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Abstract: We study Ly-approximation problems in the weighted Hilbert spaces in the worst case setting. Three
interesting weighted Hilbert spaces appear in this paper, whose weights are equipped with two positive parame-
ters y; and a; forj=1,2,..., d. We consider the worst case error of algorithms that use finitely many arbitrary
continuous linear functionals. We discuss the exponential convergence-(t, s)-weak tractability (EC-(t,s)-WT) of
these Ly-approximation problems under the absolute or normalized error criterion. In particular, we obtain the
sufficient and necessary conditions for EC-(1,1)-WT and EC-(¢,1)-WT with ¢ < 1.
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1. Introduction

We study multivariate approximation problems APP = {APP;} <y of functions defined over
Hilbert spaces with large or huge d in the worst case setting. Such problems appear in statistics (see
[1]), computational finance (see [2]) and physics (see [3]). We consider algorithms that use finitely
many continuous linear functionals. The information complexity n(e, APP,) is defined to be the
minimal number of linear functionals for which the approximation error of some algorithm is at most
e. Tractability describes the growth rate of the information complexity n(e, APP;) when the error
threshold ¢ tends to 0 and the dimension d tends to infinity. There are two kinds of tractability, classical
tractability based on polynomial convergence and exponential convergence-tractability (EC-tractability)
based on exponential convergence. Recently many authors are interested in classical tractability and
EC-tractability in weighted Hilbert spaces, such as classical tractability and EC-tractability in analytic
Korobov spaces (see [4-9]), classical tractability and EC-tractability in weighted Korobov spaces (see
[10-17]), and classical tractability in weighted Gaussian ANOVA spaces (see [18]).

This paper is devoted to discussing EC-tractability of Ly-approximation problems from the
weighted Hilbert spaces in the worst case setting. Let H(Kg d,M) be a Hilbert space with weight R; 4 ,,
where v = {7;}jen and & = {a;}cn are two positive sequences satisfying 1 > y; > 72 > -+ > 0 and
1 <a; <ap <--- . We consider the Ly-approximation problem

APP; : H(Kg,, ) = L2([0,1]) with APP4(f) = f.

In the worst case setting the classical tractability of the problem APP = {APP;} in weighted Korobov
spaces such as strong polynomial tractability and polynomial tractability were discussed in [13,14,18];
quasi-polynomial tractability, uniform weak tractability, weak tractability and (t, s)-weak tractability
were investigated in [15,18]. Additionally, [18] also discussed classical tractability in several weighted
Hilbert spaces including weighted Korobov spaces and weighted Gaussian ANOVA spaces. The
EC-tractability of the problem APP = {APP,;} in weighted Korobov spaces such as EC-(t, 1)-weak
tractability for 0 < t < 1 were studied in [17]. However, the above weighted Hilbert spaces H(Kg dm)
with weights Rj,  satisfy 1 > 1 > 92 > --- > 0and 1 <ay =ap =--- .

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In this paper we present three cases of weighted Hilbert spaces H(Kg d,m) with weights Ry, -,
forl1>y; 27> -->0and1 < a; <ap < ---, that appear in the reference [16]. These weighted
Hilbert spaces are similar but also different. [16] studied the strong polynomial tractability, polynomial
tractability, weak tractability and (t,s)-weak tractability for ¢ > 1 of the problems APP = {APP,}
in these three weighted Hilbert spaces. However, EC-tractability have not yet been considered for
the approximation problems APP = {APP;} for the above three weighted Hilbert spaces. We will
investigate EC-(t,s)-weak tractability for some t > 0, s > 0 and get the sufficient and necessary
conditions for the EC-(1, 1)-weak tractability (EC-weak tractability) and EC-(t, 1)-weak tractability
with t < 1.

The paper is organized as follows. In Section 2 we present three cases of weighted Hilbert spaces.
In Section 3 we give preliminaries about the Ly-approximation problem in the weight Hilbert space.
Section 4.1 are devoted to recall some notions about the tractability such as classical tractability and
exponential convergence-tractability and state out the main results. In Section 4.2 we give the proof of
Theorem 10.

