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Article 

Iteratively Refined Multi-Channel Speech Separation 

Xu Zhang, Changchun Bao*, Xue Yan and Jing Zhou 

Institute of Speech and Audio Information Processing, Faculty of Information Technology, Beijing University of 

Technology, Beijing 100124, China 

* Correspondence: baochch@bjut.edu.cn 

Abstract: The combination of neural network and beamforming has been proved to be very effective in multi-

channel speech separation. But its performance faces a challenge in complex environment. In this paper, an 

iteratively refined multi-channel speech separation method is proposed for the challenge, where the proposed 

is composed of initial separation and iterative separation. In initial separation, the time-frequency domain dual-

path recurrent neural network neural network (TFDPRNN), minimum variance distortionless response 

(MVDR) beamformer and post-separation (also TFDPRNN) are cascaded for obtaining the first additional 

input in iterative separation. In iterative separation, the MVDR beamformer and post-separation are iteratively 

used, where the output of the MVDR beamformer is used as an additional input of the post-separation network 

and the final output comes from post-separation module. This iteration of the beamformer and post-separation 

is fully employed for promoting their individual optimization, which ultimately improves the overall 

performance of speech separation in multi-speaker scenarios. Experiments on the spatialized version of the 

WSJ0-2mix corpus show that our proposed method is significantly better than the current popular methods. In 

addition, the method also has a good effect on the dereverberation task.  

Keywords: speech separation; microphone array; minimum variance distortionless response (MVDR); 

beamforming; iterative separation 

 

1. Introduction 

Currently, the speech separation technology is playing a crucial role in human-computer 

interaction, audio processing and communication systems [1,2]. With the advancement of technology, 

especially in deep learning, the significant progress has been made in achieving efficient speech 

separation, especially in the fields of single-channel based speech separation [3–6]. Although single-

channel based methods perform well in some environments, their effectiveness is limited in the case 

of more complex acoustic environments. Therefore, in order to overcome these limitations and 

further improve the performance of speech separation, the multi-channel speech separation methods 

[7] have been explored. Traditional multi-channel speech separation methods, such as delay-and-sum 

beamforming [8], work well in certain situations. However, in the reverberant environments, with 

the increase of sound sources, it is often difficult for the traditional methods to effectively separate 

speech signals. The difficulty is mainly focused on the fact that traditional beamforming techniques 

rely on relatively simple signal processing strategies, which are not ideal in dealing with dynamic 

changes of sound source positions or in dealing with complex and variable acoustic environments. 

Due to the limitation of conventional multi-channel methods, we particularly pay attention to 

the approach based on the neural beamforming, because it combines the powerful nonlinear 

modelling capabilities of neural network with the beamformer. In classical neural beamforming, the 

neural network is used to obtain an initial speech separation. Subsequently, this initially separated 

speech and original speech are together used into the beamformer to compute spatial covariance 

matrices (SCM) [9]. In addition, the post filter cascaded to the beamformer is incorporated to further 

optimize the quality and intelligibility of the separated speech [10]. Compared with the conventional 

beamforming methods, the neural beamforming has been demonstrated to have significant 

advantages in dealing with complex acoustic environments, which has made it a mainstream method 

in research and application in recent years [9,11–13]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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For example, a masking-based neural beamforming method was developed in [11] and [13], in 

which multiple single-channel long short-term memory (LSTM) networks were first used to estimate 

the masks of the speakers, then these masks were used to estimate the SCM of speech and noise used 

for the MVDR beamformer. This kind of method shows the significant improvement in the 

performance of speech separation compared to conventional beamforming methods. In addition, a 

signal-based neural beamforming method was proposed in [9], in which a time-domain audio 

separation network (TasNet) was used to pre-separate the speech, and the separated speech was used 

to calculates the SCM used in the MVDR beamformer. This method achieves a better performance 

than using ideal ratio mask in the MVDR beamformer [9]. The research work in [14] indicated that 

reverberation has a significant impact on the separation while using the TasNet. This observation 

inspired us to explore a speech separation method with the anti-reverberation ability, aiming at 

achieving more accurate SCM used in MVDR beamformer for improving beamforming performance. 

