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Abstract: Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased 
pulmonary vascular resistance and remodeling often precipitating right-sided heart dysfunction 
and death. Although the condition is progressive and incurable, current therapies for the disease 
focus on multiple different drugs and general supportive therapies to manage symptoms and 
prolong survival, ranging from medications more specific to pulmonary arterial hypertension 
(PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs 
and therapies including unique neurostimulation, to help better manage the disease. Here we 
provide a narrative review focusing on current PH treatments that target multiple underlying 
biochemical mechanisms, including but not limited to imbalances in vasoconstrictor-vasodilator 
and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) 
signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple 
types of neurostimulation including acupuncture. Lastly, we also touch upon the disease’s different 
subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost. 

Keywords: pulmonary hypertension (PH); pulmonary arterial hypertension (PAH); chronic 
thromboembolic pulmonary hypertension (CTEPH); cardiac dysfunction; neurostimulation and 
electroacupuncture; vascular remodeling; alveolar hypoxia 

 

1. Introduction 

Pulmonary hypertension (PH) is a progressive, incurable clinical condition defined 
hemodynamically by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg at rest as measured 
by right heart catheterization (RHC) [1,2]. In accordance with guidelines of the European Society of 
Cardiology and European Respiratory Society, PH is generally classified into five etiological groups: 
pulmonary arterial hypertension (PAH; Group 1), PH due to left heart disease (PH-LHD; Group 2), 
PH due to lung disease or hypoxia (Group 3), PH due to chronic thromboembolic disease (CTEPH) 
or other pulmonary artery obstructions (Group 4), and PH with unclear or multifactorial mechanisms 
(Group 5) [1]. There are multiple subtypes within each group as listed below in Table 1. In this paper, 
we focus particularly on the broader groups, including Group 1 and Group 3. 

PH patients may also be categorized into different groups based on their functional class (FC): 
the World Health Organization (WHO) for instance separates PH patients into FC I (least severe) 
through IV (most severe) based on limitations and symptoms that arise during physical activity 
(dyspnea, fatigue, chest pain, syncope), as well as comfort at rest [1]. Defining the functional classes 
is important in determining initial treatment plans and defining goals in stages, for both the patient 
and physician. For instance, the goal to contain symptoms at FC I or II can be used for the treatment 
of PH [1,3]. As such, a better survival rate is observed in patients who improves from a more severe 
to a less severe FC compared to those remaining at the same FC [4,5]. 
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This review article will explore how the different groups of PH are treated, particularly 
exploring standard and novel neurostimulation therapies for the disease and the mechanisms they 
target. Diagnosis, cost, and demographics of the disease will also be mentioned. 

Table 1. Etiological and Clinical Classification of Pulmonary Hypertension (PH). 

Group 1: Pulmonary Arterial Hypertension (PAH) 
• Group 1: Idiopathic 
• Group 2: Heritable 
• Group 3: Associated with drugs and/or toxins 
• Group 4: Associated with diseases such as connective tissue disease and HIV infection 
• Group 5: PAH with features of venous/capillary (PVOD/PCH) involvement 
• Group 6: Persistent PH of the newborn 

Group 2: PH associated with left heart disease (PH-LHD) 
• 2.1 Heart failure 
• 2.2 Valvular heart disease 
• 2.3 Congenital/acquired cardiovascular conditions leading to post-capillary PH 

Group 3: PH associated with lung diseases and/or hypoxia 
• 3.1 Obstructive lung diseases 
• 3.2 Restrictive lung diseases 
• 3.3 Mixed obstructive/restrictive lung diseases 
• 3.4 Hypoventilation syndromes 
• 3.5 Hypoxia without lung disease (e.g. staying at a high altitude) 
• 3.6 Developmental lung disorders 

Group 4: PH associated with pulmonary artery obstructions 
• 4.1 Chronic thrombo-embolic PH 
• 4.2 Other pulmonary artery obstructions (e.g. sarcomas, tumors, arteritis without connective tissue

disease, etc.) 
Group 5: PH with unclear or multifactorial mechanisms 
HIV = human immunodeficiency virus; PCH = pulmonary capillary hemangiomatosis; PVOD = 
pulmonary veno-occlusive disease 

2. Diagnosis 

Diagnosis and classification of PH relies on mPAP, but also other hemodynamic measures such 
as Pulmonary Arterial Wedge Pressure (PAWP; mmHg units) to measure pulmonary vein and left-
sided heart pressure, and Pulmonary Vascular Resistance (PVR; Wood units) to measure pulmonary 
arterial resistance and narrowing. For instance, a PAWP of ≤ 15 mmHg is generally necessary for a 
diagnosis of pre-capillary PH, including PAH [1,2]. Medications such as riociguat, epoprostenol, and 
sildenafil have been shown to significantly decrease mPAP in patients [6,7]. 

There are other numerous diagnostic techniques in addition to hemodynamic measures that 
could be used when assessing for PH. For instance, an electrocardiogram (ECG) could provide 
evidence for right atrial dilation, right ventricular hypertrophy and strain, right axis deviation, P 
pulmonale, right bundle branch block, and a prolonged QTc interval; while RHC is still necessary for 
a definitive diagnosis and ECG can still provide a probability estimate for PH [7–9]. Other 
complications associated with the disease include arrythmias, for which rhythm-control therapy is 
helpful in survival [1]. 