2. Weighted Reproducing Kernel Hilbert Spaces

In this section we introduce multivariate approximation problems in weighted reproducing kernel
Hilbert spaces in the worst case setting.

In this paper, let ¥ = {7;}jen and & = {«;};cn be two positive sequences of the reproducing
kernel Hilbert space H(Kg,, . ) with weight Ry, ,, satisfying

12mz2rn=---20, 1)

and
1< <ap<--- )

Assume that the weighted reproducing kernel function Kg,, [0, 1]% x [0,1]% — C of the space
H(KRg,,,) is of product form

Kg,,, (%) H KRy (ks Vi)
where Kg, . :[0,1] x [0,1] — C is a universal weighted function,

Ky, (%,y) = Y Ray(k)exp(2mik- (x —y)), x, y € [0,1].
kGNO

Here, let weight R, , : Ng — R* be a summable function, i.e., ¥ R,m(k) < oo. Then we have

kGNO
KRy, (%) Z Ri,q (k) exp(2mik - (x —y)), x, y € [0,1]4, (3)
keNg
and the inner product
(f.8) = ———=f(k)3(k) @)
H(Kry, ) Nt Ry g (k)
and
fllsie,, = /TPty
where

d
R (k) =T Ray; (kj), ke = (k1 ko, ... ka) € N,
j=1

d0i:10.20944/preprints202405.1207.v1
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d d
X Yy = 2 Xk Yk, X = (xlerI- -'rxd)/ y= (yl/yzr- -'ryd) € [0/1] s
k=1
and
f(k) = / f(x) exp(—2mik - x)dx.
[0,1)4
Note that Kg,, . (x,y) is well defined for 1 < a7 < ap < --- and forall x, y € [0,1]%, since
d
KRy () <) Ramq(k) = TT( Y Rajp;(k)) < oo,
keNd j=1 keNg
Ifyy=9=---=1and 1 < ay = ap = - - -, then the space H(Kg dlm) is called unweighted space.

Here, Ny ={0,1,...} and N={1, 2, ...}.
There are many ways for introducing weighted reproducing kernel Hilbert spaces with weights
R,y In this paper we consider three weights like the cases in the reference [16].

2.1. A Weighted Korobov Space

Let &« = {aj}jeny and v = {7;}en satisfy (1) and (2). We consider a weighted Korobov space
H(Kg,,,) with weight

d
Rd,a,’y(k) = rd,a,’y(k) = Hrﬂj,’h‘ (kj)r
j=1

where

1, fork=0,
re(k) = { T, fork>1,

fora > 1and 7y € (0,1]. We can see the case in the references [16,19]. Then we have the kernel function
(3) and the inner product (4) as follows:

Kg,,, (x,y) = Ky, (x,y) = Zd Tauy (k) exp(2rik - (x—y)), x, y € [0,1]7,
keNj

and 1
F(k)3(K).

o8y, ) = f8m,, )= cemi )

Remark 1. Obviously, the kernel Ky, . (x,y) is well defined for a and vy satisfying (1) and (2), due to

d

|K’d,m (x,y)| < Z Tdqy (k) = H(l +¢(aj])rj) < oo,

keNd =1
where {(+) is the Riemann zeta function.

2.2. A First Variant of the Weighted Korobov Space

Leta = {«;}jeny and v = {7} en satisfy (1) and (2), respectively. We consider a first variant of
the weighted Korobov space with weight

d
Rd,zx,’y(k) = l/)d,a,'y(k) = Hlpaj/}‘j (k]'),
j=1

where
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1, for k=0,
Yasy (k) = & for 1<k < [a],
w, for k> [a],

fora > 1and vy € (0,1].

