structure in [20]. The
performance of these methods has been improved a lot compared with the no-iteration version.
Therefore, in this paper, we also consider to use iterative structure to improve the performance of the
neural beamforming. In this paper, we greatly extend the iterative version of our previous work [15],
in which a new neural beamforming structure, that is, improved Beam-TFDPRNN (iBeam-TFDPRNN)
is proposed. The main contributions of this paper are summarized as follows:

e  The structure of the original neural beamforming is revised. Specifically, two main changes are
made. Frist, the number of the time-frequency domain path scanning block in the neural network
is reduced to 3 from original 6. This simplification improves the training efficiency and inference
speed of the model, while reducing the complexity and resource consumption of the model.
Second, an iteratively refined separation method is proposed, which combines the initially
separated speech with the original mixed signal as an auxiliary input for the iterative network.
By repeating this process in N iteration stages, the MVDR beamformer and post-separation
network are mutually promoted. As a result, the separation results are effectively improved.

e  The proposed method not only evaluates each stage of the multi-stage iterative processes, but
also uses more evaluation metrics to get a more comprehensive evaluation. The experimental
results show that the proposed method works well on the spatialized version of the WSJ0-2mix
data corpus, and outperforms the current popular methods greatly. In addition, it is noted that
our proposed method also performs well in the dereverberation task.

e  The rest of this paper is organized as follows: Section 2 presents the details of our proposed
method. Section 3 describes the experimental setup and analysis. Finally, Section 4 concludes
the paper.

2. Proposed Method
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In this section, the proposed iBeam-TFDPRNN will be introduced. First, the signal model that
provides a foundation for the subsequent discussions will be described. Then, the architecture of
iBeam-TFDPRNN and the loss function used in the proposed method will be given.

2.1. Signal Model

In this paper, the far-field signal model with Q speakers in time-domain is considered as follows:
Q Q

X = ZJ/M = qu *hy e
(1)

where xc denotes the received signal by the ¢ microphone, 1 < c < C, C denotes the total number
of the microphones, v, denotes the signal captured by the ¢ microphone corresponding to the g
speaker, s; denotes the original source signal of the gt speaker, 1;c denotes the room impulse response
(RIR) from the g speaker to the ¢ microphone.

2.2. Initial Separation

In the Figure 1, the structure of initial separation is shown. It is composed of three parts, i.e., the
TFDPRNN used for pre-separation with one input (mixed signal), MVDR beamformer and post-
separation consisted of same TFDPRNN with two inputs (mixed signal and the output of MVDR
beamformer). In this structure, the mixed signal coming from multiple microphones is first fed into
this pre-separation network. Then, the pre-separated signal and the mixed speech signal are used to
obtain the statistical information of the MVDR beamformer. Finally, the post-separation network is
arranged at the backend of beamformer to get the finally refined initial separation speech. The
following is a detailed introduction to the initial separation.

»
Multi-channel mixed : Pre_separation -
signal :

" , Sep signal 1

»

Post-separation

o
© 7 Separated signal 2

Separator

|
i
! I
| Pre—separation: ~ Encoder Decoder  Pre—separation : !
20
I x -+ STFT »Lee |
: Post — separation : 7 IS"I'ET » Post —separation |
Uil DRC e i
| IDRC |
[ b A Yo }
; Conv2D Conv2D !
| v Yeun 4 i, 1
E,  Ees
| ReLU % }
| E, N
| l BLSTM e BLSTM T i i
| Reshape = ¢prequency) SIARE > time) i
i N o v ReLU !
|
| l —l—k FC +4—— ¥C T !
|
| Conv2D |
| LN LN Conv2D \
i
| I
} I
i
i
! "

Figure 1. The overall structure of the initial separation.

During the pre-separation, the collected signals by each microphone are individually fed into
respective TFDPRNN module, where each network adopts a classical encoder-separator-decoder
structure for the processing.