Consequently, in our previous work [15], a time-frequency domain dual-path recurrent neural 

network (TFDPRNN) has been proposed for getting better performance of speech separation in 

reverberant environment. A significant performance improvement was achieved by combining the 

MVDR beamformer and TFDPRNN (called Beam-TFDPRNN). Although these neural beamforming 

methods have a good performance, they are still restricted to the linear filtering operation and the 

performance is limited. Therefore, we will explore other ways to improve the performance of neural 

beamforming in this paper. 

In recent years, a notable trend of speech separation is focused on the iteratively refined 

structures. In the fields of single-channel speech separation, the demonstrated results in [16–18] show 

that the accuracy of speech separation can be significantly improved through iterative optimization. 

In the fields of multi-channel speech separation, the introduction of an iterative structure also 

demonstrated great potential. For example, a MVDR beamformer and TasNet was used as the 

iterative structure in [19], a time-domain real-valued generalized Wiener filter (TD-GWF) and TasNet 

was used as the iterative structure in [14] , and a time-domain dilated convolutional neural network 

(TDCN) and multi-channel Wiener filter (MCWF) was used as the iterative structure in [20]. The 

performance of these methods has been improved a lot compared with the no-iteration version. 

Therefore, in this paper, we also consider to use iterative structure to improve the performance of the 

neural beamforming. In this paper, we greatly extend the iterative version of our previous work [15], 

in which a new neural beamforming structure, that is, improved Beam-TFDPRNN (iBeam-TFDPRNN) 

is proposed. The main contributions of this paper are summarized as follows: 

• The structure of the original neural beamforming is revised. Specifically, two main changes are 

made. Frist, the number of the time-frequency domain path scanning block in the neural network 

is reduced to 3 from original 6. This simplification improves the training efficiency and inference 

speed of the model, while reducing the complexity and resource consumption of the model. 

Second, an iteratively refined separation method is proposed, which combines the initially 

separated speech with the original mixed signal as an auxiliary input for the iterative network. 

By repeating this process in N iteration stages, the MVDR beamformer and post-separation 

network are mutually promoted. As a result, the separation results are effectively improved. 

• The proposed method not only evaluates each stage of the multi-stage iterative processes, but 

also uses more evaluation metrics to get a more comprehensive evaluation. The experimental 

results show that the proposed method works well on the spatialized version of the WSJ0-2mix 

data corpus, and outperforms the current popular methods greatly. In addition, it is noted that 

our proposed method also performs well in the dereverberation task.  

• The rest of this paper is organized as follows: Section 2 presents the details of our proposed 

method. Section 3 describes the experimental setup and analysis. Finally, Section 4 concludes 

the paper. 

2. Proposed Method 
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In this section, the proposed iBeam-TFDPRNN will be introduced. First, the signal model that 

provides a foundation for the subsequent discussions will be described. Then, the architecture of 

iBeam-TFDPRNN and the loss function used in the proposed method will be given.  

2.1. Signal Model 

In this paper, the far-field signal model with Q speakers in time-domain is considered as follows: 

, ,

1 1

Q Q

c q c q q c

q q

x y s h
= =

= =  
      (1) 

where xc denotes the received signal by the cth microphone, 1 ≤ c < C, C denotes the total number 

of the microphones, yq,c denotes the signal captured by the cth microphone corresponding to the qth 

speaker, sq denotes the original source signal of the qth speaker, hq,c denotes the room impulse response 

(RIR) from the qth speaker to the cth microphone.  

2.2. Initial Separation 

In the Figure 1, the structure of initial separation is shown. It is composed of three parts, i.e., the 

TFDPRNN used for pre-separation with one input (mixed signal), MVDR beamformer and post-

separation consisted of same TFDPRNN with two inputs (mixed signal and the output of MVDR 

beamformer). In this structure, the mixed signal coming from multiple microphones is first fed into 

this pre-separation network. Then, the pre-separated signal and the mixed speech signal are used to 

obtain the statistical information of the MVDR beamformer. Finally, the post-separation network is 

arranged at the backend of beamformer to get the finally refined initial separation speech. The 

following is a detailed introduction to the initial separation.  

 

Figure 1. The overall structure of the initial separation. 

During the pre-separation, the collected signals by each microphone are individually fed into 

respective TFDPRNN module, where each network adopts a classical encoder-separator-decoder 

structure for the processing. 