Then we have the kernel function (3) and the inner product (4) as follows:

Kg,, . (xy) = Ky,, (x,y) = Zdtpdw )exp(2mik - (x —y)), x, y € [0,1]%,
keN

and

-~

<frg>H(KRd’m’7) = <frg>H(K¢d,a’7) = ( ) (k )?(k)-

keeNg Yy
Lemma 2. ([16] Lemma 2) For all j, k € N we have
Py () <[] %1 ()

Remark 3. From Lemma 2 and 1 < a7 < ap < --- we obtain

|K¢d,lx,’y(xry)| < Z wd,a,'y(k) I:[ 1 + Z 1,’«70(] 7]

keNd j=1 keN

Hence the kernel Ky, , . (x,y) is well defined.

2.3. A Second Variant of the Weighted Korobov Space

Leta = {a;};cny and v = {7} e satisfy (1) and (2), respectively. We consider a second variant of
the weighted Korobov space H(Kg dM) (see the references [16,20]) with weight

Rd,a,’y(k) = wd,a,'y(k) = lexj/y]' (k )
j=1

where
—1
Wy (k) := (1+ 291 ) ,

fora > 1and vy € (0,1], and

K for k> 1,
o (k)= D O RS
0, for 0<k<l

Then we have the kernel function (3) and the inner product (4) as follows:
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Kg,,. (%, y) = Ka,, (x,y) = Zd Wi ay (k) exp(2mik - (x —y)), x, y € [0,1]%,
keNj

and

I

<f/g>H(1<RdM) = <f/g>H(1<wd,a’7) = f(k)§(k)-

R=SpTm
Lemma 4. ([16] Lemma 3) For all j, k € N we have
Wayy; (k) < e 19T, ().

Remark 5. We note that the kernel Kg, , (x,v) is also well defined. Indeed, it follows from Lemma 4 and
<oy <ay <--- that

d
Kiga, 09| < Y wanq (k) =T100 +k%waj,w (k))

keNd j=1
< ]ﬁlu + L[] 170, (K))
- f{“ + T4 (Tag T
< oo

Lemma 6. Let R"‘j'“ﬁ S {rlle')/]'/¢0Cj,'}’j/w“]‘,'}‘j}for all j € N. Then we have for all j € N, k € Ny,

Raj iy (K) < o], (K).
Especially, we have forall j € N, k € Ny,
R“j/’)/j (k> S [0{1-‘ [0‘1—‘ r’xll')/j (k>
Proof. On the one hand, it is obvious from Lemma 2 and Lemma 4 that
Ra s (k) < [aj]1% g, () (5)
forall j, k € N. Since forall j € N
mjﬁj(o) = waj,'vj(o) = wlxj/Yj(O) =1

we have
R"‘jr"/j 0)=1< Mj~| o1 = [‘Xj-| kl Tujyj (0).

Thus we have for all j € N, k € Ny that
R,y (k) < [a;] o] r"‘j/}‘j(k)'
On the other hand, noting forall j, k € N

rﬂtjﬁj(k) < r"‘lr')’j(k)/ Pa; (k) < Pay 7 (k). wl"jr'}‘j(k) < Way (k).
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and forallj e N

r“j/)’j(o) = rﬂél/ﬁ(o) =1, lp”‘j/Vj(O) = 1/7041,77(0) =1, w“j/'Yj<0) = w“lr')’j(o) =1,

we have forall j € N, k € Ny that
R’Xjr'Yj(k) < Rlxl,’ﬁ(k)~

Hence by (5) we further get for all j € N, k € Ny that
RIX]W/ (k) < R“l/Yj (k) < [“11 Mﬂ7""1,7]‘ (k)
O
Remark 7. Let R,x]m € {r“]ﬂ].,v,ba].,y].,wawj} forall j € N. Then we obtain

_ i
Ray;(0) =1 and Ry, (1) > 2 (6)

forall j € N. Indeed, for all j € N we have

lpa;m(o) = r“jr'Yj(O) = wlxj/Yj(O) =1

which means Ry ,(0) = 1. Due to for all j € N, we get

-1
1
lpl"jr"/j(l) = rlxjﬁj(l) =7 and wl’l]‘m‘(l) = (1 + ) 2 P

. . i
which yields R q,(1) 2 +-

3. L-Approximation in the Weighted Hilbert Spaces

In this paper we investigate the Ly-approximation
APP; : H(Kg,, ) — L2([0,1]%) with APP4(f) = f,

for all f € H(Kg d,m) in Hilbert space H(Kg d,m) with weight Rysy € {7da, Vduy Vdayt- Itis
well known from Remark 1, Remark 3, Remark 5 and [14] that this Ly-approximation is compact for
1 <ap <ap <---. We approximation APP; by algorithm A, ; of the form

