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Abstract: Deep learning methods paired with sidescan sonar (SSS) are commonly used in
underwater search and rescue operations for drowning victims, wrecks, and airplanes. However,
these techniques are primarily designed to detect mine-like objects and are rarely applied to
identifying features in dynamic dredge pit environments, due to a lack of datasets. In this study, we
present a Sandy Point Dredge Pit (SPDP) dataset, in which high-resolution SSS data were collected
from the west flank of Mississippi bird foot delta of the Louisiana inner shelf. This dataset contains
a total of 385 SSS images. We introduce an Effective Geomorphology Classification model (EGC).
By ablation studies, we analyze the utility of transfer learning on different model architectures and
the impact of data augmentations on model performance. This EGC model will make geomorphic
features identification in dredge pit environments quick and efficient which requires extensive
experience and professional knowledge. The combination of SSS images and EGC model is a cost-
effective and valuable toolkit for hazards monitoring in marine dredge pit environment. The SPDP
SSS images dataset, especially the feature of pit wall without rotational slump, is also valuable for
other machine learning modelers.

Keywords: sidescan; sonar; geomorphology; deep learning; coastal restoration; EfficientNet

1. Introduction

Barrier islands play a critical role in safeguarding inland wetlands and preserving estuarine
conditions [1]. The barrier islands within the Mississippi River delta plain are facing rapid
deterioration due to a combination of factors including significant relative sea-level rise of
approximately 0.9 cm/year, a shortage of coastal sand supply, and erosion from storm-induced waves
and currents ([2-5]). These challenges have been documented extensively in research over the past
decades, highlighting the islands' vulnerability and the pressing need for conservation efforts ([6-8]).

Dredging, recognized globally as a critical excavation activity, entails the extraction and transfer
of sediments from the beds of oceans, rivers, and lakes. This process serves multiple purposes,
ranging from the creation and enhancement of maritime infrastructures such as harbors, waterways,
and dikes, to land reclamation efforts. Additionally, dredging is integral to flood and storm
mitigation, the harvesting of minerals for infrastructure projects, and the remediation of
contaminated sediments. This is detailed in various studies, including those by [9-14]. Specifically
dredging activities on the inner Louisiana continental shelf are of notable economic and societal
importance, with over 50,000 km of pipelines on the Gulf of Mexico's seabed. The Energy Information
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Administration highlights the Gulf of Mexico's (GOM) substantial contribution to the U.S.'s offshore
oil and natural gas production, alongside its pivotal role in housing a significant portion of the
country’s petroleum refining and natural gas processing capacities. Therefore, landslide monitoring
is significant for sediment and energy management.

Synthesizing historical data and continuously monitoring the pits have been an interest of
mineral resource managers and decision makers ([15-19]). Conventional approaches to analyzing
pre-dredging, dredging, and post-dredging phases incorporate a variety of techniques, such as
geophysical surveys (including bathymetric, subbottom, and sidescan), sediment sampling through
corings and grabs, water analysis, and continuous monitoring with optical and acoustic sensors
([20,21]). These methods are complemented by profiling, ship-based transects, among others. While
coring and geophysical surveys are effective in identifying sediment characteristics, they often come
with limitations regarding spatial coverage and high costs. Sediment coring, although accurate for
groundtruthing conditions on the ground, is notably time-intensive and requires significant labor,
typically executed intermittently over extended periods (for example, during seasonal studies) ([22]).
Multi-beam bathymetric surveys offer detailed insights into morphological changes but are
expensive, leading to infrequent monitoring of many dredge sites, possibly only once every few years
([20,23,24]). In contrast, side-scan sonar, with its broader survey range, stands out as a potential cost-
effective method for identifying various sediment substrates, including rocky terrains, wrecks, oyster
beds, sand, and mud, demonstrating its versatility and efficiency in marine substrate detection
([20,25,26]).