1. In the encoder section, firstly, the mixed signal xc is transformed into time-frequency 

representation Yc by short-term Fourier transform (STFT). Then, this representation Yc is applied 

into dynamic range compression (DRC) module to obtain YDRC. Subsequently, the local features 

YConv are extracted from YDRC through a 2D convolutional (Conv2D) layer. Finally, these features 

YConv are passed through a rectified linear unit (ReLU) activation function to obtain the encoded 

feature Ec. The whole encoder section can be expressed as: 

  = Encoderc
c

xcE
      (2) 

where Encoder .
c   corresponds to the encoder of the cth microphone, Ec denotes the 

representation of encoder of the cth microphone. 
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2. In the separator section, firstly, the encoded feature Ec is sent to the layer normalization (LN) for 

standardization, followed by a Conv2D layer to obtain the feature 
ˆ

convY  . Subsequently, the 

feature 
ˆ

convY   is sent into N time-frequency domain scanning blocks using a time-frequency 

scanning mechanism [21,22]. Each scanning block consists of two recurrent modules, where the 

first recurrent module utilizes a Bi-directional LSTM (BLSTM) network layer along the frequency 

axis, while the second recurrent module utilizes BLSTM along the time axis. Both modules all 

include reshaping, LN, and fully connected (FC) operations. Finally, after processing through 

these modules, the features are further refined through a Conv2D layer and a ReLU activation 

function, resulting in the separated mask ,
ˆ

q cM . The whole separator section can be expressed 

as: 

 ,
ˆ Separatorq c c

c
M E=       (3) 

3. where Separator{.}c denotes the separator corresponding to the signal of the cth microphone and 

,
ˆ

q cM  denotes the mask of the qth speaker in the cth microphone. 

4. Thus, the separated masks are element-wise multiplied with the encoded feature Ec to obtain the 

separated feature representation ,
ˆ

q cE . 

, ,
ˆ ˆ

q c q c cE M E=            (4) 

where Ec  denotes the encoded feature representation in the cth microphone, ☉ denotes 

Hadamard product. 

5. In the decoder section, the separated feature ,
ˆ

q cE  passes through a Conv2D layer, inverse DRC 

(IDRC) and inverse STFT (ISFFT) to obtain the finally separated waveforms 
(0)

,ˆq cy  , where the 

superscript (0) denotes the first stage. The whole decoder section can be expressed as: 
(0)

, ,
ˆˆ Decoder{ }q c q c qy E=

      (5) 

where Decoder{.}q denotes the decoder of the qth speaker, 
(0)

,ˆq cy  denotes the separated waveform 

of the qth speaker in the cth microphone. 

During the MVDR beamforming, these separated waveforms will be employed in the 

computation of the SCM concerned in the MVDR beamformer, i.e.,  

Target
, , , ,

1

1 ˆ ˆˆ
T

H
q t f q t ff

tT
=

= Y Y        (6) 

Interfer
, , , , , ,

1

1 ˆ ˆˆ ( )( )
T

H
f t f q t f t f q t f

tT
=

= − − Y Y Y Y     (7) 

where 
Targetˆ
f

C C  and 
Interferˆ
f

C C  represent the SCMs of the speech and interference 

sources, 
1

, ,
ˆ

q t f
CY  is the estimated clean signal vector composed of the STFT coefficients of C 

microphones at time-frequency bins, which is computed from the output signals of multiple 

TFDPRNN modules for the qth speaker. 
1

,
ˆ

t f
CY   is the multi-channel signal vector, which also 

consists of the STFT coefficients of C microphones at time-frequency bins. The notation H denotes the 

Hermitian transpose operation. Based on these SCMs, the MVDR beamformer’s weights can be 

obtained as follows: 

( )

( ) 

1
TargetInterfer

1
TargetInterfer

ˆ ˆ

ˆ ˆΤr

f f

f

f f

−

−
=w u

 

 

     (8) 
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where ‒1 denotes the inverse of a matrix, Tr{ } denotes trace of a matrix, which is the sum of the 

diagonal elements of the matrix and u denotes a one-hot vector representing the reference 

microphone. 

Subsequently, the separated signal by the MVDR beamformer is given by  

 (1)
,ˆ ISTFT H

q f t fz = w Y        (9) 

where 
(1)

,ˆq cz  denotes the estimated signal of the qth speaker in the initial separation and ISTFT{ } 

denotes the ISTFT operation. 