Depending on the subtype of PH, chest radiography can also be used to assess for similar results, 
including right atrial enlargement, dilated pulmonary arteries, calcifications, and aneurysms [1,7,10]. 
Pulmonary function tests and arterial blood gas analysis can help distinguish between groups such 
as idiopathic PAH and PH associated with lung disease by measuring parameters such as total lung 
capacity and forced expiratory volume, while ventilation/perfusion scintigraphy and pulmonary 
angiography can be used in diagnosing CTEPH [1]. Other tests include but are not limited to blood 
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tests for brain natriuretic peptide, transthoracic doppler-echocardiography, exercise tests, and 
abdominal ultrasound for portal hypertension [1]. Typically, PAH is diagnosed only after excluding 
other groups of PH as defined in Table 1 [1,11]. 

Those with PH typically present with symptoms not entirely specific to the disease but 
important for physicians to suspect and initiate prompt action for therapy and referral. For instance, 
a cardinal feature of PH is progressive exercise dyspnea, while other symptoms are fatigue, 
tachycardia, and syncope upon exertion. On physical examination, patients may also display lower 
extremity edema, dilated jugular veins, and ascites. Additional symptoms observed in PH patients 
are augmented heart sounds, such as a pronounced pulmonary component in the second heart sound, 
cyanosis, and exertional and nocturnal hypoxia. Moreover, mental stress due to sleep problems, 
anxiety, and depression have been reported in patients with PH, in which case adequate psychosocial 
support and medications could be used [1,12,13]. 

3. Demographics and Cost 

Older patients over the age of 65 have an estimated PH prevalence of 10%, and those with 
comorbidities such as aortic stenosis or heart failure (HF) with preserved ejection fraction (HFpEF) 
have a higher prevalence of PH ranging from around 30-90% depending upon how it is evaluated 
[14–17]. Despite scanty evidence, studies do suggest that those with residence in economically 
developing nations, poor healthcare access, low annual income, higher risk of diseases such as 
tuberculosis and human immunodeficiency virus (HIV) infection, and low health literacy have a 
higher prevalence of PH and worse FC and are less likely to receive adequate diagnosis and treatment 
[18–23]. Through mechanisms such as inflammation and vascular injury, COVID-19 cohorts are 
associated with higher prevalence of PH, in part due to the high prevalence of pre-existing PH with 
lung and heart comorbidities in COVID-19 patients [24–26]. On the other hand, a few studies suggest 
that COVID-19 could precipitate elevated pulmonary arterial pressure observed in PH [27,28]. 

Multiple studies report that PH-LHD is the most common type of PH, followed by PH due to 
lung disease and/or hypoxia [1,14]. However, regardless of the specific group, current trends indicate 
that the prevalence of PH is rising. Consequently, it is necessary to understand and tackle certain risk 
factors associated with PH, such as disease prevention and healthcare equity programs, along with 
finding novel therapies [1,18]. 

PH also imposes a large cost on the patient, their caregivers, and the broader economy. For 
instance, in the United States (US) alone, PAH-specific drugs can often cost anywhere between $5,000 
to $250,000 annually, which is evidently compounded for those on combination therapies or in worse 
FCs. Similar costs have also been reported in other countries [29–33]. Combined with costs for 
instance in hospitalizations, medical devices, diagnostics, supportive therapies, screenings, and 
transplants, annual healthcare costs hundreds of millions of dollars [29–31,34–37]. Moreover, studies 
report patients with PH more often have their work and income affected by the disease, including 
being unable to work at all, taking extended sick and disability leave, or considering early retirement. 
Similarly, caregivers of these patients often have their own work and income affected and experience 
exhaustion leading to an indirect annual cost of thousands of dollars and tens of millions of dollars 
nationally [29,34,38–41]. 

4. Mechanisms and Treatments 

Vasoconstriction of the pulmonary arteries with potential involvement of pulmonary vein and 
capillaries contributes to an elevated mPAP. Histologically, PH shows pathological vascular 
remodeling and vascular lesions [7,42]. Multiple studies report vascular thickening of the capillaries 
and hypertrophy of the arterial vessel intima, media, and adventitia in models of PAH such as PH 
due to left heart disease and PH on account of hypoxia [43–46]. Fibroblast migration to these layers, 
increased production of matrix proteins, endothelial cell proliferation, and neovascularization [43–
46]. Moreover, lesions could form from pathological endothelial cell thickening and increase the 
chance of surgical risk, especially in CTEPH [7,47,48]. 
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Hypoxia, infection and inflammation, shear stress, genetics, vasodilator-vasoconstrictor 
imbalances, and dysautonomia contribute to or are results of such vascular pathology. Treatments 
addressing these mechanisms are discussed below. 

4.1. PAH-Specific Drugs and Vasoconstrictor-Vasodilator Imbalances 

PH has long been associated with increased production of vasoconstrictors, such as endothelin-
1 (ET-1), and decreased production of vasodilators, such as nitric oxide (NO), prostacyclin, and 
calcitonin gene-related peptide (CGRP). 

ET-1 is overexpressed in both the plasma and lungs of PH patients in multiple different groups 
and positively correlates with severity of symptoms [49–52]. ET-1 activates two G-coupled protein 
receptor subtypes, endothelin receptor A (ETA) and endothelin receptor B (ETB). ETA receptors 
typically dominate over ETB receptors in the pulmonary vasculature and activation of the former 
leads to vasoconstriction while the latter induces vasodilator release [52–54]. ET-1 promotes 
intracellular calcium release through the phospholipase C (PLC)/inositol triphosphate pathway 
causing smooth muscle contraction. Diacylglycerols produced by PLC activation further potentiates 
smooth muscle contraction [54,55]. Furthermore, ET-1 can induce transcription of genes to promote 
smooth muscle cell growth and proliferation by the extracellular signal-regulated kinase (ERK) or 
sodium/hydrogen pump [53,56–58]. 