Machine Learning (ML) has emerged as a pivotal technology in the enhancement of feature
identification within side scan sonar imagery, a critical tool for underwater exploration, including
seabed types, marine habitats, archaeological sites, and man-made objects like shipwrecks and debris,
and monitoring ([27-29]). [30] discussed SSS image augmentation for sediment classification. Their
results indicate that pre-trained EfficientNet model improve accuracy after fine tuning the parameter
in feature identification and object classification using SSS images. [31] confirmed that the
segmentation method based on conventional neural networks (CNN) and Markov random fields
(MREF) is applicable in SSS image segmentation. [32] combined semisynthetic data generation and
deep transfer learning which has proved to be an effective way to improve the accuracy of
underwater object classification. [33] presented textural analyses of SSS images from Stanton Banks,
on the continental shelf off Northen Ireland. They detected faint trawling marks and separated
between the different types of seafloors. [34] discussed an automated pipeline for identifying sites of
archaeological interests off the coast of Malta from SSS images collected by an autonomous
underwater vehicle (AUV). Their algorithm achieves precision and recall, up to 29.34% and 97.22%.
Based on the above literature review, the main contributions and work of this paper are given as
follows.

1) This automation significantly improves the efficiency and accuracy of SSS image analysis,
overcoming the traditional challenges of manual interpretation, which is time-consuming and
subject to human error in the dredge pit sedimentary environment.

2)  Pit wall collapse could threaten the safety of ambient pipelines and platforms. The combination
of EGC model and SSS images is a promising tool for future dredge pit geomorphic feature
evolution and hazards related to dredging.

3) As the first dredge pit wall collapse SSS images, it could be used in other environment for the
hazard monitoring.

2. Sandy Point Dredge Pit Dataset and Effective Geomorphology Classification Model

2.1. Sandy Point Dredge Pit Dataset

In this section, we first introduce the interest of area. Then the data collection process will be
introduced, and multiple data augmentation techniques used for the training of deep learning models
are presented.
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2.1.1. Study Area

The Sandy Point dredge pit, situated 20 km west of the modern Mississippi River bird-foot delta,
reaches a depth of about 20 m post-dredging, contrasted with the surrounding water's depth of
approximately 11 m (Figure 1). This pit originated from an ancient sandy paleo river channel covered
extensively by muddy deposits [7]. The nearby fluvial deposits from Grand Pass of the Mississippi
Delta, about 12.5 km northeast of the pit, influence its shape and dynamics significantly. Over time,
sediment dispersal from the Mississippi River has led to a seabed predominantly composed of mud
around the Sandy Point pit area. Specifically, the bottom sediment composition here is 90% mud
(particles finer than 63 um) and 10% sand, contributing to its unique characteristics [7].
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Figure 1. (a) Map of Mississippi bird foot delta. (b) Bathymetry map for Sandy Point dredge pit.
Bathymetric data of (a) are downloaded from ETOPO1 (https://www.ngdc.noaa.gov/mgg/global/).
Qil platform and pipeline data are from BOEM website (https://www.data.boem.gov/). Bathymetric
data of Sandy Point dredge pit were collected in May 2022 by [19]. ‘SPDP’ is Sandy Point dredge pit.

2.1.2. Data Collection

To collect Sandy Point Dredge Pit (SPDP) dataset, we surveyed the Sandy Point dredge pit in
September 2022 using a full suite of high-resolution geophysical instruments, including
interferometric sonar for swath bathymetry, sidescan sonar, and CHIRP subbottom profiler. The 4600
system produces real-time high-resolution three-dimensional maps of the seafloor while providing
co-registered simultaneous sidescan and bathymetric data. Seafloor features, such as pit edges, failure
scarps, and bedforms as small as 10-20 cm can be imaged. The R/V Coastal Profiler from Coastal
Studies Institute of Louisiana State University was used for all fieldwork. The bathymetry and
sidescan acquisition device were pole-mounted and fixed from a bowsprit ahead of the vessel.
Subbottom profiler was towed off the port side of the vessel about 0.5 m below the sea surface. Sonar
data were processed using Caris HIPS/SIPS and then exported to ArcMap to create Digital Elevation
Models (DEMs), which were then used to crop original SSS images. Detailed geophysical methods
can be found in [20]. After initial data analysis, a total of 5 classes of environments were defined: pit
wall with rotational slump, pit wall without rotational slump, heterogenous pit bottom (sand-mud
mixture), homogenous pit bottom, as well as homogenous seabed outside pit. Rotational slump, also
known as a rotational slide or rotational landslide, is a type of landslide that occurs along the pit wall
of SPDP. During rotational slump, a series of blocks of sediment slides along a concave-upward slip
surface, forming a stepwise boundary on pit wall. It should be noted that black and white represent
high and low reflectivity, respectively, in all SSS images in this study. Also, close distance from SSS
to seabed and sand seabed tend to produce high reflectivity (black in SSS images).