Analf) = Y Tif)gi for f € H(Kg,, ), )
i=1

where g1, §2, ..., gn belong to Lz([O,l]d) and Ty, T», ..., T, are continuous linear functionals on
H(Kg,, 7). The worst case error for the algorithm A, ; of the form (7) is defined as

e(Ang) = sup  [|APP4(f) = Apa(f)llL,-

Hf||H(1<RdM)§1

The nth minimal worst-case error, for n > 1, is defined by

e(n, APP,) := i;nf e(Aya),

n,d
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where the infimum is taken over all linear algorithms of the form (7). For n = 0, we use Ag; = 0. We
call
e(0,APP;) =  sup  ||APP4(f)IL,
Hf||H(KRM7)§1

the initial error of the problem APP,.
We are interested in how the worst case error for the algorithm A, ; depend on the number # and
d. To this end, we define the so-called information complexity as

n(e, APP;) := min{n € Ny : e(n, APP;) < ¢},

where e € (0,1) and d € N. Here, Ny = {0,1,...} and N = {1,2,...}.

It is well known, see e.g., [2,10], that the nth minimal worst case errors e(n, APP;) and the
information complexity n(e, APP;) depend on the eigenvalues of the continuously linear operator
Wy = APP;APP, : H(KR,,,) = H(Kr,,, ) Let (A4, 74) be the eigenpairs of Wy, i.e.,

Wataj = Agjnaj, forall jEN,
where the eigenvalues /\d,j are ordered,
Agg = Agp =20,
and the eigenvectors 7, ; are orthonormal,
(Nair ﬂd'j>H(KRd,u,»,) = ¢;j, foralli, jeN.

Then the nth minimal worst-case error, n > 1, is obtained for the algorithm
n
Az,df - Z%(f, Ud'j>H(KRd,u,'y)’7d'j/ forall n € N.
]:

and

e(n,APP;) = e(A; ;) = \/Aapnsr, forallm e N.

The initial error e(0, APP;) = \/A;1. Hence we have e(n, APP;) = \/A;,41 for all n € Ny. The
information complexity is

n(e, APP,) = min{n €No:\/Agns1 < s} = min{n €No: Agnp1 < 82}. (8)

Since the eigenvalues A;; with j € N of the operator W, are Ryuq (k) with k € Ng (see [10, p.
215]), by (8) the information complexity of APP; from the space H(Kg d,w> is equal to

n(e, APP) min{n €Ny Ay < 82} = Hn eEN:Ay, > 82}‘

d
= |{n € NE: Ryuy () > }| = Hh € N : [T Ruy () > 52} , 9)
j=1

withe € (0,1) andd € N.
Note that for the Ly-approximation APP,; from the space H(Kg dw'y) we do not need to distin-
guish between the absolute error criterion and the normalized error criterion since the initial error

E(O,APPd) = \//\d,l =1


https://doi.org/10.20944/preprints202405.1207.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2024

8 of 19

4. Tractability in Weighted Hilbert Spaces and Main Results

In this section we will consider the classical tractability the exponential convergence-tractability
(EC-tractability) for the problem APP = {APP,},cy in the weighted Hilbert space Hy , -

4.1. Tractability and Main Results

We focus on the behaviours of the information complexity #(e, APP;) depending on the dimension
d and the error threshold e. Hence we will recall several notions of the classical tractability and
exponential convergence-tractability (EC-tractability) notions (see [4,5,7-12,17,21]).