During the post-separation process, the output 
(1)ˆqz  is regarded as additional input along with 

the original mixed signal xc and sent to the post-separation network to obtain the initial separation 

output 
(1)

,ˆq cy  . Specially, the post-separation network has the same structure as the pre-separation 

network.   

2.3. Iterative separation 

The overall structure of the iBeam-TFDPRNN is shown in Figure 2. This new structure is divided 

into two stages, i.e., initial separation and iterative separation. The initial separation has been described 

in section 2.2. The iterative separation contains a MVDR beamformer and a post-separation network. 

For convenience, the pre-separation in initial separation is called as stage 0, the first combination of 

MVDR beamformer and post-separation after stage 0 is called stage 1, in the subsequent iteration 

separation, the first iteration is called stage 2, the second iteration is called stage 3 and so on.  

 

Figure 2. The structure of iBeam-TFDPRNN. 

Specifically, in the first iteration, the initially separated signals (1) ,
, 1, 1ˆ{ }Q C

q c q cy = =  of Q speakers on all 

C microphones and multi-channel mixed signals 1{ }C
c cx =  are sent to the MVDR beamformer to obtain 

output (2)
1ˆ{ }Q

q qz = , then, the output (2)
1ˆ{ }Q

q qz =  together with the original mixed signal 1{ }C
c cx =  are sent to 

the post-separation network to obtain output (2) ,
, 1, 1ˆ{ }Q C

q c q cy = =  . In the second iterative, the output 

(2) ,
, 1, 1ˆ{ }Q C

q c q cy = = and mixed signals 1{ }C
c cx =  are sent to MVDR beamformer of the next stage to obtain output 

(3)
1ˆ{ }Q

q qz = , then, the output (3)
1ˆ{ }Q

q qz =  together with the original mixed signal 1{ }C
c cx =  are sent to the post-

separation network of the next stage to obtain output (3) ,
, 1, 1ˆ{ }Q C

q c q cy = = , and continue to repeat this process 

N times. From this iterative separation, we can see that the output of post-separation will servers as 

an additional input of the MVDR beamformer of next stage. Through this iterative loop, the results 

of MVDR beamformer and post-separation is fully employed for promoting their individual 

optimization, and ultimately improves the overall performance.  
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2.4. Loss Funtion 

The loss function is used to calculate the signal-to-distortion ratio (SDR) between the separated 

signal and the original signal in the first stage and each subsequent iteration, and then adds these 

SDRs to form the total loss. The joint loss function can be expressed as follows:  
(0) (1) (2)

, , , , , ,ˆ ˆ ˆ( , ) ( , ) ( , )q c q c q c q c q c q cLoss SDR y y SDR y y SDR y y= − − −
         (10) 

where  
2

10 2
( , ) 10 ( ),

s
S o

s
D y s l g

y
R

−
=

    (11) 

denotes the SDR calculation operator, s and y denote the reference and the separated speech 

signals, respectively, ,q cy  denotes the original clean signal, (0)
,ˆq cy  denotes the pre-separated signal , 

(1)
,ˆq cy  denotes the initially separated signal and (2)

,ˆq cy  denotes the output signal of post-separtion after 

the first iteration. 

Since each iteration can improve the last iteration result, the same loss function can be reapplied 

at each iteration. Here, a group of the pre-determined loss functions are used to reduce complexity 

during the training process for making the model easier to train. Therefore, in this paper, only a three-

stage loss function is used.  

3. Experimental 

3.1. Datasets and Microphone Structure 

6. The effectiveness of our proposed method is evaluated using the spatialized version of the WSJ0-

2mix dataset given in [23]. This dataset contains 20,000 training data (about 30 hours), 5,000 

validation data (about 10 hours) and 3,000 test data (about 5 hours), respectively. All utterances 

in the training and validation sets are either expanded or truncated to four seconds, and the 

sampling rate for all audio data is set to 8 kHz. This dataset comprises "min" and "max" versions: 

in the "min" version, the speech is truncated to match the duration of the shorter utterance, while 

in the "max" version, the speech is extended to match the longer utterance. The "min" version is 

used for training and validation, while the "max" version is used for testing to maintain 

consistency with baseline methods. When mixing speech from two speakers, the signal-to-

interference ratio (SIR) of the speech signals varies from -5dB to +5dB. Then, these adjusted 

speech signals are convolved with the RIRs to simulate the reverberation effect in real 

environments. The RIRs are simulated by the image method proposed by Allen and Berkley in 