1. In the encoder section, firstly, the mixed signal x. is transformed into time-frequency
representation Yc by short-term Fourier transform (STFT). Then, this representation Y. is applied
into dynamic range compression (DRC) module to obtain Yore. Subsequently, the local features
Ycono are extracted from Ypre through a 2D convolutional (Conv2D) layer. Finally, these features
Ycow are passed through a rectified linear unit (ReLU) activation function to obtain the encoded
feature E.. The whole encoder section can be expressed as:

E. Encoder{xC }C 2
corresponds to the encoder of the c¢™ microphone, E. denotes the
representation of encoder of the cth microphone.

where Encoder {}C
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2. Inthe separator section, firstly, the encoded feature E. is sent to the layer normalization (LN) for

standardization, followed by a Conv2D layer to obtain the feature Yam . Subsequently, the

A

feature Yo is sent into N time-frequency domain scanning blocks using a time-frequency
scanning mechanism [21,22]. Each scanning block consists of two recurrent modules, where the
first recurrent module utilizes a Bi-directional LSTM (BLSTM) network layer along the frequency
axis, while the second recurrent module utilizes BLSTM along the time axis. Both modules all
include reshaping, LN, and fully connected (FC) operations. Finally, after processing through
these modules, the features are further refined through a Conv2D layer and a ReLU activation

function, resulting in the separated mask M, The whole separator section can be expressed
as:

]\A/LM = Separator { E. }C (3)

3. where Separator{.}c denotes the separator corresponding to the signal of the ¢t microphone and

M, denotes the mask of the gth speaker in the ¢t microphone.

4. Thus, the separated masks are element-wise multiplied with the encoded feature E.to obtain the

A

separated feature representation Eye
Eq,e = Mq,c OE, (4)

where E: denotes the encoded feature representation in the ct microphone, © denotes
Hadamard product.

5. Inthe decoder section, the separated feature Eye passes through a Conv2D layer, inverse DRC

5(0)
(IDRC) and inverse STFT (ISFFT) to obtain the finally separated waveforms Y.<, where the
superscript (0) denotes the first stage. The whole decoder section can be expressed as:

~(0) _ F
= DeCOder{ Eq,c }q (5)

0c
where Decoder{.}; denotes the decoder of the gt speaker, y {(102 denotes the separated waveform
of the gth speaker in the ct microphone.
During the MVDR beamforming, these separated waveforms will be employed in the
computation of the SCM concerned in the MVDR beamformer, i.e.,

2 arge! 1 u A v
B =¥ZY,,,,JY5,J (6)
t=1

2 Interfer 1 < Y Y
81 =130, 40, Y, @
t=1

AT N
q)f arget c (CCXC q)}nterfer c (CCXC

where and

Yq,t,f c (CCxl

represent the SCMs of the speech and interference

sources, is the estimated clean signal vector composed of the STFT coefficients of C
microphones at time-frequency bins, which is computed from the output signals of multiple

TFDPRNN modules for the gth speaker. Y, eC™ is the multi-channel signal vector, which also
consists of the STFT coefficients of C microphones at time-frequency bins. The notation H denotes the
Hermitian transpose operation. Based on these SCMs, the MVDR beamformer’s weights can be
obtained as follows:

A -1 A
Interfer Target
(&) &

Tr {( q’\)}nterfer )'l (i)fTarget} " (8)

Wf:
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where ! denotes the inverse of a matrix, Tr{ } denotes trace of a matrix, which is the sum of the
diagonal elements of the matrix and u denotes a one-hot vector representing the reference
microphone.

Subsequently, the separated signal by the MVDR beamformer is given by

&0 = ISTFT{w/Y, (| 9)
£(1)
where Z1< denotes the estimated signal of the gt speaker in the initial separation and ISTFT{ }

denotes the ISTFT operation.