Definition 8. Let APP = {APP;} en. We say we have:
e Strong polynomial tractability (SPT) if there exist non-negative numbers C and p such that

n(e, APP;) < C(e 1P forall d € N,e € (0,1).

In this case we define the exponent p*" of SPT as

P :=inf{p : 3C > 0 such that n(e, APP;) < C(e 1)P,Vd € N,e € (0,1)}.

Polynomial tractability (PT) if there exist non-negative numbers C, p and q such that

n(e, APP;) < Cd(e )P forall d € N,e € (0,1).

Quasi-polynomial tractability (QPT) if there exist two constants C, t > 0 such that

n(e, APP;) < Cexp (t(1+Ine ') (1 +Ind)) forall d € N,e € (0,1).

Uniform weak tractability (UWT) if for all t,s > 0,

lim Inn(e, APPy) _0
e lirdoseo dl+ (E_l)s

Weak tractability (WT) if
Inn(e, APP;)

li =0.
s*lirdnaoo d+el
e (t,s)-weak tractability ((t,s)-WT) for fixed positive t and s if
lim Inn(e, APPy) _ o

e ltd—oo m

APPy suffers from the curse of the dimensionality if there exist positive numbers Cy1, Ca, €o such that

n(e, APPy) > C1(1+Cp)? forall 0 < e < ey and infinitely many d € N.

We find that (1,1)-WT is the same as WT and
SPT = PT = QPT = UWT = WT.

In the above definitions about classical tractability, if we replace e ! by (1 + In(e~!)) we will get the
following definitions about exponential convergence-tractability (EC-tractability).

Definition 9. Let APP = {APP;} cn. We say we have:

d0i:10.20944/preprints202405.1207.v1
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* Exponential convergence-strong polynomial tractability (EC-SPT) if there exist non-negative numbers C
and p such that
n(e, APP;) < C(1+In(e ™))" forall d € N,e€ (0,1).

In this case we define the exponent of EC-SPT as
inf{p : 3C > 0 such that n(e, APP;) < C(1+1In(e 1))",vd € N,e € (0,1)}.

o Exponential convergence-polynomial tractability (EC-PT) if there exist non-negative numbers C, p and q
such that
n(e, APP;) < Cd(1+1In(e™1))" forall d € N,e € (0,1).

o Exponential convergence-uniform weak tractability (EC-UWT) if for all t,s > 0

, Inn(e, APPy)
lim s =
e 1+d—oo dt + (1 + 11‘1(8_1))

» Exponential convergence-weak tractability (EC-WT) if

lim Inn(e, APP;) 0
e l+d—eo d+1In(e71)

e Exponential convergence-(t, s)-weak tractability (EC-(t,s)-WT) for fixed positive t and s if

Inn(e, APP;)

lim =0.
e ltd—oo df 4+ (1+ ln(sfl))s

We note that EC-(1,1)-WT is the same as EC-WT, and
EC-SPT = EC-PT = EC-QPT = EC-UWT = EC-WT.

If the problem APP has exponential convergence-tractability, then it has classical tractability. Hence
we have
EC-SPT = SPT, EC-PT = PT, EC-QPT = QPT,

EC-(t,5)-WT = (t,5)-WT, EC-UWT = UWT, EC-WT — WT.
In the worst case setting the classical tractability and EC-tractability of the problem APP =
{APP;}4cn in the weighted Hilbert space Hy, o, with ¥ = {7} jen and & = {a;}cy satisfying
IZ2mzmz2--20,
and
l<a*=a1=ap=---.
have been solved by [13,15,16] and [17], respectively. The following results have been obtained:
* For Ryu+ o € {Tau s Waur 4 Wi a+ o}, PT holds iff SPT holds iff
(o]
Sy ::inf{K>0: Z’y}‘ <oo} < 0,
j=1
and the exponent of SPT is

1
str :2 ( 7)
p max S:},, 2
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* For Ry = Tgu*,9, QPT, UWT and WT are equivalent and hold iff

= infvy; < 1.
VI ],lgN’Y]

