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Abstract: This study challenges the prevailing belief in the necessity of complex models for accurate forecasting 
by demonstrating the effectiveness of parsimonious econometric models, namely ARCH(1) and GARCH(1,1), 
over deep learning robust approaches, such as LSTM and 1D-CNN neural networks, in modeling historical 
volatility within pre-emerging stock markets, specifically the Moroccan and Bahraini stock markets. The 
findings suggest reevaluating the balance between model complexity and predictive accuracy. Future research 
directions include investigating the potential existence of threshold effects in market capitalization for optimal 
model performance. This research contributes to a deeper understanding of volatility dynamics and enhances 
forecasting models’ effectiveness in diverse market conditions. 

Keywords: historical volatility; pre-emerging markets; ARCH-GARCH models; deep learning approaches; 
LSTM network; 1D-CNN network 

 

1. Introduction 

In the field of financial markets, accurate forecasting of market data is crucial for market 
participants to make well-informed decisions and avoid potential losses. This observation becomes 
even more pronounced when considering market volatility. Market volatility refers to the degree of 
variation in trading prices over time (Narula 2022). Therefore, historical volatility serves as a gauge 
of the magnitude of past movements in a financial market and provides valuable insights into the 
market’s behavior over time. Understanding market volatility, allows investors to predict patterns 
and future market movements and potentially earn profits (Burtniak and Suduk 2022; Li 2021). 

Accurately modeling and forecasting market volatility is therefore essential for investors, 
policymakers and market participants to implement effective strategies to manage risk and optimize 
their investment portfolios. While traditional econometric models have historically been the go-to 
tools for volatility analysis and forecasting (Bhowmik and Wang 2020), the emergence of advanced 
machine learning and deep learning techniques has sparked a growing interest in evaluating their 
effectiveness within this domain (Thakkar and Chaudhari 2021). 

In our effort to contribute to the understanding of the implications of deep learning models in 
volatility modeling and forecasting, and to juxtapose them with the predictive capabilities of 
econometric models, our paper delves into the examination of historical volatility in the Moroccan 
and Bahraini stock markets. Through a comparative analysis of these methodologies, we seek to offer 
valuable insights into their respective efficacy in capturing the intricate dynamics of market volatility 
within these emerging economies. The inclusion of both markets facilitates a comparative assessment, 
considering potential differences in market structures, regulatory landscapes, and investor behaviors. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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As far as we are aware, this study represents the first attempt to model and forecast historical 
volatility within the context of pre-emerging markets in the MENA region, leveraging both 
econometric and connectionist approaches.  

In this paper, we first provide a comprehensive review of the literature on volatility modeling, 
drawing attention to the key econometric models and machine learning techniques commonly 
employed in financial forecasting. We then present an overview of the two markets, highlighting 
their unique characteristics, regulatory frameworks, and microstructure.  

Subsequently, we detail our methodology, elucidating the data sources, model specifications, 
and evaluation criteria employed for performance assessment. Through empirical analysis, we 
examine historical volatility patterns in the Moroccan and Bahraini stock markets, evaluating the 
forecasting precision of ARCH and GARCH models, as well as LSTM and CNN architectures. By 
conducting a comprehensive comparative analysis, we aim to identify the strengths and limitations 
of each approach, offering actionable insights for market practitioners and policymakers. 

The findings of this study contribute to the existing literature on volatility forecasting by offering 
empirical evidence on the performance of econometric and deep learning models in the context of 
pre-emerging markets. Furthermore, our research has implications for portfolio management, risk 
assessment, and financial decision-making in both academic and practical domains.  

2. Literature Review 

Studying the volatility of an asset or a financial market stands as one of the central pillars of 
modern financial research (Bhowmik and Wang 2020). This emphasis has only intensified since the 
market crash of 1987, which underscored the critical importance of understanding and effectively 
managing market volatility (Schwert 1990). As investors and policymakers grappled with the 
aftermath of this significant event, there was a heightened awareness of the profound impact that 
fluctuations in asset prices can have on financial stability, economic growth, and investor confidence. 
Consequently, researchers have increasingly focused on developing sophisticated models and 
analytical tools to better comprehend and predict market volatility, aiming to provide insights that 
can inform more robust risk management strategies and investment decisions. 