5(1)
During the post-separation process, the output # is regarded as additional input along with
the original mixed signal xc and sent to the post-separation network to obtain the initial separation

0]
output Ya< . Specially, the post-separation network has the same structure as the pre-separation
network.

2.3. Iterative separation

The overall structure of the iBeam-TFDPRNN is shown in Figure 2. This new structure is divided
into two stages, i.e., initial separation and iterative separation. The initial separation has been described
in section 2.2. The iterative separation contains a MVDR beamformer and a post-separation network.
For convenience, the pre-separation in initial separation is called as stage 0, the first combination of
MVDR beamformer and post-separation after stage 0 is called stage 1, in the subsequent iteration
separation, the first iteration is called stage 2, the second iteration is called stage 3 and so on.

Muiti-channel
mixed signal: Cc
X}

)

Initial separated
signal

l

1),02,C 22
()}Q {()Q

g=Le=t q Sq=1

Post-separation Post-separation
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Figure 2. The structure of iBeam-TFDPRNN.

Specifically, in the first iteration, the initially separated signals {7} .., of Q speakers on all

C microphones and multi-channel mixed signals {x, 1<, are sent to the MVDR beamformer to obtain

(2) (2) }Q

output {2/”}2,, then, the output {2{”}%, together with the original mixed signal {x.}c; are sent to

the post-separation network to obtain output {§{?}%7..,. In the second iterative, the output

{yq . }q 1.-1and mixed signals {x, <., are sent to MVDR beamformer of the next stage to obtain output

{z}2,, then, the output {2{”}2, together with the original mixed signal {x.}c; are sent to the post-

separation network of the next stage to obtain output {§{}>] _,, and continue to repeat this process

N times. From this iterative separation, we can see that the output of post-separation will servers as
an additional input of the MVDR beamformer of next stage. Through this iterative loop, the results
of MVDR beamformer and post-separation is fully employed for promoting their individual
optimization, and ultimately improves the overall performance.
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2.4. Loss Funtion
The loss function is used to calculate the signal-to-distortion ratio (SDR) between the separated
signal and the original signal in the first stage and each subsequent iteration, and then adds these
SDRs to form the total loss. The joint loss function can be expressed as follows:
Loss = _SDR(]%;?)ryq,c)_SDR(]%f{zfyw) _SDR(]?;%c)ryw)

(10)
where
s
SDR(y,s) = 10logy( =)
”S - y|| (11)
denotes the SDR calculation operator, s and y denote the reference and the separated speech

signals, respectively, y,. denotes the original clean signal, 3"} denotes the pre-separated signal ,

3{) denotes the initially separated signal and 7} denotes the output signal of post-separtion after

the first iteration.

Since each iteration can improve the last iteration result, the same loss function can be reapplied
at each iteration. Here, a group of the pre-determined loss functions are used to reduce complexity
during the training process for making the model easier to train. Therefore, in this paper, only a three-
stage loss function is used.

3. Experimental
3.1. Datasets and Microphone Structure

6. The effectiveness of our proposed method is evaluated using the spatialized version of the WSJO0-
2mix dataset given in [23]. This dataset contains 20,000 training data (about 30 hours), 5,000
validation data (about 10 hours) and 3,000 test data (about 5 hours), respectively. All utterances
in the training and validation sets are either expanded or truncated to four seconds, and the
sampling rate for all audio data is set to 8 kHz. This dataset comprises "min" and "max" versions:
in the "min" version, the speech is truncated to match the duration of the shorter utterance, while
in the "max" version, the speech is extended to match the longer utterance. The "min" version is
used for training and validation, while the "max" version is used for testing to maintain
consistency with baseline methods. When mixing speech from two speakers, the signal-to-
interference ratio (SIR) of the speech signals varies from -5dB to +5dB. Then, these adjusted
speech signals are convolved with the RIRs to simulate the reverberation effect in real
environments. The RIRs are simulated by the image method proposed by Allen and Berkley in
1979 [24]. During the simulation, the length and width of the room varies from 5m to 10m, the
height varies from 3m to 4m, the reverberation time varies from 0.2s to 0.6s and the positions of
the microphones and speakers are all randomly selected. The microphone array consists of 8
omnidirectional microphones placed inside a virtual sphere. The center of this sphere is roughly
located at the center of the room and the radius of the sphere randomly selected from 7.5m to
12.5m. The first four microphones are used for training and validation: two are symmetrically
positioned on the surface of the sphere, while the other two are randomly positioned inside the
sphere. The last four microphones are used for testing, and they are randomly positioned within
the area defined by the first two microphones, which can evaluate the performance of the model
in unseen microphone configurations.