For Ryusy € {¥dar 9 Waar iy}
Y1 < ©

implies QPT.
* For Ryus o € {Tanr yr Waur y Wiar ) and t > 1, (t,5)-WT holds forall 1 > 91 > 92 > -+ > 0.
* For Ryu+y = T4+, EC-WT holds iff
lirn Yi = 0.
]

* For Ryu = Tdar and t <1, EC-(t,1)-WT holds iff

Inj

lim =)
j=eeIn(y;7)

In the worst case setting the classical tractability such as SPT, PT and WT of the problem APP =
{APP,}4cn in the weighted Hilbert space Hy , , with v = {7;};en and & = {a;} e satisfying (1) and
(2),1ie.,

1>2mzm=---20,

and
<y <ap <o

has been solved by [16] as follows:
® For Ryuy € {Tduy Wiy Pdany )}, SPT and PT are equivalent and hold iff

-1

Iny;
6 := liminf L > 0.

jooo Inj

The exponent of SPT is
1 1
ST — 2max { =, —=1.
p {(5 [a1] }
* For Ryny = "iu WT holds iff
hrn Vi < 1.
]

® For Ryuy € {Tduqy Yauy Wyt and t > 1, (t,5)-WT holds.

In this paper, we investigate the EC-tractability of the problem APP = {APP,;} ;< in the weighted
Hilbert space Hy , , with ¥ = {7} jen and & = {a;};cy satisfying (1) and (2). We obtain sufficient and
necessary conditions for EC-(t,1)-WT with0 <t < land t = 1.

Theorem 10. Let the sequences v = {v;}jen and & = {a;j}jcn satisfy (1) and (2). Then the problem
APP = {APP;} ¢ for the weighted Hilbert spaces Hg duy With Raq € T uyr Vaunr Oy b
(1) is EC-WT, if and only if
lim v; = 0.
J—

(2) is EC-(t,1)-WT with t < 1, if and only if

Inj

Imm PN
jee In(y; )
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4.2. The Proof

In order to prove Theorem 10 we need the following Lemmas.

Lemma 11. Let 7 > 0, ¢ € (0,1). We have for any d € N

d
e, APPy) < e TT (14 ]V [aa 1)),
=1

Proof. By Lemma 6 we have

o d 00
Z )‘Zk - (Rd,a,v(k))n - H (1 + Z <R"‘f"7j(k)>7]>
k=1 keNg j=1 k=1
d 00
< 1_[(1 +) (fal] el 7 (k))”)
=1 k=1
d =S
=11 (1 + [aq][ealn Y (ral 7 (k))n>
j=1 k=1
d X i
= aq 1] j
H<1+f 1] 'lk_l(kW}) >
d
= TT(1+ a1 ™2 faaTn)oy).
j=

This yields
n 00 d
mAG, < Yo A< Y A < TT(1 4 Tl 12 (far 1)),
k=1 k=1 j=1

which means
1/

(14 Tan 112 ([ar )7

nl/n

j=1

Adm <
It follows from the above inequality and (8)
— mi . 2
n(e, APP;) = mm{n €ENp: Ajyu <e },

that
d

e ARy < € TT(1+ ) e i n)a] ).
=1

This proof is complete. []

Lemma 12. Let ¢ € (0,1). We have for any d > 2

n(e, APPy) > [(82 [ar] [aﬂ')/d) [;ﬂ

Proof. Set 1
H = H(e,d,a) = {h ENg:h < [(fﬁalﬂm,m)ww B 1}.
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1
Ifh > Rsz [oq] ["‘11%1) fa1] -‘ —1and d > 2, by Lemma 6 we have
= Vd 2
T Ry )Ry () < Reg () < [a] Ty, ) = 100 2087 <
]:
forany {hy,--- ,hy 1} € Ng_l, which means
1.7 2
{h eNTT] Rej i (hj) Ry () > € } =g (10)
=1