Since the publication of the seminal paper of Engle (1982), introducing a new class of stochastic 
processes called autoregressive conditional heteroscedastic (ARCH) processes to estimate the 
variance of United Kingdom inflation, various studies have explored the effectiveness of different 
ARCH and GARCH family models in estimating volatility within stock markets. These models have 
demonstrated their efficacy in capturing the dynamics of assets volatility and also aggregate stock 
market volatility, due to their ability to capture the time-varying nature and clustering of volatility 
in financial time series data (Engle et al. 2013). Additionally, researchers have proposed distributed 
models to better characterize the thick tail of daily return rates. Engle (1982) initially introduced the 
autoregressive conditional heteroscedasticity model (ARCH model) to account for possible 
correlations in the conditional variance of prediction errors, later extended by Bollerslev (1986) into 
the generalized autoregressive conditional heteroskedastic model (GARCH model). Subsequently, 
the GARCH model evolved into a family of models, including both linear (symmetric) and nonlinear 
(asymmetric) variants (such as, EGARCH, TGARCH or APARCH) to accommodate various 
characteristics of volatility.  

Moreover, the GARCH framework accommodates the phenomenon of volatility persistence, 
where past volatility levels influence future volatility, making it particularly suitable for modeling 
the dynamics of financial market data (Alqaralleh et al. 2020). Additionally, the flexibility of the 
GARCH model in capturing both short-term and long-term volatility patterns makes it a versatile 
tool for researchers seeking to understand and predict market dynamics (Bhowmik and Wang 2020). 
Overall, the GARCH model’s ability to capture the complex dynamics of volatility, including its time 
variation and persistence, makes it a preferred choice for many researchers in financial econometrics. 

In the realm of modeling and forecasting stock market volatility, particularly in emerging and 
pre-emerging countries, empirical investigations into different GARCH models have yielded 
contradicting outcomes. On one hand, a plethora of studies have shown that non-linear models, 
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especially the EGARCH model, outperformed the linear counterparts in capturing and predicting the 
conditional variance across short- and long-term horizons (Lin 2018; Abdalla and Winker 2012; Liu 
and Hung 2010; Alberg et al. 2008; Selçuk 2005; Chong et al. 1999). On the contrary, limited evidence 
in the literature supports the efficacy of linear or symmetric volatility models, especially within the 
context of emerging markets (Srinivasan and Ibrahim 2020; Li and Wang 2013; Tabajara et al. 2014). 
However, the literature has prominently highlighted the effectiveness of the parsimonious linear 
GARCH (1,1) model with a generalized distribution of residual, particularly in capturing the intricate 
dynamics of volatility within financial markets. Numerous empirical studies have underscored the 
model’s robustness and predictive power, emphasizing its ability to effectively model the volatility 
clustering and the conditional variance of asset returns and time series data across various time 
horizons (Zabiulla 2015; Abdalla and Suliman 2012; Joshi 2010; Gokcan 2000).  

More recently, numerous studies have delved into the realm of modeling and forecasting market 
volatility through the lens of deep learning models. Comparative research has pitted deep learning-
based forecasters, including Multi-Layer Perceptrons, Recurrent Neural Networks, Temporal 
Convolutional Networks, and the Temporal Fusion Transformer, against traditional econometric 
models like GARCH ones (Ge et al. 2023). These investigations have frequently revealed the superior 
predictive performance of deep learning architectures in capturing intricate long-range 
dependencies, often surpassing the performance of classical approaches in volatility forecasting in 
financial markets (Sahiner et al. 2023). Moreover, the integration of deep learning algorithms such as 
LSTM and GRU with sentiment data has yielded remarkable advancements, showcasing substantial 
improvements over GARCH models (Yu et al. 2023). Furthermore, the amalgamation of optimized 
variational mode decomposition with deep learning frameworks like DBN, LSTM, and GRU has 
unveiled enhanced predictive capabilities applicable across both emerging and developed markets 
(Cai et al. 2023). These collective findings underscore the efficacy of deep learning models in adeptly 
modeling and forecasting market volatility, illuminating their pivotal role in this domain. 