After class definition, we applied a data preprocessing pipeline to the original data, as shown in
Figure. Specifically, original data were processed by augmentation techniques such as rotation,
translation, scaling, and cropping to simulate the various data collection environments and enlarge
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the dataset size ([35]). After data cleaning, 385 SSS images were used, categorized into five classes.
Specifications of SPDP are given in Table 1. The labeling rationale is mainly based on the bathymetry
data collected at the same time, which makes it much easier to determine the morphologic features.
More details please check the Figures 2 and S1.
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Figure 2. (A) is the bathymetry data of Sandy Point dredge pit. (a)~(e) are five feature categories are
highlighted by dashed circles. (B) is the whole picture of sidescan data. (C) is the examples of the data
from each feature categories. The red squares are the examples’ location of the SSS images.

Table 1. Specifications of SPDP dataset.

Class Training Validation Total
Pit wall without rotational slump 28 7 36
Homogenous pit bottom 41 14 55
Heterogenous seabed outside pit (mud-sand mixture) 97 20 117
Homogenous seabed outside pit 78 15 93
Pit wall with rotational slump 64 21 84
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Figure 3. Data preprocessing flow chart. Multiple data augmentation techniques were applied to
increase the data diversity and prepared for the model training.

2.1.3. Data Augmentation

In addressing the challenges posed by the limited size of our dataset, we implemented a strategic
data preprocessing pipeline to enhance the diversity of our training samples, as shown in Figure .
This process not only aided in increasing the effective size of our dataset but also played a crucial
role in improving the generalizability of our model. Below, we detail the components of our data
augmentation strategy and its integration into the data preprocessing workflow.

Preprocessing and Rescaling. Initially, all images in the dataset undergo a uniform resizing and
rescaling operation. Specifically, images were resized to a standard dimension with 224 x 224 pixels
that are commonly adopted image sizes [36]. Subsequently, pixel values are normalized to a range of
0 to 1 by rescaling with a factor of 1/255. This normalization step is critical for optimizing the training
process, as it ensures that model inputs have a uniform scale, facilitating faster convergence during
training.

Augmentation Techniques. To further enhance the robustness of our model, we employed a
series of random transformations on the training dataset. These transformations included random
flipping, random rotation, and random contrast adjustments, introduce a variety of perspectives and
lighting conditions, simulating a broader range of real-world data collection scenarios:

1. Random Flipping: Images are randomly flipped horizontally or vertically.

2. Random Rotation: We apply a rotation range of [-36°, 36°] to the images to account for changes
in object positioning and camera angle.

3.  Random Contrast: Adjustments in contrast (up to 10%) are made to simulate different lighting
conditions.

For the augment, the model transformed the images differently each time they are passed
through the augmentation pipeline during training. This means each epoch can see slightly different
versions of the same image, which helps the model generalize better from the training data by
preventing it from memorizing exact details. These augmentation techniques were applied
exclusively to the training set, ensuring that the model learns from a more diverse set of examples
without altering the test sets. Examples of augmented images are shown in Figure .