1
forall h > Rez [aq] 1] 'Yd) foa ] —‘ — 1. It follows from (9) and (10) that

d
n(e, APP,) = Hh € N : [TRu;, (1) > sz}
j=1

d—1
= |{h € N§ : [T Rey; (1)) Rayy (ha) > ez}'
j=1

=)L

d—1
{h € Ngil : I—{ R“]‘,”Yj(hj)R“d/Yd (h) > 82}|
]:

heNy
d—1
=) {h € N§1: TT Raj; () Reg s () > 82}
heH j=1
1.7 21
= Yy {h eNj HRaj/yj(hj) > R%W(h)}
he(H\{0}) j=1
d-1
+ {h € Ng_l : HR‘,‘].,%. (hj) > 82}
=1
= Y n(eR42(h), APP4_1) + n(e, APPy_1)
he(H\{0})
r 1
(e72[ag]01ly) Tl | 1
= Y n(eR, 2 (h), APPy_1) + n(e, APPy_q)
h=1
r 1
Z (8_2 |70C1-| [al]r),d) [aq] “ .

This finishes the proof. [
d 7i
Lemma 13. For [] (7]) > e and e € (0,1) we have
j=1

n(e, APP;) > 2°.

Proof. Set

d
j=1
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Ifh={hy,hy,...,hg} € {0, 1}d, we have from (6) that
d d 'Y]
Rd,a,'y(h) = HR“]',’Y]' (hj) > H(2> .
j=1 =1

d .
Thus, we have {0,1}4 € A(e, d) for T] (%) > €2 . Hence it follows from (9) that
=1

n(e, APP,) = | A(e, d)| >

d
{h € {0,134 : T Ry () > s2}| =24
j=1

d .
for T ( %) > ¢2. This proof is complete. [
=1
Proof of Theorem 10.

If there are infinitely many 7; = 0 for j € N, the results are obviously true. Without lose of

generality we consider only the situation when all the 7; for j € N are positive.
14

d o1
(1) Let 6 > 0 and takee = T] (7’) , then we have

j=1
d /o
H(Z’) > &2,

=1
It follows from Lemma 13 that

Inn(e, APP,) < dIn2
d+1In(e71) — d
< d+ 13 -1n<n<27j1>>

j=1
dln2
T d+52-d-In(27,)
- In2 —. (11)
1+ 432 (ln2—|—1n('y; ))

Assume that App is EC-WT, i.e., for the above fixed ¢

lim Inn(e, APPy) _0
d—o0 d+ln(€_1)

Combing (11) and the above equality we have

O:limlrclln(?iAP—I?)th 115 - )’
d—co d+In(e 1) daoo1+%-(ln2+ln('7df ))

This implies lim y; = 0.
d—o0
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On the other hand, assume that we have dlim 74 = 0. For 7 > 0 we obtain from the upper bound
— 00

in Lemma 11 that

21n(e) + 1 In(1+ T 101 T )
j=1

. Inn(e, APP) .
limsup —————= < limsu
d+€’1~)€o d+ hl(e_l) d+€71~)€o d + ln(g—l)
d
2pIn(e7!) + ,;1 [a1] M”C([MW)Y?
< limsup 1=

d+In(e 1)

d+e 1300

d
)7 (faaT) 12 ]
z

< 2y + limsup

d—o0 d
= 217,
. Z?:1 7}7 ir 1 .
where we used that In(1 + x) < x for all x > 0 and limsup =——- = 0 if dhm ¥4 = 0. Setting 7 — 0,
d—o0 e
we have | APP
lim sup Inn(e, APPy) 71{1) =0,
d+e 100 d+ln<£ )

which yields that ET-WT holds.
(2) Assume that EC-(t,1)-WT for < 1 holds. First, we note that dlim Y4 = 0. Indeed, if
—» 00

dlim Y4 # 0, we deduce from Theorem 10 (1) that EC-WT doesn’t hold, i.e.,
—00

Inn(e, APP)
P i n(e 1)

d+e 100

Inn(e, APP,) < limsu

0 < limsup dtnE ) =

d+e 100

This means APP is not EC-(,1)-WT for all t < 1.