3. Overview of the Moroccan and Bahraini Stock Markets 

3.1. Casablanca Stock Exchange (CSE) 

Established in 1929, the Casablanca Stock Exchange (CSE) is the third oldest market place in 
Africa, playing a central role in the regional economy. Over the years, the exchange has undergone 
significant transformations to modernize its operations and align with international standards. In 
1995, a management company was established, entrusted with overseeing the stock exchange, 
operating under specifications approved by the Ministry of Finance. This move marked a pivotal 
moment in the evolution of the CSE, setting the stage for enhanced governance and strategic 
management. The regulatory environment is overseen by the Moroccan Capital Market Authority 
(AMMC), which ensures compliance with market regulations and investor protection, further 
bolstering the exchange’s credibility and stability. Despite these advancements, the CSE continues to 
face challenges in terms of liquidity, market depth and market activity, necessitating ongoing efforts 
to strengthen market infrastructure and improve investor confidence. 

With 77 listed companies as of the end of 2023, the Casablanca Stock Exchange (CSE) operates 
as a continuous market, characterized by the continuous matching of buy and sell orders throughout 
the trading day. Additionally, the CSE features an opening and closing fixing, which serve as 
reference points for the market at the beginning and end of each trading session. Driven by orders 
and facilitated by an intricate order book system, the market ensures that buy and sell orders are 
executed efficiently, contributing to market transparency and fair pricing. 

3.2. Bahrain Bourse (BHB) 

Transitioning to the Arabian Peninsula and venturing into the Asian continent, we explore the 
Bahrain Bourse, a younger financial institution established in 1987, characterized by its unique blend 
of traditional Islamic finance principles and modern investment practices. Despite its relatively recent 
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inception, the Bahrain Stock Exchange has rapidly emerged as a significant player in the region’s 
financial landscape, with 42 listed companies as the end of 2023. 

In the Bahraini equity market, the order-driven mechanism, married to continuous auctions, 
serves as the backbone of trading activities, fostering efficient price discovery. Market participants, 
including individual investors, institutional traders, and foreign entities, have direct access to the 
trading platform, enabling them to place orders according to their investment strategies and market 
outlook. This decentralized approach promotes market depth and liquidity, as the continuous 
matching of orders facilitates swift execution and minimal price impact. 

While the Bahraini market primarily operates as an order-driven system, it also incorporates 
elements of a quote-driven market, especially in the presence of market makers. These entities 
provide liquidity by quoting bid and ask prices for certain securities, helping to narrow spreads and 
improve market efficiency. However, the order-driven nature remains predominant, emphasizing 
the importance of investor orders in driving market dynamics and price formation. 

However, the Bahraini equity market faces certain difficulties. One challenge is the limited 
number of listed companies, which can restrict investment choices and diversification opportunities 
for investors. Furthermore, market liquidity can vary across different securities, impacting trade 
execution and price stability, especially for less liquid stocks. 

In fine, both the Moroccan and Bahraini markets are classified as pre-emerging markets by MSCI 
(Morgan Stanley Capital International), indicating their status as evolving financial hubs with 
potential for growth and development. Despite facing challenges, they offer promising investment 
opportunities for those seeking exposure to emerging economies. As they continue to implement 
reforms and enhance infrastructure, these markets are positioned to attract greater investment 
inflows in the future. 

4. Materials and Methods 

In this study, we embark on a comparative analysis of volatility modeling and forecasting 
techniques, drawing insights from both econometric and deep learning methodologies. To achieve 
this goal, our methodology consists on employing a combination of traditional econometric methods, 
including Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) models, alongside cutting-edge deep learning 
architectures such as Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) 
models. The following paragraphs present and elaborate on the various approaches utilized in this 
study for volatility modeling and forecasting in the two markets: 

4.1. Econometric Approach 

4.1.1. The Autoregressive Conditional Heteroscedastic (ARCH) model 

ARCH models involve time series characterized by changing volatility over time 
(heteroscedasticity), which is conditional on the autocorrelation of previous lags (autoregressive 
conditional). Referring to the seminal paper by Engle (1982), a variable 𝑌𝑌𝑡𝑡  follows an ARCH (p) 
process if:  

𝑦𝑦𝑡𝑡|𝜓𝜓𝑡𝑡−1~𝑁𝑁(0, ℎ𝑡𝑡) (1) 
ℎ𝑡𝑡 =  𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖  𝑦𝑦𝑡𝑡−12𝑝𝑝

𝑖𝑖=1  (2) 
where, 𝜓𝜓𝑡𝑡−1 is the information set available at time t-1, ℎ𝑡𝑡 is the conditional variance function, p is 
the order of ARCH process and 𝛼𝛼 is a vector of unknown parameters. 