3.2. Model Configuration

7. Here are the basic model configuration for the experiment, most of which are the same as the
original settings [22]. The window settings of STFT are a 32ms frame length and a 16ms hop size.
In the encoder section, the kernel size of the Conv2D layer is set to (7, 7) in order to extract local
feature, while in other sections, the kernel size of Conv2D layer is set to (1, 1). In the separator
section, the number of the time-frequency domain path scanning blocks in this paper is reduced
to 3 from original 6 for simplifying the model. Each block contains two BLSTM layers, with each
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BLSTM layer consisting of 128 hidden units. In addition, a parameter sharing strategy is adopted
in this model, meaning the same parameters are used during the iteration separation. This
strategy reduces the total number of the parameters in the model, thus decreasing the
computational requirements.

3.3. Training Configuration

8. In the model training, the batch size is set to 1. Utterance-level permutation invariant training
(uPIT) is applied to address the source permutation problem. The Adam optimizer is utilized
and the learning rate is set to 1x10-3. Additionally, the maximum norm value of gradient clipping
is set to 5. The networks and the comparison network are trained for 150 epochs to ensure
fairness of the experiments.

3.4. Evaluation Metrics

9. The SDR of blind source separation evaluation (BSS-Eval) [25] and scale-invariant signal-to-
distortion ratio (SI-SNR) are chosen as the main objective measures of separation accuracy.
Furthermore, perceptual evaluation of speech quality (PESQ), short-time objective intelligibility
(STOI) and SIR are used to further evaluate the accuracy of separated speech. It is worth noting
that during the evaluation process, the first microphone is selected as the reference by default.

4. Results
4.1. Analysis of Iterative Results

10. The separation results of our proposed method at different stages are shown in Table 1. Here,
7! denotes the speech signal of each speaker on the first microphone after the TFDPRNN

5(n)

module at the nth stage, and z;” denotes the speech signal of each speaker after the MVDR

beamformer at the nth stage.

2(n)
11. From Table 1, we can see that after the first iteration, the SDR performance of 27" is increased

5(n)
by 17.46% and the SI-SDR performance of % is increased by 22.66%. This shows that the first

iteration can bring high gains to our model. However, after the second iteration, although some

. - : : . . -
improvement is still observed with each iteration, the performance improvements of % in

SDR and SI-SDR are very slow, with an increase of less than 1%. This indicates that as the number
of iterations increases, the estimation of the SCM becomes more accurate and gradually
approaches the inherent performance upper limit of MVDR beamforming. On the other hand,

) 5(0) 5(2)
Y31 is improved by about 51% over Y21 in SDR and SI-SDR, and Y41 is improved by about

)
11% over Y11 on these two metrics as well. In the subsequent stages, although the performance
[m
is continually improved, the rate of improvement is less than 2%. The performance of Y1 and
501) (m)
“1 on the SIR and PESQ are improved after each iteration. The STOI performance of Y41 and

()
7 are remained at about 0.99. Overall, the performance of our model is improved obviously in

the iterative process.