1979 [24]. During the simulation, the length and width of the room varies from 5m to 10m, the 

height varies from 3m to 4m, the reverberation time varies from 0.2s to 0.6s and the positions of 

the microphones and speakers are all randomly selected. The microphone array consists of 8 

omnidirectional microphones placed inside a virtual sphere. The center of this sphere is roughly 

located at the center of the room and the radius of the sphere randomly selected from 7.5m to 

12.5m. The first four microphones are used for training and validation: two are symmetrically 

positioned on the surface of the sphere, while the other two are randomly positioned inside the 

sphere. The last four microphones are used for testing, and they are randomly positioned within 

the area defined by the first two microphones, which can evaluate the performance of the model 

in unseen microphone configurations.  

3.2. Model Configuration 

7. Here are the basic model configuration for the experiment, most of which are the same as the 

original settings [22]. The window settings of STFT are a 32ms frame length and a 16ms hop size. 

In the encoder section, the kernel size of the Conv2D layer is set to (7, 7) in order to extract local 

feature, while in other sections, the kernel size of Conv2D layer is set to (1, 1). In the separator 

section, the number of the time-frequency domain path scanning blocks in this paper is reduced 

to 3 from original 6 for simplifying the model. Each block contains two BLSTM layers, with each 
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BLSTM layer consisting of 128 hidden units. In addition, a parameter sharing strategy is adopted 

in this model, meaning the same parameters are used during the iteration separation. This 

strategy reduces the total number of the parameters in the model, thus decreasing the 

computational requirements. 

3.3. Training Configuration 

8. In the model training, the batch size is set to 1. Utterance-level permutation invariant training 

(uPIT) is applied to address the source permutation problem. The Adam optimizer is utilized 

and the learning rate is set to 1×10-3. Additionally, the maximum norm value of gradient clipping 

is set to 5. The networks and the comparison network are trained for 150 epochs to ensure 

fairness of the experiments. 

3.4. Evaluation Metrics 

9. The SDR of blind source separation evaluation (BSS-Eval) [25] and scale-invariant signal-to-

distortion ratio (SI-SNR) are chosen as the main objective measures of separation accuracy. 

Furthermore, perceptual evaluation of speech quality (PESQ), short-time objective intelligibility 

(STOI) and SIR are used to further evaluate the accuracy of separated speech. It is worth noting 

that during the evaluation process, the first microphone is selected as the reference by default.  

4. Results 

4.1. Analysis of Iterative Results 

10. The separation results of our proposed method at different stages are shown in Table 1. Here, 
( )

,1ˆ n
qy   denotes the speech signal of each speaker on the first microphone after the TFDPRNN 

module at the nth stage, and ( )ˆ n
qz  denotes the speech signal of each speaker after the MVDR 

beamformer at the nth stage.  

11. From Table 1, we can see that after the first iteration, the SDR performance of 
( )ˆ n
qz  is increased 

by 17.46% and the SI-SDR performance of 
( )ˆ n
qz  is increased by 22.66%. This shows that the first 

iteration can bring high gains to our model. However, after the second iteration, although some 

improvement is still observed with each iteration, the performance improvements of 
( )ˆ n
qz   in 

SDR and SI-SDR are very slow, with an increase of less than 1%. This indicates that as the number 

of iterations increases, the estimation of the SCM becomes more accurate and gradually 

approaches the inherent performance upper limit of MVDR beamforming. On the other hand, 
(1)

,1ˆqy  is improved by about 51% over 
(0)

,1ˆqy  in SDR and SI-SDR, and 
(2)

,1ˆqy  is improved by about 

11% over 
(1)

,1ˆqy  on these two metrics as well. In the subsequent stages, although the performance 

is continually improved, the rate of improvement is less than 2%. The performance of 
( )

,1ˆ n
qy  and 

( )ˆ n
qz on the SIR and PESQ are improved after each iteration. The STOI performance of 

( )
,1ˆ n

qy  and 
( )ˆ n
qz are remained at about 0.99. Overall, the performance of our model is improved obviously in 

the iterative process. 