To guarantee positive variance, the parameters must satisfy some conditions, such that, ∀ 𝑡𝑡 ∈
ℤ,𝛼𝛼0 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝑖𝑖 > 0. Furthermore, recent past have to had more influence than older lags, so: 𝛼𝛼1 >
𝛼𝛼2 > ⋯ > 𝛼𝛼𝑃𝑃. 

To estimate our ARCH model, we will follow the steps below: 
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Figure 1. Illustration of ARCH model estimation steps. 

4.1.2. The Generalized Autoregressive Conditional Heteroscedastic (GARCH) Model 

GARCH models were introduced in 1986 by Bollerslev as an extension of ARCH models. They 
incorporate both autoregressive and moving average terms in the volatility equation. In addition to 
past squared residuals, GARCH models also include lagged conditional variances in the model 
specification. This allows them to capture both short-term volatility clustering and long-term 
persistence in volatility, making them more flexible and capable of modeling various volatility 
patterns observed in financial time series (Francq and Zakoian 2019). 

Moreover, GARCH models provide a parsimonious alternative to high order ARCH models, 
which can become problematic when estimating many ARCH effects ((Bhowmik and Wang 2020). 

The formalities of GARCH models involve both terms p and q, where in ARCH you only have 
the p term. So, a variable 𝑌𝑌𝑡𝑡 follows a GARCH (p,q) process if: 

𝑦𝑦𝑡𝑡|𝜓𝜓𝑡𝑡−1~𝑁𝑁(0, ℎ𝑡𝑡) (3) 
ℎ𝑡𝑡 =  𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖  𝑦𝑦𝑡𝑡−12𝑝𝑝

𝑖𝑖=1 +  ∑ 𝛽𝛽𝑖𝑖  ℎ𝑡𝑡−1
𝑞𝑞
𝑖𝑖=1  (4) 

where 𝛼𝛼0 > 0,𝛼𝛼𝑖𝑖 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑖𝑖 > 0. 
To estimate our GARCH model, we will follow the steps below: 

 
Figure 2. Illustration of GARCH model estimation steps. 

In summary, the conditional variance equation in ARCH and GARCH models serves to capture 
the time-varying nature of volatility in financial market data. This specification is essential in financial 
contexts, where analysts seek to predict future volatility based on past observations and information. 
In these models, the conditional variance at each time point is estimated as a weighted average of 
several components (Abdalla and Winker 2012). Firstly, a long-term average (represented by the 
constant term) provides a baseline estimate of volatility. Secondly, the GARCH term incorporates 
information from the previous period’s forecast variance, contributing to the persistence of volatility 
over time. Finally, the ARCH term captures the impact of unexpected asset returns on volatility, 
adjusting the estimate of variance based on the magnitude and direction of these returns. This 
dynamic interplay between past volatility, current information, and unexpected returns allows 
ARCH and GARCH models to effectively capture the complex dynamics of financial market 
volatility. 

•Checking for stationarity using a
unit root test.Step 1

•Estimating the mean equation
using an ARIMA model.Step 2

•Checking for ARCH effect using a
heteroscedasticity test.Step 3

•Estimating the variance equation
using an ARCH model.Step 4

•Estimating the mean equation using
an ARIMA model.Step 1

•Checking for ARCH effect using a
hétéroscedasticity test.Step 2

•Re-estimating the model including
the appropriate ARCH and GARCH
components.

Step 3

•Conducting diagnostic tests.Step 4
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4.2. Deep Learning Approach 

4.2.1. LSTM Network 

Modeling and predicting future values of time series using artificial neural networks presents a 
challenge in retaining past information for accurate forecasting. Recurrent Neural Networks (RNNs) 
address this challenge by incorporating memory mechanisms in their hidden layers, allowing them 
to store and recall past states. However, simple RNNs are prone to gradient explosion, where 
gradients grow uncontrollably during training, affecting model stability (Kanai et al. 2017). To 
overcome this limitation, Long Short-Term Memory (LSTM) networks were developed. LSTM 
networks feature gated mechanisms that regulate the flow of information, preventing gradient 
explosion and enabling effective long-term memory retention. These networks learn to prioritize 
relevant information for prediction, enhancing forecasting accuracy. LSTM networks have proven 
effective for financial time series forecasting due to their ability to handle sequential data and long-
term dependencies (Yu et al. 2019). However, training an LSTM network requires careful parameter 
selection to optimize performance (Sako et al. 2022). 