Heterogenous
Pit Wall Without Homogenous Pit Seabed Outside Pit Homogenous Pit Wall With
Rotational Slump Bottom (Mud-sand Mixture) Seabed Outside Pit

Rotational Slump

%

Figure 4. Examples of original and augmented images in five classes. The top row shows the original

images, and the bottom row shows randomly augmented images. A total of 5 classes of environments
were defined: pit wall with rotational slump, pit wall without rotational slump, heterogenous pit
bottom (sand-mud mixture), homogenous pit bottom, as well as homogenous seabed outside pit.
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After random augmentations, image samples were randomly shuffled to further enhance model
robustness by preventing the model from learning unintended patterns from the order of the
samples. Finally, images were divided into multiple batches according to the hyperparameter batch
size.

2.2. Effective Geomorphology Classification Model

Although data augmentations are beneficial to increase the data varieties, our SPDP dataset still
presents unique challenges to the design of the classification model due to its relatively small size
and the unique and intricate features. These features are often subtle yet critical for accurate
classification, requiring a model that can learn effectively from limited data without overfitting.
Additionally, the model’s training efficiency and scalability are also valuable. Good training
efficiency allows faster model training and inference and even achieve real-time inference when
conducting the image collection at the same time. Good scalability allows customized model design
for various sizes of available data, which is crucial for small and unique data like ours. Therefore, we
introduce an Effective Geomorphology Classification model (EGC), which aims to balance the model
performance and efficiency.

In this section, we first introduce the architecture of our EGC model. Then we introduce two
main modules of EGC in detail: Feature Extractor and Classifier.

2.2.1. Model Architecture

To balance the model performance and computational efficiency, we introduce an EGC model
based on EfficientNet [37]. EfficientNet has shown good performance on image classification tasks
with great tradeoff between accuracy and training and inference efficiency, which is achieved by its
innovative scaling approach. EGC mainly has two modules: the feature extractor that adopts
EfficientNet-BO as the backbone to extract various levels of grains of geomorphology features, and
the classifier that consists of two fully connected (FC) layers to perform predictions on five classes.
The architecture of EGC is shown in Figure .

Input Image
h 4
Conv 3x3

Fused-MBCony, k 3x3

| Fused-MBConv, k 3x3
Fused-MBConv, k 3x3

Feature
Extractor == u
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Figure 5. Model architecture of EGC.

As shown in Figure , EGC was divided into 10 stages and all the layers in each stage have the
same architecture. Stage 0-7 are the components of the feature extractor module and stage 8-9 are
layers of the classifier module.

2.2.2. Feature Extractor Module

The foundation of our EGC is the feature extractor module, which meticulously processes the
input sidescan sonar images to distill meaningful patterns. This module is designed to handle the
nuances of underwater imagery with a good balance between model performance and model size.
Two major convolution blocks were utilized in the feature extractor module: MBConv and Fused-
MBConv, as shown in Figure . MBCov is the main convolution block in MobileNet [38], which
consists of two convolution layers with kernel size of 1x1 and a depthwise block. Fused-MBConv is
a variant of MBConv to achieve better training speed by replacing the depthwise conv3x3 and
expansion convlxl in MBConv with a conv3x3.

M. IARY
L/ 1/
HW.C 1 HW.C
convi1x1 convilx1
H.W.4C T
depthwise H.W.4C
conv3x3
T conv3x3
iConv1 ><1}
HW.C HW.C
MBConv Fused-MBConv

Figure 6. Structures of MBConv and Fused-MBConv blocks. .

As shown in Figure , the feature extractor module begins with a standard convolutional layer
(Conv3x3) that is equipped with 32 filters of size 3x3 and has 32 channels. This serves as the initial
feature extractor with the processed input images. The subsequent stages, 1 through 3, implement
Fused-MBConv blocks. Fused-MBConv fuses the depthwise and pointwise convolutions into one
layer for efficiency. They employ 3x3 kernels and exhibit an increasing complexity in terms of the
number of channels, starting at 16 and progressing to 48. Each stage incrementally captures more
complex features while managing computational efficiency. Stages 4 to 6 integrate MBConv blocks
with 3x3 kernels. The number of channels in these layers progressively increases from 96 to 192,
allowing the network to construct a highly detailed feature representation from the input data.
Finally, a regular convlxl and fully connected layer generates the output with a vector of 1280
dimensions.