In accordance with these mechanisms, multiple current drugs aim to block ETA activation that 
help manage symptoms in PAH patients. Such antagonists include drugs such as bosentan, 
ambrisentan, and macitentan. Bosentan and macitentan target both ETA and ETB receptors while 
ambrisentan is selective towards endothelin A receptors. Although there are side effects associated 
with these medications, including liver dysfunction and thrombocytopenia, these drugs are effective 
in improving mortality and morbidity rates, WHO defined FC, and exercise capacity as measured by 
the six-minute walk distance (6-MWD) test, as well as hemodynamic parameters such as PVR and 
mPAP [59–62]. However, these drugs are more specific to PAH and have minimal effect on improving 
symptoms such as exercise capacity in other groups of PH patients [1,63–66]. 

Activation of ETB receptors on endothelial cells promotes vasodilator release through an increase 
in intracellular calcium via the PLC pathway. Calcium activates endothelial nitric oxide synthase 
(eNOS) leading to NO production and diffusion to vascular smooth muscle cells, soluble guanylate 
cyclase (sGC) activation, cyclic guanosine monophosphate (cGMP) generation, and smooth muscle 
relaxation and vasodilation [56]. However, in PH patients, there is reduced lung expression of eNOS, 
and increased expression of the enzyme that degrades cGMP, phosphodiesterase 5 (PDE5) [67–69]. 

Drugs tackling these pathways are similarly more specific for PAH. For instance, PDE5 
inhibitors (PDE5i) include tadalafil and sildenafil, which target the NO pathway by acting as 
reversible competitive inhibitors of PDE5 to improve hemodynamic values and functional status in 
PAH [70,71]. There are also sGC stimulators including riociguat, which has been used to help treat 
those affected by both PAH and CTEPH. For instance, riociguat targets the NO pathway by increasing 
the sensitivity of sGC to NO and directly stimulating the sGC enzyme independently of NO. 
Riociguat also helps increase exercise, improve FC, and hemodynamic parameters in these patients 
[6,72]. 

Prostacyclin synthase expression is reduced in the lungs of PH patients. Prostacyclin is a potent 
vasodilator and may be used to correct vasoconstrictor-vasodilator imbalances through cyclic 
adenosine monophosphate-mediated vasodilation [73]. Prostacyclin analogues used to treat PAH 
include epoprostenol, iloprost, and Treprostinil. They are typically administered differently from the 
oral medications listed above and utilized in patients with more severe symptoms. For instance, 
epoprostenol is administered intravenously and is better for those in more severe FC compared to 
other therapies [74,75]. Treprostinil is similar but can also be administered subcutaneously or inhaled, 
while iloprost is typically inhaled. Selexipag is yet another prostacyclin receptor agonist and can be 
orally available. For many PAH patients, a combination of a PDE5i and endothelin receptor 
antagonist is used as a standard of care for both mild and more severe cases of PH [3]. 
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Detected mainly in sensory C and Aδ fibers, CGRP a potent vasodilator, has also been found to 
be reduced in the plasma and lungs of rats affected by PH. Administration of CGRP is also reported 
to reduce hypertension in the lungs with vascular resistance and remodeling in animal models by 
suppression of ET-1 release. CGRP ligands activating the CLR/RAMP1 receptor leads to activation of 
multiple signaling pathways that in turn regulate not only intracellular energy metabolic patterns 
but also induce inflammatory factors by mitochondrial damage that are also involved in the 
development PAH. CGRP promotes anti-inflammatory effect by inhibiting the cGAS-STING-NFκB 
pathway [76–79]. The clinical use of CGRP is yet to be investigated and studies are warranted to 
discover the translational effectiveness in subjects with PH. 

4.2. Hypoxia and Oxygen Therapies 

Hypoxia is known to be a contributing factor to PH through multiple mechanisms. Studies 
report that hypoxic conditions trigger mechanisms such as mitochondria-mediated reactive oxygen 
species (ROS) production, ROS-mediated modification of protein channels, and nitrogen species-
mediated inactivation of enzymes in the NO pathway that ultimately result in a calcium influx into 
smooth muscle cells, triggering depolarization and vasoconstriction [80,81]. 

There is also growing evidence that intrapulmonary oxygen sensors can play a role in the 
pathogenesis of PH. Studies show that sensors in the alveolar and bronchiole endothelium by sensory 
pulmonary neuroendocrine cells (PNECs) detect low oxygen levels. They seem to interact with 
peripheral nerves such as pulmonary axon reflexes and intrapulmonary ganglion that in the presence 
of hypoxia influence vascular function such as vascular remodeling in PH [82,83]. PNECs are situated 
next to pulmonary vessels and influence multiple neurotransmitters including CGRP and potent 
vasoconstrictor serotonin (5-HT) promoting epithelial and fibroblast proliferation [82,84]. Indeed, 
hyperplasia of PNECs is seen in PH, and hypoxia is a known trigger of 5-HT release from PNECs 
[85,86]. Serotonin has long been suggested to play a role in PH pathogenesis [84,87,88]. Exactly how 
PNECs contribute to the vasoconstrictor-vasodilator imbalances are involved in the pathogenesis of 
PH, perhaps via hypoxia-mediated pathways, is unclear and pleading for future studies. 