In our study, we’ve developed and trained a neural network with a range of parameters, as 
depicted in the Table 1 below: 

Table 1. LSTM Network parameters. 

Network Parameters Values 
Data standardization formula 𝑥𝑥′ = (𝑥𝑥 −𝑚𝑚𝑚𝑚)/𝑠𝑠𝑠𝑠𝑠𝑠 

Optimization Algorithm Adam 
Number of Iterations (Epochs) 250 

Gradient Threshold 1 
Initial Learning Rate 0.005 

Learning Rate Drop Period 125 
Learning Rate Drop Factor 0.2 
Number of Hidden Layers 100 

Training Rate 0,9 
Testing Rate 0,1 

4.2.2.1. D-CNN Network 

A Convolutional Neural Network (CNN) is a versatile machine learning algorithm applied 
extensively in diverse fields, such as image processing, speech recognition, and time series analysis. 
Originally tailored for image data, CNNs necessitate two-dimensional input. However, given that 
time series data typically unfolds in one dimension, a specialized adaptation known as a one-
dimensional CNN has emerged (Markova 2022). This model operates on a single sequence, 
potentially incorporating multiple convolutional layers and a pooling layer to distill key features. 
Subsequently, a fully connected dense layer interprets these features, facilitated by a flattening layer 
to reduce dimensionality. To enhance performance, we meticulously curated and refined parameters 
using our comprehensive training dataset, with the objective of minimizing prediction errors, as 
illustrated in the following table: 

Table 2. CNN Network parameters. 

Network Parameters Values 

Data standardization formula 𝑥𝑥 ′ =  (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)�  

Optimization Algorithm Adam 
Activation function ReLU 

Number of Iterations (Epochs) 1000 
Gradient Threshold ReLU 
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Number of filter units  64 
Number of kernels  2 

Batch size 32 
Dense units 1 

Training Rate  0,9 
Testing Rate 0,1 

4.2. Forecast Performance Metrics 

The performance of all employed models was evaluated using various metrics, which assessed 
the disparities between predicted and actual values. The performance metrics are defined by: 
• Root Mean Square Error (RMSE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛

 ∑ (𝜀𝜀𝑡𝑡)2𝑛𝑛
𝑡𝑡=1  (5) 

• Mean Absolute Error (MAE): 
𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ |𝜀𝜀𝑡𝑡|𝑛𝑛

𝑡𝑡=1
𝑛𝑛

 (6) 
• Mean Absolute Percentage Error (MAPE): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
�∑ |𝜀𝜀𝑡𝑡|

𝑥𝑥𝑡𝑡
𝑛𝑛
𝑡𝑡=1 �

𝑛𝑛
� × 100 (7) 

where 𝜀𝜀𝑡𝑡 is the difference between the predicted value and the observed value at time 𝑡𝑡, i.e., 𝜀𝜀𝑡𝑡 =
 𝑥𝑥𝑡𝑡 −  𝑥𝑥�𝑡𝑡  with 𝑥𝑥𝑡𝑡 being the observed value and 𝑥𝑥�𝑡𝑡 being the predicted value. 

These metrics will serve as crucial benchmarks for comparing the effectiveness of each model in 
forecasting volatility, enabling us to identify the optimal approach for predictive accuracy in the 
Moroccan and Bahraini stock markets. 

5. Data and Descriptive Statistics 

For the implementation of our study and the deployment of the selected models, we constructed 
two series of daily returns related to the performance of the Moroccan All Shares Index (MASI) and 
the Bahrain All Shares Index (BAX) over a 5-year period from January 2019 to December 2023. The 
data pertaining to the closing values of both indices were obtained from the Investing.com platform, 
ensuring reliable and comprehensive data coverage for our analysis. 

From these data, the daily logarithmic returns were computed using the formula: 
𝑅𝑅𝑖𝑖𝑖𝑖 =  ln (𝑃𝑃𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖−1� ) (8) 

where 𝑃𝑃𝑡𝑡is the closing price of the index i at time t. 
Understanding the data through graphical representation and descriptive statistics serves as a 

crucial foundation before proceeding to modeling and forecasting, providing valuable insights into 
the underlying patterns and characteristics of the datasets. 

  

(a) (b) 

Figure 3. (a) Volatility clustering for BAX index; (b) Volatility clustering for MASI index. 
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Table 3. Descriptive statistics of the BAX and MASI return series. 