2.2.3. Classifier Module

The classifier module contains two fully connected layers where the output of the last layer is a
vector of 5 dimensions, which corresponds to the number of classes in the geomorphology
classification task.
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Throughout the model, the number of layers within each stage varies, signifying the network's
complexity and depth at different levels of abstraction. This hierarchical structuring enables the
model to effectively learn both low and high-level features.

3. Results

3.1. Experimental Settings

In our experiments, we standardized the input image size to 224x224 pixels. Batch size is set to
8. Total training epochs are 400. We used Adam [39] as the optimizer, where a cosine decaying
learning rate scheduler is applied with initial learning rate 0.001 and exponential decay rates are 0.9
and 0.999, respectively.

To evaluate the performance of our model, we utilized the top-1 accuracy metric. This metric is
a direct measure of the model’s ability to correctly classify the primary sediment type from an image,
providing a clear and interpretable assessment of the classification performance.

To evaluate the classification performance of our EGC model, we selected a range of CNN
architectures as the backbones and connected them with the classifier module, each with varying
complexities and characteristics. The specifications of baselines are shown in Table 2.

1. LeNet [40]: One of the earliest convolutional networks, LeNet is renowned for its simplicity and
effectiveness in image classification tasks.

2. VGG16 [36]: A deep CNN renowned for its simplicity and depth, which has shown exceptional
performance on various image recognition tasks.

3. MobileNet [38] (Small and Large variants): MobileNet architectures are designed for mobile and
edge devices, emphasizing efficiency. The ‘Small’ variant represents a more compact version,
while the ‘Large’ variant is a scaled-up version with a higher capacity for feature extraction.

Table 2. The specifications of models. The number of parameters and float-point operations (FLOPs)
has the unit of million.

Model #Parameter (M) #FLOPs (M)
LeNet 0.005 20.00
VGGI16 14.78 49.60
MobileNet Small 1.01 1.97
MobileNet Large 3.12 9.10
EGC 6.08 20.00

As shown in Table 2, our EGC has a middle size among baselines and middle number of FLOPs.
The design of EGC is to balance the training efficiency and the model performance. Therefore, to fully
evaluate the effectiveness of EGC on our small dataset, we need to further measure its prediction
performance in the following sections.

3.2. Experimental Results

In this section, we present major findings of performance of our EGC model and ablation studies
on some key components. All experimental results presented are averaged from 5 independent
experiments.

3.2.1. Model Performance

Typically, training CNNs from scratch where all the parameters of the model are trainable on
small datasets is difficult, because CNNs usually have a vast number of parameters that require
substantial amounts of data to learn effectively without overfitting. When data are scarce, the model
may not encounter enough variation to generalize well, leading it to memorize the limited training
examples rather than learning the underlying patterns.
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In this section, to evaluate the classification performance of our EGC model against baselines,
we train each baseline model from scratch. Accuracy and convergence speed are shown in Table 3
and training curves are given in Figure .

Table 3. Classification performance and convergence speed of different models. Acc. denotes the best
validation accuracy and Converge Epoch denotes the number of epochs required to achieve 0.80
validation accuracy. The best result is in bold.

Model Acc. Converge Epoch (Efficiency)
LeNet 0.66 /
VGG16 0.26 /
MobileNet Small 0.85 216 (2.25X)
MobileNet Large 0.84 264 (2.75x)
EGC 0.82 96 (1x)
Training Accuracy Validation Accuracy
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2 | 205
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Figure 7. Performance of our EGC model against multiple baselines.

As shown in Figure , from the training accuracy and training loss curves, EGC along with
MobileNet Small and MobileNet Large converge fast and reaches the performance plateau with more
than 0.95 accuracy at about epoch 200, while LeNet and VGG16 converge to local minimum. It
indicates that LeNet and VGG16 are underfitting and not able to effectively extract the key features
from our sidescan sonar images.