12.  In order to describe the results of the method more graphically, Figure 3 shows a comparison of
the spectrograms for a single speaker. They include original clean speech signal, the original
reverberant speech signal, the mixed speech signal, the output signals of neural network at
different stages, and the output signals of the beamformer at different stages, respectively.
Observing the output spectrograms of neural network in the left column, it is clear when the
processing stage increases, the clarity and quality of the spectrograms gradually are improved.
For example, compared to the spectrogram of original reverberant signal, it can be observed that

z

certain spectral components in the spectrogram of the first neural network are reduced (e.g., the
red circles). After iterative processing, these signal components are gradually recovered in the
spectrogram of the second neural network. In the speech spectrogram in the right column, the
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separation effect of the beamformer at different stages is observed, and there are no significant
changes or improvements. When comparing the speech spectrograms in the left and right
columns, we can see that the output spectrograms processed by the neural network exhibit
relatively higher clarity compared to those processed by the beamformer. This comparison
reveals the potential advantages of neural networks in processing speech signals.

13. In general, the iteration of the MVDR and post-separation is fully employed for promoting their
individual optimization, which ultimately improves the overall performance. In addition, both
the outputs of MVDR and post-separation can be used as the final output of the model. However,
the performance of the output of post-separation is better than the MVDR beamformer from
Table 1, so the former is used as the final output of the model. In addition, each additional
processing will lead to an increase in the real-time factor (RTF) of the model, thereby increasing
the data processing time. Considering this, the output of post-separation after the first iteration
is used as the evaluation results of our model for comparison with other methods.

ed signal Original reverberant signal
B b ¢ 7 - B b -

time(s) time(s)

time(s) time(s)

The separaled signal after the second neural network
6 A G 3 TR

time(s) time(s)
The separated signal after the thi The separaled signal after the t
o < 9 N 3 3
3 )

&

time(s) time(s)

Figure 3. Spectrogram comparison of the separated speech at different stages.

Table 1. Comparison of speech separation results at different stages.

SDR SI-SDR SIR PESQ STOI
stage RTF
TR 5 S AN K/ TR/ TR
0 0.024 - 14.41 - 13.91 - 30.67 - 4.13 - 0.98
1 0.049 1879 21.84 17.08 21.13 2721 30.67 393 413 099 0.8
2 0.074  22.07 2417 2095 2348 3321 3321 393 423 099 0.99
3 0.104 2210 24.48 21.07 23.84 3323 3393 399 425 099 099
4 0125 2221 2491 2120 2426 3380 3436 398 426 099 0.99
5 0.148 2231 2460 2134 2398 3405 3424 400 425 099 099

4.2. Comparison with Reference Methods

At present, there are two kinds of mainstream methods to address the multi-channel speech
separation task, one is frequency-domain based separation method, another one is time-domain
based separation method. The most popular multi-channel speech separation methods are listed as
the follows:
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14. Filter-and-Sum Network (FaSNet) [26] is a time-domain method that uses a neural network to
implement beamforming technology. This method utilizes deep learning to automatically learn
and optimize the weights and parameters of the beamformer. The core advantage of this method
is its adaptability, allowing the network to adjust according to the complexity and diversity of
speech signal;

15. Narrow-band (NB) -BLSTM [27] is a frequency-method using the BLSTM network, which is
specially focused on narrow-band frequency processing and is trained by full-band methods to
improve its performance. By processing each narrow-band frequency component separately in
frequency domain, this method can effectively identify and separate individual speakers for the
overlapped speech;

16. Beam-TasNet [9] is a classical speech separation method that combines time-domain and
frequency-domain approaches. First, the time-domain neural network is used for pre-
separation. Subsequently, these pre-separated speech signals are used to calculate the SCM of
the beamformer. Finally, the separated signal is obtained by the beamformer;

17. Beam-Guided TasNet [19] is a two-stage speech separation method that also combines both time-
domain and frequency-domain approaches. In the first stage, the initial speech separation is
performed using the Beam-TasNet. In the second stage, the network structure remains the same
as the Beam-TasNet, but the input includes the output from the first stage. This iterative process
helps to further refine the separation of the initial speech.