Hypoxia has been reported to reduce eNOS transcription in pulmonary endothelial cells, but 
reports are conflicting as some report normal or even increased levels of eNOS [89–91]. It has been 
suggested that eNOS transcription is increased especially early in hypoxia via hypoxia-inducible 
factor 1 (HIF-1)- and 2 (HIF-2)-mediated binding to the eNOS promoter, and that this could cause 
high production of uncoupled eNOS and consequently high production of ROS. ROS reacts with and 
reduces the bioavailability of NO, contributing to vasoconstriction and triggering endothelial 
dysfunction [90,92,93]. Arginase, an enzyme that competes with eNOS for the substrate arginine, is 
elevated in animal models and humans with PH. Moreover, arginine transport into endothelial cells 
is reduced under hypoxic conditions [91,94]. Hypoxia also increases ET-1 expression through HIF-1 
complex-mediated binding to the transcription site for ET-1 [95]. HIF-1 may also be involved in 
pathways controlling platelet adhesion to endothelial cell walls in the pathogenesis of CTEPH, 
extracellular matrix remodeling in the pathogenesis of PAH, and endothelial cell migration and 
proliferation [96,97]. Hypoxia may also trigger fibroblast migration and proliferation through 
complex signaling pathways involving protein kinase B (Akt), as well as vascular remodeling 
through HIF-mediated increases in activin, a ligand associated with PH [98–100]. 

Medications targeting these pathways have not yet been established in PH patients. However, 
inhibitors of the HIF-2 pathway have been shown to improve symptoms such as right heart function 
and pulmonary remodeling in rat models of PH [101,102]. At the same time, numerous studies have 
reported similar results with HIF-1 inhibitors in rat [103–107]. 

In each group of PH, oxygen therapy can be supplemented to maintain pulmonary and systemic 
oxygen levels when pO2 is low, but it is typically reserved for those with low levels of oxygen 
saturation during exercise or sleep. It is reported that oxygen therapy does not have a significant 
clinical or survival benefit in the prognosis of those with PH [1,108]. Regardless, some studies have 
reported that oxygen may induce pulmonary vasodilation and improve exercise function in patients 
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affected by multiple types of PH; oxygen therapy is recommended if there’s symptomatic benefit 
[1,109]. 

4.3. Genetics and Signaling Pathways 

Imbalances in proliferative and anti-proliferative signaling via the transforming growth factor-
β (TGF-β) receptor is also associated with PH. Mutations in BMP receptor type II (BMPR2), a subtype 
of TGF-β receptor, is the most common heritable form of PAH and is associated with increased 
intima, smooth muscle, and adventitia thickening in pulmonary arteries through complex signaling 
pathways [45]. However, mutations in other genes are likely involved in PH, since not all of those 
with BMPR2 mutations develop the PH phenotype. 

BMPR2 signaling is highly complex and controls multiple signaling pathways. First, BMPR2 
downstream targets include BMP4 and BMP7 in vascular smooth muscle cells, which help repress 
the secretion of ET-1 [110,111]. Moreover, ET-1 downregulates BMPR2 expression, hence reduction 
in BMPR2 results in excessive vasoconstriction [110,111]. Immunologically, BMPR2 deficiency is 
associated with increased cytokine production through alterations to superoxide dismutase (SOD) 
activity and increased production of ROS, as well as increased lymphocyte, neutrophil, monocyte, 
and macrophage activity and migration [112–114]. This is understandable given that BMPR2 receptor 
activation on macrophages inhibit macrophage activation and upregulation of adhesive membrane 
proteins [112–114]. From a metabolic standpoint, BMPR2 loss is associated with mitochondrial 
dysfunction in endothelial cells and cardiomyocytes by shifting away from glucose and fatty acid 
oxidation respectively; these changes are thought to predispose PH clinical symptoms such as 
endothelial inflammation and right ventricular failure [115,116]. From a viral standpoint, it’s been 
reported that human immunodeficiency virus (HIV) infection can lead to miRNA-mediated 
downregulation of BMPR2 expression [117]. 

More pertinently, impaired BMPR2 activity may result in impaired regulation of activin, a pro-
proliferative ligand that reduces BMP activity and promotes myogenic proliferation and remodeling 
[118,119]. Accordingly, sotatercept, an activin signaling inhibitor, has been shown to improve clinical 
outcomes for PAH patients [120,121]. Etanercept has also been shown to target the BMPR2 pathway 
by inhibiting the cytokine tumor necrosis factor-alpha (TNFα), the overexpression of which is found 
in PAH patients and leads to downregulation of BMPR2 mRNA in rat models [122,123]. Targeted 
delivery of exosomes to replace defective BMPR2 has also been explored [124]. 

Other pathways are also implicated within the pathogenesis of PH. For instance, studies indicate 
that SRT2104, an activator of Sirtuin 1 (SIRT1), can mediate the restoration of tuberous sclerosis 
complex 2 (TSC2), a growth suppressor protein on smooth muscle cells that is decreased in PAH 
[125]. 

4.4. Inflammation 

Inflammation is a crucial factor in the pathogenesis of PH, especially in those with infection or 
connective tissue diseases. For instance, lymphocytes, dendritic cells, mast cells, macrophages, and 
proliferating endothelial cells are found in vascular lesions [126–129]. Patients with PH show higher 
serum cytokines including multiple interleukins (IL), TNFα, and chemokines [122,130,131]. 