As shown in Table 3, EGC has a significantly fast converge speed and good generalization ability
which achieves a stable validation accuracy at 0.80 after only 96-epoch training. Although MobileNet
Small and MobileNet Large have a slightly higher accuracy than EGC after 300-epoch training, they
are much less robust than EGC with high fluctuations between epochs, shown in Figure . Moreover,
MobileNet variants need about 150-epoch warmup to improve the validation accuracy, which shows
significantly low training efficiency.
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3.2.2. Transfer Learning Versus Training from Scratch

The decision to train a CNN from scratch or to employ transfer learning of the model pretrained
from large dataset is critical to the success of the model training, especially when faced with a small
dataset. In this section, we evaluate the performance of two variants of our EGC model: EGC, the one
trained from scratch, and EGC (Pretrained), the one leveraging transfer learning. Specifically, the
feature extractor module of EGC (Pretrained) is pretrained on ImageNet that is a vast and diverse
image dataset, and the weights of feature extractor are fixed, which leaves only the classifier to be
updated on our SPDP dataset.

It is worth noting that we also apply transfer learning to other baselines. However, only VGG16
(Pretrained) shows good performance and shows some interesting findings. Therefore, we add
VGG16 and VGG16 (Pretrained) into the comparison. The results are shown in Figure .

Training Accuracy Validation Accuracy
1.01
0.9 1
0.8
=07 — EGC > 0.6 4 — EGC
8 VGG16 & VGG16
2 064 —— EGC(Pretrained) 2 05+ —— EGC(Pretrained)
< —— VGG16(Pretrained) | < —— VGG16(Pretrained)
0.3 0.4
0.4
0.3 A
034 ¥ -
1] 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epochs Epochs
Training Loss Validation Loss
161 | 16 — GG
- VGG16
141 14 4 —— EGC(Pretrained)
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1.2 12
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" VGG16 “
g 0.8 —— EGC(Pretrained) S8
0.6 1 —— VGG16(Pretrained) 6
0.4 4
0.2 24 t
Ln_ ol adadan, i, e
0.0 o4
1] 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
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Figure 8. Performance comparison between EGC, EGC(Pretrained), VGG16, and
VGG16(Pretrained).

The EGC model, trained from scratch, demonstrates exceptional validation accuracy, indicating
that its architecture is well-suited for the nuances of the dataset at hand. Its superior performance
suggests that even without the benefits of transfer learning, the model is capable of learning robust
and discriminative features specific to geomorphology classification.

Both VGG16 and EGC (Pretrained) exhibit signs of underfitting, as seen from their lower training
accuracies. In the case of VGG16, this could be attributed to its depth and the large number of
parameters, which may be difficult to train effectively without a sufficiently large dataset. For the
pretrained EGC, underfitting could be due to the significant domain shift between natural images in
ImageNet and the sonar imagery in our dataset. The model may struggle to adjust these features to
the new task during fine-tuning, leading to poor performance in both training and validation phases.

Complex models like VGG16, known for their performance on large and diverse datasets, may
not always be the optimal choice for smaller, domain-specific datasets. For these models, transfer
learning is beneficial for reduced number of trainable parameters. Instead, more specialized
architectures like our EGC can capture the essential features effectively without transfer learning.
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3.2.3. Ablation Study on Image Processing

In this ablation study, we investigate the impact of data preprocessing on the performance of
our EGC model. By comparing the EGC with and without these preprocessing steps, we aim to
understand their contribution to the model's learning efficacy. The results are shown in Figure .
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Figure 9. Performance comparison between EGC, EGC (W/O Preprocessing).

EGC is more resistant to overfitting and shows better generalization ability. Although EGC (W/O
Preprocessing) initially exhibits a more rapid convergence during the early epochs of training, it
begins to overfit after approximately 50 epochs, as evidenced by the divergence of training and
validation loss. Moreover, EGC model, incorporating preprocessing steps, maintains a steadier
convergence and achieves a higher validation accuracy by a large margin of 0.1. Overall, EGC shows
better resistant to the overfitting and better generalization ability benefited from data processing.