Statistics 
Variables 

BAX MASI 
Number of observations 1 226 1 247 

Mean 0,000321 5,39E-05 
Median 0,000391 0,000211 

Maximum 0,034233 0,053054 
Minimum -0,060013 -0,092317 
Std. Dev. 0,005505 0,008083 
Skewness -1,636707 -1,892897 
Kurtosis 21,89118 28,00946 

Jarque-Bera 18777,81 33243,21 
Probability 0,000000 0,000000 

Normality hypothesis Rejected Rejected 

The descriptive statistics reveal insightful characteristics of the daily returns for the BAX and 
MASI indices. Notably, while the average daily return for BAX stands at 0.000321, MASI exhibits a 
slightly lower average return of 5.39E-05. Both distributions display negative skewness, implying a 
left-skewed distribution with longer tails on the left side. Additionally, the high kurtosis values 
suggest heavier tails and more peaked distributions compared to a normal distribution, indicating 
greater volatility and potential for extreme returns. Furthermore, the Jarque-Bera test results 
decisively reject the hypothesis of normality for both indices, emphasizing the non-normal nature of 
their return distributions. Overall, it is noteworthy that there are no significant differences between 
the statistical characteristics of the two series, a point further reinforced by observing the graphical 
representations of the two datasets. 

6. Empirical Results and Discussion 

6.1. Empirical Results 

6.1.1. Testing for Stationarity 

To test the stationarity of our two-return series, we employed the Augmented Dickey-Fuller 
(ADF) unit root test. This test is commonly used to determine whether a time series is stationary or 
non-stationary by assessing the null hypothesis regarding the presence of a unit root in the data. The 
results of the test are summarized in the table below, providing insights into the stationarity 
properties of the BAX and MASI return series: 

Table 4. Stationarity test results for the BAX and MASI return series. 

Notes: * indicates significance at the 5% level. 

The Augmented Dickey-Fuller (ADF) test results indicate that the null hypothesis for both the 
BAX and MASI return series is rejected across all specifications. This suggests that the return series 

Variables ADF Test T-Statistics P-Values Hypothesis 

BAX 

Intercept -15,88660* 0,0000 Null hypothesis rejected 
Trend and 
intercept 

-15,88105* 0,0000 Null hypothesis rejected 

None -15,81436* 0,0000 Null hypothesis rejected 

MASI 

Intercept -21,16787* 0,0000 Null hypothesis rejected 
Trend and 
intercept 

-21,15932* 0,0000 Null hypothesis rejected 

None -21,17456* 0,0000 Null hypothesis rejected 
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for both indices are stationary in level, indicating that they exhibit stable mean and variance over 
time. 

After analyzing the correlogram and evaluating various specifications, we have concluded that 
the most suitable model for representing the mean equation of both series is ARMA (1,1). 

6.1.2. Testing for Heteroscedasticity 

We conducted the heteroscedasticity test using the ARCH effect specification, under the null 
hypothesis of no existing ARCH effect in the residual of ARMA (1,1) equation up to 1 lag. The results 
for both series are summarized in the table below: 

Table 5. Heteroscedasticity test results for the BAX and MASI residual return series. 

 F-Statistics Prob. Chi Square-Statistics Prob. Hypothesis 

BAX 182,6009* 0,0000 159,1391* 0,0000 
Null hypothesis 

rejected 

MASI 37,99301* 0,0000 36,92633* 0,0000 
Null hypothesis 

rejected 

The results of the ARCH test, as indicated by the F-Statistics and Chi Square-Statistics, reveal 
that the null hypothesis of no ARCH effect is rejected for both the BAX and MASI residual series. 
This suggests a pattern of volatility clustering, where significant changes are often succeeded by 
further significant changes, regardless of their direction, while minor changes tend to be followed by 
additional minor changes (Joshi 2010). Such findings have significant implications for modeling and 
forecasting, as ignoring heteroscedasticity can lead to biased parameter estimates and inaccurate 
predictions. 

6.1.3. Estimation Results 

The following Table 6 summarizes the predictive performance of the various models employed 
in our analysis. The selection of the ARCH (1) and GARCH (1,1) models was based on their ability to 
capture time-varying volatility in our financial return series. In our analysis, we extended the lag 
length beyond the first lag, observing that additional lags did not contribute significantly to the 
ARCH effect. This observation was validated by conducting the ARCH-LM test statistics at various 
lag lengths. The statistically insignificant p-values obtained for lag lengths beyond the first lag 
suggest that there is no ARCH effect remaining in the models. This implies that the chosen ARCH (1) 
and GARCH (1,1) specifications adequately capture the dynamics of volatility in the BAX and MASI 
return series. 