12. In order to describe the results of the method more graphically, Figure 3 shows a comparison of 

the spectrograms for a single speaker. They include original clean speech signal, the original 

reverberant speech signal, the mixed speech signal, the output signals of neural network at 

different stages, and the output signals of the beamformer at different stages, respectively. 

Observing the output spectrograms of neural network in the left column, it is clear when the 

processing stage increases, the clarity and quality of the spectrograms gradually are improved. 

For example, compared to the spectrogram of original reverberant signal, it can be observed that 

certain spectral components in the spectrogram of the first neural network are reduced (e.g., the 

red circles). After iterative processing, these signal components are gradually recovered in the 

spectrogram of the second neural network. In the speech spectrogram in the right column, the 
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separation effect of the beamformer at different stages is observed, and there are no significant 

changes or improvements. When comparing the speech spectrograms in the left and right 

columns, we can see that the output spectrograms processed by the neural network exhibit 

relatively higher clarity compared to those processed by the beamformer. This comparison 

reveals the potential advantages of neural networks in processing speech signals. 

13. In general, the iteration of the MVDR and post-separation is fully employed for promoting their 

individual optimization, which ultimately improves the overall performance. In addition, both 

the outputs of MVDR and post-separation can be used as the final output of the model. However, 

the performance of the output of post-separation is better than the MVDR beamformer from 

Table 1, so the former is used as the final output of the model. In addition, each additional 

processing will lead to an increase in the real-time factor (RTF) of the model, thereby increasing 

the data processing time. Considering this, the output of post-separation after the first iteration 

is used as the evaluation results of our model for comparison with other methods. 

 

Figure 3. Spectrogram comparison of the separated speech at different stages. 

Table 1. Comparison of speech separation results at different stages. 

stage RTF 
SDR SI-SDR SIR PESQ STOI 

( )ˆ n
qz  ( )

,1ˆ n
qy  ( )ˆ n

qz  ( )
,1ˆ n

qy  ( )ˆ n
qz  ( )

,1ˆ n
qy  ( )ˆ n

qz  ( )
,1ˆ n

qy  ( )ˆ n
qz  ( )

,1ˆ n
qy  

0 0.024 - 14.41 - 13.91 - 30.67 - 4.13 - 0.98 

1 0.049 18.79 21.84 17.08 21.13 27.21 30.67 3.93 4.13 0.99 0.98 

2 0.074 22.07 24.17 20.95 23.48 33.21 33.21 3.93 4.23 0.99 

0.99 

0.99 

0.99 

3 0.104 22.10 24.48 21.07 23.84 33.23 33.93 3.99 4.25 0.99 

0. 

0.99 

4 0.125 22.21 24.91 21.20 24.26 33.80 34.36 3.98 4.26 0.99 

0 

0.99 

5 0.148 22.31 24.60 21.34 23.98 34.05 34.24 4.00 4.25 0.99 0.99 

4.2. Comparison with Reference Methods 

At present, there are two kinds of mainstream methods to address the multi-channel speech 

separation task, one is frequency-domain based separation method, another one is time-domain 

based separation method. The most popular multi-channel speech separation methods are listed as 

the follows: 
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14. Filter-and-Sum Network (FaSNet) [26] is a time-domain method that uses a neural network to 

implement beamforming technology. This method utilizes deep learning to automatically learn 

and optimize the weights and parameters of the beamformer. The core advantage of this method 

is its adaptability, allowing the network to adjust according to the complexity and diversity of 

speech signal; 

15. Narrow-band (NB) -BLSTM [27] is a frequency-method using the BLSTM network, which is 

specially focused on narrow-band frequency processing and is trained by full-band methods to 

improve its performance. By processing each narrow-band frequency component separately in 

frequency domain, this method can effectively identify and separate individual speakers for the 

overlapped speech;  

16. Beam-TasNet [9] is a classical speech separation method that combines time-domain and 

frequency-domain approaches. First, the time-domain neural network is used for pre-

separation. Subsequently, these pre-separated speech signals are used to calculate the SCM of 

the beamformer. Finally, the separated signal is obtained by the beamformer; 

17. Beam-Guided TasNet [19] is a two-stage speech separation method that also combines both time-

domain and frequency-domain approaches. In the first stage, the initial speech separation is 

performed using the Beam-TasNet. In the second stage, the network structure remains the same 

as the Beam-TasNet, but the input includes the output from the first stage. This iterative process 

helps to further refine the separation of the initial speech. 