4. Implementation and Limitation

In response to sea level rise and land subsidence, dredging is a global human activity to restore
coastal environments and battle with land loss. It is anticipated that more dredge pits will be formed
in the future decades. Detecting pit walls and calculating the distance from pit walls to oil and gas
pipelines and platforms are critical to the safety of marine resource management. Data generated by
EGC can help decision makers to better evaluate the setback buffer distance from pit walls to oil and
gas pipelines and platforms which is about 1000 ft. Moreover, submarine landslides are a type of
geohazard widely found in marine environments. Our EGC model can be adapted and easily applied
to the detection of the walls of gullies and lobes formed in the areas of submarine landslides which
can be triggered by hurricane waves, earthquakes as well as tsunamis.

Several machine learning studies related to dredging activities have been reported in recent
years, which includes identifying sediment types and sand mining ([41,42]). However, utilizing
machine learning methods to identify the geomorphic features like dredge pit walls is still very
limited. In September 2022, [19] observed large mudslides on the west side of the Sandy Point dredge
pit (Figure 1). This was the first time that mudslides occurred in dredge pits of muddy environments.
This phenomenon has great implication to the safety of ambient gas and oil pipelines and platforms,
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as well as the communication cables. Therefore, sand and energy management and dredging related
hazards require better monitoring tools.

Compared with bathymetry and core, sidescan sonar data are easier to collect and process. In
recent years, a large amount of SSS data has been collected in coastal marine environments. Therefore,
the combination of SSS data and machine learning methods is a promising method to monitor the
geomorphic evolution of dredge pits and secondary hazard along with the dredging activities. In this
study, EGC shows a good balance between model performance and training efficiency. Furthermore,
it can learn effectively from small data (Figure ). This indicates EGC has a promising future in
dredging pit environments. Except the Sandy Point dredge pit, this EGC model could also be used in
other dredge pits on the inner Louisiana continental shelf. EGC model has limitations in identifying
the geomorphic features in the dredge pit environment (see Figure ). This could be a result of small
dataset and the complexity of geomorphic features. For example, Figure e shows a wrong prediction
which is likely because the pit wall fraction is too small and is quite different from the typical pit wall.
Figure g and Figure h have similar problems. Besides, Figure f yielded wrong prediction because data
noise makes the feature of collapse incomplete and unpredictable. Therefore, creating bigger SSS
images dataset and more training could make the EGC model more accurate. Besides, a model
specialized in identifying geomorphic features could be developed based on the EGC model.

o, f
f‘aﬁ g
(a) (b) () (d)
Typical flat Typicalcollapse  Typical pitwall  Typical pit floor
seabed
Pit
() ® (h)
True: pit wall True: collapse True: pitwall True: pit wall
Pred: nothing Pred: pit wall Pred: inside pit  Pred: collapse

Figure 10. (a) ~ (d) are examples of typical features. (e) ~ (h) are examples for the wrong predictions.
Red dashed circles highlight the target features. The yellow dashed circles highlight the noise
produced in the nadir of SSS during the data collection.

5. Conclusions

Using machine learning model to identify the geomorphic features from the high resolution 555
images is discussed in this paper. The specific conclusions are as follows:

1. We introduced the EGC model to identify the geomorphic feature in marine dredge pit
environment. The EGC model has the best training accuracy and validation accuracy among all other
machine learning models (LeNet, VGG16, MobileNet Small and Large), the best training accuracy
(among all models) is 96%, and the best validation accuracy (among all models) is 80%. Besides, EGC
shows a better balance between model performance and training efficiency. Compared to other
models, EGC model train from scratch has superior validation accuracy without transfer learning.
The EGC model with preprocessing is more resistant to overfitting and shows better generalization
ability.
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2. Dredging induced mudslides is a threat to the ambient energy and communication
infrastructures in the inner Louisiana continental shelf. The EGC model could be used to monitor the
mudslides in dredge pits. Compared to bathymetry data, SSS images are easy to collect and process.
The combination of SSS images and machine learning model (e.g. EGC) could be a promising tool for
monitoring geomorphic evolution and mudslides under dredge pits environment. Besides, the EGC
model introduced in this paper and the SSS images dataset are also valuable to other machine
learning researchers.
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