Multiple cytokines and pathways contribute to PH pathogenesis. For instance, studies show that 
hypoxia increases lung production of IL-1β, which activates receptors on smooth muscle cell and 
triggers proliferation [132]. Moreover, IL-6 activates signal transducer and activator of transcription 
3 (STAT3), which causes the increase of certain miRNAs that degrade BMPR2 mRNA leading to 
vasoconstriction [133]. Studies have shown that Il-6 can increase endothelial growth factor receptors 
and matrix metalloproteinases that promote smooth muscle proliferation and endothelial-
mesenchymal transition seen in PH [134,135]. IL-6 and other cytokines such as IL-8 and IL-10 appear 
to be a predictor for survival perhaps more so than certain clinical tests or hemodynamic parameters, 
signifying its importance in PH pathogenesis [122,136]. Other interleukins, such as IL-8 and IL-13, act 
through pathways that promote endothelial cell proliferation and arginase upregulation, respectively 
[137,138]. The mechanisms related to increased lymphocyte activity and consequent cytokine 
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production is less clear in PH. Studies have reported that such patients may have dysregulated 
regulatory T-cell function which could predispose high immune system reactivity [139,140]. A 
considerable proportion of PH patients have circulating autoantibodies [141,142], which precipitate 
endothelial cell damage and further PH pathogenesis. Infections such as HIV or COVID-19 are also 
associated with damage to the vascular endothelia, cytokine storms, increased inflammation, and PH 
pathogenesis. COVID-19 is reported to potentiate intense platelet activation, which might contribute 
to thrombosis seen in different groups of PH patients [143,144]. 

All PAH-specific drugs have limited anti-inflammatory effects while prostacyclins are even 
stronger mediators of immune activity [145]. Immunosuppressive drugs such as dexamethasone, 
mycophenolate mofetil, cyclosporine, tacrolimus and etanercept have been shown to attenuate 
endothelial cell dysfunction and hemodynamic parameters in animal models. These preclinical 
findings warrant further translational and clinical investigation [146]. Rituximab, which promotes B-
cell depletion, and anakinra, which acts as a IL-1 receptor antagonist, both have shown clinical benefit 
in PAH patients but will need more clinical trials to establish safety and efficacy [147,148]. 

4.5. General Therapies 

Most PAH-specific drugs are not recommended for those with PH-LHD or PH with associated 
lung disease or hypoxia, as evidence suggest a lack of clinical improvement and potentially adverse 
outcomes [1]. However, riociguat is approved for helping those with CTEPH, and macitentan is 
reported to benefit CTEPH patients [1,149]. Moreover, diuretics are considered as a general 
supportive therapy in multiple groups of PH to relieve pulmonary congestion and right-sided heart 
failure [1]. 

In CTEPH, pulmonary thromboendarterectomy (PEA) is typically the treatment of choice and is 
potentially curative; percutaneous balloon pulmonary angioplasty (BPA) can also be utilized if PEA 
is ineffective or unfeasible due to surgery risk [1]. Lifelong anticoagulation is recommended in all 
patients with CTEPH and often including Vitamin K antagonists and Factor Xa inhibitors like 
rivaroxaban. Generally, Vitamin K antagonists are preferred for those with antiphospholipid 
syndrome [1,150]. Using anticoagulation treatment in PAH is unclear. To prevent thrombosis, few 
studies show that anticoagulation therapies such as warfarin may alleviate idiopathic PAH, but 
others report no significant advantage by anticoagulation in idiopathic PAH patients [1,151,152]. 

Other general therapies include managed exercise training improving hemodynamics, oxygen 
uptake, and quality of life in patients affected by PH [153,154]. Limiting salt and water consumption 
to reduce volume overload and hypertension as well as correcting iron deficiency, often seen in PH, 
are recommended [1]. Women are also often strongly advised against pregnancy, as pregnancy is 
associated with higher maternal mortality rates in those affected by PH [1]. Routine vaccinations to 
prevent infections such as influenza and pneumococcal pneumonia are recommended as a general 
safety measure [1]. 

Management of PH patients in Group 2 and Group 3 often focus on addressing the underlying 
issue with numerous therapies, which focus on problems such as heart failure, valvulopathy, or 
obstructive or restrictive lung diseases. Currently, lung transplants are the only potentially curative 
treatment for PH associated with chronic lung disease, and such transplants can also be used for 
patients in other PH groups who are unresponsive to medications and in a high FC [1]. 

4.6. Autonomic Nervous System Imbalance, Therapies, and Neurostimulation 

There is also increasing evidence for a role of autonomic nervous system in PH. Studies have 
suggested both increased sympathetic activity and decreased parasympathetic activity in PH patients 
[155,156]. 

4.6.1. Multiple Pharmacological Therapies Have Been Tested to Assess the Role of the Autonomic 
System in the Pathogenesis of PH 
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The heart selectively downregulates expression of beta-1 (β1) receptors and increases expression 
of beta-2 (β2) receptors in patients with PH [157]. Accordingly, the beta-blocker carvedilol has been 
shown to improve heart rate and RV function in rat models of PH, inhibit smooth muscle cell 
proliferation in vitro, and show some benefit in controlling heart rate in PH patients [158–160]. 
Moreover, nebivolol, a β1 antagonist and β2 agonist, has been shown to significantly ameliorate PVR 
and pulmonary vascular remodeling in rat models of PH, as well as improve exercise capacity in PH 
patients [161,162]. Other similar drugs, such as bisoprolol and arotinolol, both have been shown to 
improve RV function by preventing RV hypertrophy and improving RV contractility in animal 
models of PH [163,164]. However, more extensive clinical trials with beta-blockers have shown a lack 
of efficacy in patients with PH related to function and remodeling, although some drugs such as 
nebivolol have not yet been widely tested [1,165–169]. With regards to the parasympathetic nervous 
system, the acetylcholinesterase inhibitor pyridostigmine has been reported to attenuate right-sided 
heart dysfunction and pulmonary remodeling in rat models of PH [156,170]. 