18. Beam-TFDPRNN [15] is our previously proposed time-frequency speech separation method, 

which also uses a neural beamforming structure like Beam-TasNet. This method has more 

advantages in the reverberant environment, because it uses a time-frequency domain network 

with more anti-reverberant ability for the pre-separation. 

The experimental results on the spatialized version of the WSJ0-2mix dataset for the proposed 

method and the popular methods are shown in Table 2. It should be emphasized that the results of 

Beam-TasNet are directly cited from the original paper, while the result of Beam-Guided TasNet is 

obtained by our replicate test, the difference is about 0.2dB from the original result. 

Table 2. Comparison with reference methods on the spatialized version of the WSJ0-2mix dataset. 

Method Param SDR SI-SDR PESQ SIR STOI 

FaSNet 2.8 M 11.96 11.69 3.16 18.97 0.93 

NB-BLSTM 1.2 M 8.22 6.90 2.44 12.13 0.83 

Beam-TasNet 5.4M 17.40 - - - - 

Beam-Guided TasNet 5.5M 20.52 19.49 3.88 27.49 0.98 

Beam-TFDPRNN 2.7 M 17.20 16.80 3.68 26.77 0.96 

iBeam-TFDPRNN 2.8M 24.17 23.48 4.23 33.21 0.99 

From Table 2, we can see that the performance of the FaSNet and NB-BLSTM is not satisfactory. 

In comparison, the Beam-TasNet and Beam-TFDPRNN demonstrate good separation performance. 

The Beam-Guided TasNet further improves the performance of Beam-TasNet by employing an 

iteratively refined structure. The proposed method, iBeam-TFDPRNN, significantly outperforms the 

other methods. In addition, our proposed model has only 2.8M parameters, which is smaller than the 

parameters of most other methods. In conclusion, the proposed method in this paper has excellent 

performance compared to the reference methods.  

4.3. Dereverberation Results 

In the previous section, we only discuss the performance of the proposed method in the task of 

the reverberation. However, in order to comprehensively evaluate the performance of the proposed 

method and explore its performance in different tasks, this section will explore the separation 

performance of the proposed method on the dereverberation task.  
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The experimental results in Table 3 exhibit the performance of our proposed method and 

reference methods on the dereverberation task. We can see that our proposed method has significant 

advantage than reference methods. Specifically, the proposed method achieves an SDR of 20.2dB, 

much better than Beam-TasNet and exceeds Beam-Guided TasNet by 2.1dB. Additionally, it exceeds 

the oracle mask-based MVDR by 8.2dB, and narrows the gap to just 0.9dB with the oracle signal-

based MVDR. These results highlight the effectiveness of our proposed method in dereverberation 

tasks, demonstrating its potential for real-world applications. 

Table 3. Dereverberation performance on the spatialized version of the WSJ0-2mix dataset. 

Method 
SDR 

( )
,1ˆ n

qy  ( )
,1ˆ n

qz  

Beam TasNet 10.8 14.6 

Beam-Guided TasNet 16.5 17.1 

iBeam- TFDPRNN 20.2 19.7 

Oracle mask-based MVDR 11.4 12.0 

Oracle signal-based MVDR ∞ 21.1 

5. Conclusions and Discussion 

In this paper, an iteratively refined multi-channel method was proposed to improve the 

performance of speech separation in complex environments. Benefiting from the strength of neural 

beamforming and the multi-stage iteratively refined structure, the proposed method achieved 

outstanding performance. The experiments on the spatialized version of the WSJ0-2mix corpus show 

that the proposed method not only has a good separation performance in a reverberant environment, 

but also has significant advantages compared to current popular speech separation methods. In 

addition, the model shows a promising ability on dereverberation task. However, the dataset in this 

paper does not contain noise components. Therefore, exploring speech separation problems in noisy 

environments will be our future research direction, and the effectiveness of this method in realistic 

environments will be further validated by using noisy datasets such as LibriCSS [28] and WHAMR! 

[29]. 
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