Table 6. Historical volatility prediction: comparative analysis for different models. 

 
ARCH (1) GARCH (1,1) LSTM 1D CNN 

BAX MASI BAX MASI BAX MASI BAX MASI 
RMSE 0,0055 0,0081 0,0055 0,0081 0,0447 0,0810 0,0447 0,0812 
MAE 0,0033 0,0049 0,0034 0,0049 0,0346 0,0453 0,0346 0,0455 

MAPE 
(%) 

154,913 166,035 161,52 157,854 86,638 88,013 86,145 89,399 

Observing the results, we can see that the ARCH (1) and GARCH (1,1) models consistently 
outperform the LSTM and 1D CNN models across all metrics and for both indices. This is evident 
from the lower RMSE, MAE, and MAPE values achieved by the ARCH and GARCH models 
compared to the LSTM and CNN models. 

These findings suggest that the parsimonious ARCH and GARCH models are more effective in 
capturing the volatility dynamics of the BAX and MASI indices compared to the more complex LSTM 
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and CNN models. Despite their computational complexity, the deep learning models do not exhibit 
superior predictive performance in this context. 

6.1. Discussion 

At first glance, our results may appear striking. The outperformance of parsimonious 
econometric models over robust deep learning models may seem counterintuitive, especially given 
the complexity and computational power associated with deep learning algorithms. 

These results deviate from findings in several studies, such as Petrozziello et al. (2022), which 
demonstrated the superiority of LSTM networks over various traditional GARCH models in 
predicting volatility for the NASDAQ 100 index. Similarly, in line with this perspective, Liu (2019) 
demonstrated that LSTM networks can provide superior predictions for longer time intervals 
compared to GARCH models. 

Our findings, however, contradict these studies, demonstrating the effectiveness of simplistic 
models in volatility modeling and prediction. Thus, we align with researchers who emphasize the 
particular performance of the linear GARCH (1,1) model in capturing financial market volatility 
dynamics. In addition, we highlight the remarkable performance of the parsimonious ARCH (1) 
model, which further strengthens our argument for the efficacy of simplistic models in volatility 
analysis. 

However, we emphasize that our results hold true within the specific context of pre-emerging 
markets, which are already characterized by a lack of dynamism and liquidity. Additionally, it is 
important to note that we did not encounter similar studies within this particular context to facilitate 
comparison. 

In conclusion, our findings underscore the crucial balance between model complexity and 
predictive accuracy in volatility forecasting within financial time series analysis. While many 
researchers advocate for the unconditional superiority of artificial neural network models in financial 
time series modeling and prediction, there is a growing recognition of the need for a deeper 
understanding of data characteristics. Aminimehr et al. (2022) label this realization as “inconsistency” 
and argue that the success of neural networks over econometric methods often stems from improper 
model implementation. In fine, despite significant advancements in this field, it is essential to 
acknowledge the continued effectiveness of less complex traditional methods. 

7. Conclusion and Perspective 

In conclusion, we recall that our study sheds light on the nuanced relationship between model 
complexity and predictive accuracy in historical volatility forecasting within the context of pre-
emerging markets. Our results advocate reevaluating the need for complex models, suggesting that 
simpler models may offer more precise results, challenging the prevailing assumption that increased 
complexity is always necessary for accurate forecasts. 

Looking ahead, an intriguing avenue for future research involves investigating the potential 
existence of a threshold effect. Specifically, exploring whether there is an optimal market 
capitalization threshold beyond which neural network models might demonstrate superior 
forecasting quality. Given the established superiority of neural networks in predicting volatility, 
returns, and prices in more developed markets, as documented in the literature, exploring this 
threshold effect could provide valuable insights into the applicability of deep learning approaches in 
different market conditions. 

In summary, our findings underscore the ongoing debate surrounding the choice of model 
complexity in financial time series analysis in general and historical volatility in particular, and 
highlight the need for further exploration into the interplay between market characteristics and 
predictive modeling techniques. By addressing these gaps, future research can contribute to a more 
comprehensive understanding of volatility dynamics and enhance the effectiveness of forecasting 
models in diverse market environments and conditions. 
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