4.6.2. Non-Pharmacological Therapies: Sympathetic Activity Modulation and Stimulation of Vagal 
Nerve or Somatosensory Nerves 

Non-pharmacological PH therapies such as sympathetic modulation and neurostimulation of 
the parasympathetic nerves are under investigation. Sympathetic modulation has been pursued with 
various methods such as sympathetic ganglion block, renal sympathetic denervation, and pulmonary 
artery denervation (PADN), which are accomplished by multiple techniques such as radiofrequency 
ablation or high-energy ultrasound [170–173]. Numerous studies with animal models of PH have 
reported that reducing sympathetic activity attenuates pulmonary vascular remodeling, reducing 
hemodynamic parameters including right ventricular pressure and mPAP, and reducing pulmonary 
wall thickness [170,174–181]. Sympathetic modulation leads to increased NO signaling, an altered 
expression of genes that are related to inflammation and vasoconstriction, and downregulation of the 
activity of the renin-angiotensin-aldosterone system [170,174–176]. Pertinently, denervation of the 
pulmonary artery reduces mPAP, PVR, and resulted in an improvement in exercise capacity and 
cardiac function in patients with PAH [172,182–184]. Other studies suggest that denervation of the 
pulmonary artery could have similar benefits in those with residual CTEPH [185,186], but more 
studies are warranted to assess PADN’s effectiveness relative to other medical therapies [1]. 

Vagal nerve stimulation may be helpful for patients with PH. For instance, chronic vagal nerve 
stimulation (VNS) prolongs survival, reduces dysautonomia and inflammation, and improves right 
heart function and hemodynamic parameters in rats with PH. Studies have also reported that 
neurostimulation helps to preserve right ventricular function in rats with significant right ventricular 
overload [187,188]. 

Manual acupuncture (MA) and electroacupuncture (EA) stimulating somatosensory nerves 
ameliorate PH symptoms and related risk factors. Relevant studies are described in the following 
paragraphs and listed in Table 2. The reported mechanisms are diagrammed in Figure 1. Electrically 
stimulating acupuncture needles overlying specific nerves (acupoints) appears to ameliorate elevated 
mPAP, vascular remodeling, and right ventricular hypertrophy in rat models of hypoxia-induced PH 
by normalizing ET-1 and eNOS imbalances [189]. A number of studies indicate that acupuncture 
regulates ET-1-NO imbalances not only in the heart and serum but also in lungs in animal models 
with hypertension and asthma. These findings are also observed in patients with hypertension [190–
194]. Previous studies show acupuncture’s role in improving lung and pulmonary function, exercise 
capacity and endurance, efficiency of oxygen uptake, oxygen saturation, and quality of life in patients 
with chronic obstructive pulmonary disease (COPD) [195–201]. Notably, acupuncture improves 
ejection fraction and regulation of pathological ventricular enlargement in subjects with heart failure, 
both in preclinical and clinical studies [202–205]. In this respect, acupuncture could potentially benefit 
patients with PH, including those with comorbidities such as chronic lung diseases by improving 
pulmonary function and attenuating vascular remodeling. 

Sympathetic activity is elevated in patients with PH [155]. In the subset of patients with COPD 
and chronic high-altitude exposure, PH is mediated by hypoxia-inducible factor signaling as detailed 
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above [206,207]. The underlying mechanism typically associated with inflammation leads to 
consequent remodeling of the pulmonary vasculature. Moreover, hypoxia can contribute to PH by 
not only triggering oxygen chemoreceptors within the carotid body, but also increasing their 
sensitivity to low oxygen levels, predisposing patients to increased sympathetic activity [208–212]. 
Hypoxia also contributes to cellular changes centrally by increasing purinergic or glutamatergic 
signaling pathways in the NTS, rostral ventro-lateral medulla (rVLM), and paraventricular nucleus 
(PVN), which lead to increased sympathetic tone and may also contribute to PH [213–215]. In this 
regard, multiple studies have reported that EA can dampen elevated sympathetic responses, 
especially in several rat models of cardiac events including heart failure or myocardial infarction 
[204,216–218]. 

Table 2. Studies Supporting a Role of Acupuncture in the Pathologies of PH. 

Reference Model Technique Findings Relevant to PH 
[189] Pre-clinical 

Hypoxic-induced PH 
EA mPAP ↓, RV size ↓ 

Pathological pulmonary remodeling ↓ 
Serum/lung eNOS ↑, serum/lung ET-1 ↓ 

[190,246] Pre-clinical 
Hypertension 

EA 
Non-EA 

Sympathetic activity (e.g. via NOS pathways) ↓ 
Serum norepinephrine ↓ 

Serum interleukins/C-reactive protein ↓ 
Serum ET-1 ↓, myocardial eNOS ↑ 

[193,194] Clinical 
Hypertension 

Non-EA + 
EECP 

Serum NO ↑, serum ET-1 ↓ 

[195–201] Clinical 
COPD (i.e. Group 3) 

EA 
Non-EA 

 

Oxygen utilization/efficiency ↑, dyspnea ↓, 
exercise capacity ↑ 

[203,248–
252,261,264] 

Pre-clinical 
Systemic 

inflammation 

EA 
Non-EA 

Serum/lung TNF-α, interleukins ↓ 
Parasympathetic (vagus) outflow ↑ 

Ejection fraction ↑ 
[204] Pre-clinical 

Heart failure (i.e. 
Group 2) 

EA Sympathetic outflow ↓ 
Heart function ↑ (i.e. left ventricle ejection 

fraction ↑, left ventricle size ↓ 
[216–

218,220,221,227–
230,240,241,243] 

Pre-clinical 
Sympathetically 

stressed 

EA Sympathetic outflow ↓ (i.e. via central opioid, 
CRH pathways) 

Serum CRH, cortisol, norepinephrine, adrenaline 
[257] Clinical 

Post-surgery 
secondary to lung 

cancer 

EA PaO2/FiO2 ↑ 
SOD activity ↑ 

Length of hospital stay ↓ 

[247] Clinical 
Systemic sclerosis (i.e. 