18. Beam-TFDPRNN [15] is our previously proposed time-frequency speech separation method,
which also uses a neural beamforming structure like Beam-TasNet. This method has more
advantages in the reverberant environment, because it uses a time-frequency domain network
with more anti-reverberant ability for the pre-separation.

The experimental results on the spatialized version of the WSJ0-2mix dataset for the proposed
method and the popular methods are shown in Table 2. It should be emphasized that the results of
Beam-TasNet are directly cited from the original paper, while the result of Beam-Guided TasNet is
obtained by our replicate test, the difference is about 0.2dB from the original result.

Table 2. Comparison with reference methods on the spatialized version of the WSJ0-2mix dataset.

Method Param SDR SI-SDR PESQ SIR STOI
FaSNet 2.8M 11.96 11.69 3.16 18.97 0.93
NB-BLSTM 1.2M 8.22 6.90 2.44 12.13 0.83
Beam-TasNet 5.4M 17.40 - - - -
Beam-Guided TasNet 5.5M 20.52 19.49 3.88 27.49 0.98
Beam-TFDPRNN 2.7M 17.20 16.80 3.68 26.77 0.96
iBeam-TFDPRNN 2.8M 24.17 23.48 4.23 33.21 0.99

From Table 2, we can see that the performance of the FaSNet and NB-BLSTM is not-satisfactory.
In comparison, the Beam-TasNet and Beam-TFDPRNN demonstrate good separation performance.
The Beam-Guided TasNet further improves the performance of Beam-TasNet by employing an
iteratively refined structure. The proposed method, iBeam-TFDPRNN, significantly outperforms the
other methods. In addition, our proposed model has only 2.8M parameters, which is smaller than the
parameters of most other methods. In conclusion, the proposed method in this paper has excellent
performance compared to the reference methods.

4.3. Dereverberation Results

In the previous section, we only discuss the performance of the proposed method in the task of
the reverberation. However, in order to comprehensively evaluate the performance of the proposed
method and explore its performance in different tasks, this section will explore the separation
performance of the proposed method on the dereverberation task.
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The experimental results in Table 3 exhibit the performance of our proposed method and
reference methods on the dereverberation task. We can see that our proposed method has significant
advantage than reference methods. Specifically, the proposed method achieves an SDR of 20.2dB,
much better than Beam-TasNet and exceeds Beam-Guided TasNet by 2.1dB. Additionally, it exceeds
the oracle mask-based MVDR by 8.2dB, and narrows the gap to just 0.9dB with the oracle signal-
based MVDR. These results highlight the effectiveness of our proposed method in dereverberation
tasks, demonstrating its potential for real-world applications.

Table 3. Dereverberation performance on the spatialized version of the WSJ0-2mix dataset.

SDR
Method " "
i Z
Beam TasNet 10.8 14.6
Beam-Guided TasNet 16.5 17.1
iBeam- TFDPRNN 20.2 19.7
Oracle mask-based MVDR 11.4 12.0
Oracle signal-based MVDR oo 211

5. Conclusions and Discussion

In this paper, an iteratively refined multi-channel method was proposed to improve the
performance of speech separation in complex environments. Benefiting from the strength of neural
beamforming and the multi-stage iteratively refined structure, the proposed method achieved
outstanding performance. The experiments on the spatialized version of the WSJ0-2mix corpus show
that the proposed method not only has a good separation performance in a reverberant environment,
but also has significant advantages compared to current popular speech separation methods. In
addition, the model shows a promising ability on dereverberation task. However, the dataset in this
paper does not contain noise components. Therefore, exploring speech separation problems in noisy
environments will be our future research direction, and the effectiveness of this method in realistic
environments will be further validated by using noisy datasets such as LibriCSS [28] and WHAMR!
[29].
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