Group 5) 

EA Plasma ET-1 ↓ 

[258,262,263] Pre-clinical 
Lung injury 

EA Lung SOD activity ↑ 
Serum/lung cytokines ↓ 

PaO2 ↑ 
Lung injury score ↓ 

[260,267] Pre-clinical 
COPD 

EA Pathological pulmonary remodeling ↓ 
Lung cytokines ↓ 

Lung function (i.e. expiratory volume) ↑ 
PH = pulmonary hypertension; EA = electroacupuncture; ET-1 = endothelin-1, NO = nitric oxide, 
eNOS = endothelial nitric oxide synthase; EECP = enhanced external counterpulsation; COPD = 
chronic obstructive pulmonary disease; CRH = corticotropin-releasing hormone; PaO2/FiO2 = 
arterial oxygen pressure/fraction of inspired oxygen; SOD = superoxide dismutase 
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A frequently examined somatic nerve in modulating sympathetic tone is the median nerve. EA-
mediated reduction in sympathetic activity involves activation of the median nerves including the C-
fibers and thinly myelinated Aδ-fibers underlying the acupoints P5-6 located near the wrist 
[217,219,220]. Stimulation of these fibers during EA activates specific cardiovascular regions in the 
brain that processes the convergence from the somatosensory fibers and input from elevated 
sympathetic activity. The underlying mechanisms and pathways range from specific 
neurotransmitter systems to neurocircuitry in the hypothalamus and midbrain. Central regions also 
involved in the actions of EA in reducing sympathetic activity are the medulla and spinal cord. The 
central actions of EA lead to increases in opioid expression and signaling through specific opioid 
receptor subtypes in the rVLM, which then reduces sympathetic efferent activity [216,219,221]. 
Additionally, EA’s modulation of sympathetic activity involves glutamatergic neurons associated 
with the reciprocal excitatory pathways between the arcuate nucleus (ARC) and the midbrain 
ventrolateral periaqueductal gray (vlPAG) [218,222]. 

Hypoxia alters neurotransmitter signaling leading to increased sympathetic tone. It is 
conceivable that sympathetic overactivity in PH is driven by increased glutamatergic signaling in the 
rVLM [134,223–225]. Chronic intermittent hypoxia, a form of hypobaric hypoxia, leading to PH 
changes the signaling in the rVLM and heightens sympathetic tone [83,226]. Accordingly, EA inhibits 
glutamatergic transmission in the rVLM through opioid mechanisms and decreases sympathetic 
outflow [227]. Studies have demonstrated that EA reduces GABA release in the vlPAG, which 
disinhibits vlPAG neurons, and in turn suppresses sympathetic neuronal activity in the rVLM 
through a serotonergic-mediated pathway [228–230]. Additionally, EA activates opioidergic neurons 
in the ARC that monosynaptically project to the rVLM likely reducing elevated activity of the pre-
sympathetic neurons [230]. 

Electroacupuncture also reduces sympathetic activity through other central pathways. For 
instance, hyperactivity of sympathetic neurons within the hypothalamic PVN and their ensuing 
connections with the rVLM is implicated in multiple diseases, including in models of hypoxia-
induced PH [231–234]. Elevated levels of corticotropin-releasing hormone (CRH) synthesis and 
neuronal activity contribute to this sympathetic overactivity, including in disease models of PH 
[231,232]. Moreover, CRH neurons observed in the PVN and NTS are activated during acute hypoxic 
conditions leading to increased sympathetic outflow [235–239]. Although studies have not been done 
in PH models, EA has been shown to reduce corticotropin-releasing hormone (CRH) signaling in the 
rVLM and PVN in animal models of stress, cardiovascular disease, and multiple other 
sympathoexcitatory related conditions [240–243]. Reductions in other nitric oxide synthases, 
including neuronal nitric oxide synthases (nNOS), in the PVN and other areas such as the lung 
exposed to hypoxia, promote hypoxia-induced PH and are associated with increased sympathetic 
activity [244,245]. However, the mechanisms associated with EA effect in PH are less clear although 
study has shown that EA decreases nNOS levels in the hypothalamus in a rat model of hypertension 
[246]. Hence, exploration of sympathoinhibition by EA in attenuating PH is important. 
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Figure 1. Potential mechanisms of acupuncture-mediated neurostimulation for pulmonary 
hypertension (PH). 

Acupuncture may ameliorate PH through actions within the lungs. For instance, EA reduces 
serum levels of the vasoconstrictor ET-1 in patients with systemic sclerosis and hypertension, which 
similarly might reduce PH [190,194,247]. As mentioned above, a preclinical study has demonstrated 
acupuncture stimulating specific nerves reverses hypoxia-induced pulmonary hypertension by 
attenuating elevated mean pulmonary arterial pressure, right ventricular hypertrophy, and 
pulmonary vascular remodeling [189]. With this regard, EA decreased ET-1 that was elevated by 
hypoxia [189]. 

Mounting evidence shows that neurostimulation techniques such as acupuncture through the 
autonomic nervous system may also reduce inflammation and ameliorate symptoms of PH. For 
instance, multiple studies report that both MA and EA at varying acupoints help reduce serum 
cytokines – including TNFα, IL-1β, and IL-6 – in rat models of endotoxin-mediated inflammation 
partially or primarily through the activation of vagal efferents [203,248–252]. Acupuncture has been 
shown to influence the stimulation of the vagal-adrenal axis by activation of the vagus nerve, 
dopamine release from the adrenal gland, and suppression of systemic inflammation [250,251], 
referred to as the cholinergic-anti-inflammatory pathway (CAP) [203,253,254]. The central 
mechanisms underlying acupuncture’s activation of this reflex are complex. Acupuncture input in 
the brain influences central processing leading to increased vagal activity, including upregulation of 
c-Fos, glutamatergic and purinergic signaling in the nucleus tract solitarus (NTS) and broader dorsal 
vagal complex (DVC) [248,250,255,256]. The neuronal activities in the DVC and the nucleus ambiguus 
facilitate the parasympathetic outflow and activity of vagal efferents leading to anti-inflammation. 

Acupuncture improves pulmonary function and regulates oxidative stress and inflammation. 
For instance, EA increases SOD activity both within the circulation and lung tissue to improve 
pulmonary lung function [257–259]. Other studies have demonstrated that EA affects multiple 
signaling pathways to reduce inflammation, pulmonary vascular remodeling, and oxidative stress in 
animal models. For example, studies have shown acupuncture-mediated actions such as inhibition 
of calpain-2 and STAT3 pathways in cardiomyocytes, activation of local cannabinoid receptors and 
inhibition of toll-like receptor 4 (TLR4)-NF-κB signaling in peripheral immune cells or lung tissue, 
regulation of p38 phosphorylation, MAPK, and caspase-3 pathways in lung tissue, upregulation of 
acetylcholine receptor signaling, modulation of the nuclear factor erythroid 2-related factor 
(Nrf2)/heme oxygenase-1 (HO-1) pathway, and reduction in pathways leading to angiogenesis, such 
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as those involving vascular endothelial growth factor (VEGF) [203,252,258,260–264]. There is also 
evidence that acupuncture reduces the expression of genes related to oxidative stress and 
inflammation as well, limiting ROS and cytokine production, albeit in animal models with varying 
conditions like inflammation and ischemia-induced hypoxia [261,265,266]. Other studies indicate that 
acupuncture could also mediate immune cell migration in lung tissue [267,268]. 

The non-adrenergic, non-cholinergic neuropeptide CGRP has a protective role in vascular tone 
and is important in the development of PH as evidenced by a reduction in plasma of rats with PH. 
Interestingly, the oxygen sensors pulmonary neuroendocrine cells synthesize CGRP while there is 
insufficient CGRP available to maintain normal vascular tone in PH. Other studies have shown that 
CGRP in left ventricle plasma is reduced significantly in pulmonary hypertensive rats with elevated 
mPAP, right ventricular hypertrophy, and pulmonary vascular remodeling [269,270]. Depletion of 
CGRP with capsaicin exacerbates PH [270]. Transfer of the CGRP gene with adenoviral vector 
decreases hypobaric chamber-induced pulmonary hypertension in mice [271]. Although it is unclear 
if EA increases CGRP in subjects with PH, a previous study has shown that EA increases CGRP 
expression in spinally injured rats [272]. 

Acupuncture impacts muscle activity, which could benefit patients with PH and COPD. 
Application of acupuncture results in more efficient and effective oxygen uptake as measured by 
oxygen saturation, which ameliorates PH and the hypoxic condition [195,198]. Moreover, other 
studies suggest that acupuncture suppresses electromyogram (EMG) activity of the muscles 
undergoing repeated contraction. Thus, muscles that are hyper-activated in patients with COPD 
could be similarly suppressed by acupuncture to relax the muscles while gaining strength and 
increase motility of the muscle cage at a lesser cost of energy expenditure [201,273]. Acupuncture 
could relieve PH in addition to COPD by alleviating chronic repeated muscle contraction. 

Acupuncture has been reported to help treat multiple other diseases. Clinically, it is often used 
to help manage multiple types of pain, especially chronic pain [274]. However, there are also studies 
suggesting that acupuncture could be beneficial in managing symptoms in diabetes [275,276], 
depression and sleep disorders [277,278], hypertension, cardiovascular problems, and other 
conditions listed above. A considerable number of the studies listed are pre-clinical and hence more 
investigations are needed to establish acupuncture’s efficacy in patients. Most notably, there is a real 
potential in acupuncture’s role in helping to manage symptoms in those with PH, given that each of 
the conditions above are either common comorbidities for or a result of the disease PH [1]. 

5. Conclusion 

Pulmonary hypertension is a complex disease that affects millions of people globally. While 
many studies have revealed multiple pharmacological treatments alleviating suffering and a number 
of mechanisms associated with the disease, further investigations would be beneficial in exploring 
complementary non-pharmacological treatments. Moreover, given that PH is on the rise, more 
research is needed to offer preventive and potential curative treatments for PH. 

Funding: The authors S. Tjen-A-Looi and S. Malik are NCCIH RO1 AT011306 award recipients. 
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