Next, we want to prove lim 1“1 ~ =0.Lete = ¢4 € (0,1) such that
j—o0 1“('7]' )

1

1r1(s*2 [aq] ["‘1]%1) Tl — gt

for large d € N. From the lower bound in Lemma 12 we obtain

1

1
-2 Taq T m
Inn(e, APP,) N 11’1’7(8 [aq] ftxl]ryd) 1 —‘ ln<£72 [aq] Ml]'Yd) faq]

F+n(e 1) = J+in@ 1) e T ey )
d' d'
T@ I ) @t [a]d /21 oy )/2 — [ar] (Infar]) /2
1

Tt (] /24 In(y; 1)/ (2d") = [aq | (Infaq 1)/ (2d1)°

It follows from the assumption that

0 = limsu M > limsu !
o @+ In(e ) = R T T2 (07T / 2d) — [ (infag 1)/ (24°)
. 1
= limsup

de1oseo L+ [01]/2+In(y; ) /(2d)
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which implies
dt
lim = =
d=eIn(y,")
Using the fact that d' > Ind' = tInd > 0 for large d € N, we have
t
0 < lim lndl < lim dil =0,
d—oo ln( ) d—co tln(f)/; )
ie.,
im Lﬂ =0.
d—oc0 ln('yd )
On the other hand, assume that lim m(lyi) = 0. Then we obtain that for all § > 0 there is a
]—)OO i
number Ny > 0 such that
v; < j° forall j > N. (12)
Let 7 > 0. We get from Lemma 11 that
Inn(e, APP;) < 2yln(e™ ") + Zln< fag] 1 Wg([zxﬂﬂ)'y])
< 2yln(e™") + Z [ 1117 ([ar 1)y (13)

j=

where we used that In(1 + x) < x for all x > 0. Choose § = % By (12) and (13) we get

Npyy—1 . max{d,Nz/q}
2pin(e )+ L [a]™g(faaln)y! + X [wall g (Tary)o]
Inn(e, APP) j=1 j=Nayy
d' +1In(e”?) — df +1In(e1)
max{d,Na/, }
[aq 1T 117 (Tay 1) 7] (Nayy — 1) + Tag 11411 ([aq 1) } % '
J=Nayy
<
=2+ & In(e 1)
It follows that
max{d,Np/, }
i

. Inn(e, APP,) J=Nayy

limsup —————42 < 2p 4 [ag ][4z ([ limsup ———

d+€71_£0 dt—l—ln(s*l) Ui [ 1—| C([ l-|77) e 1_)1; dt—l—ln(e 1)

Z%J’Z
< 25+ [ag]14 117 ([ hmsu _—
=2y.
Setting 7 — 0, we have

lim su Inn(e, APP;)
d+8,1jzo dt +In(e-1)

Therefore Theorem 10 is proved.
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Example 14. An example for EC-WT.
Assume that vyj = j2and aj = j+1forall j € N. We consider the above weighted Hilbert spaces Hg,, .,

Rd,vc,'y € {rd,lx,'yr Ebd,zx,fyr wd,zx/y}'
Oboiously, we have lim vy; = 0. By Lemma 11 we get
]—0

21n(e) + 1 In(1+ [ 101 T )

. Inn(e, APP;) . j=1
limsup ———% < limsu
d+€*1—)lc)>o d+ h’l(‘c’il) d+s’1alc)>o d+ ln(s*l)
d
2pIn(e™) + ¥ [aa] 11 ([ar]n) o]
< limsu 1=
" et d+n(e )
d

[ar ] 117 (Tar ) ;

< 21 + lim sup =
d—o0 d
d . 5

[ar ] 117 (Tar ) L 1

= 257 + limsup =
d—o0 d
= 217,
d
where we used In(1+ x) < x for all x > 0 and lim sup 2]17] = 0. Setting n — 0, we have
d—o00
lim sup 7lnn(e,AP_Iid) =0.
d+e1—00 d+In(e)

Hence APP is EC-WT.

Example 15. An example for EC-(t,1)-WT for t < 1.
Assume that y; = 27T and wj = 2j for all j € N. We consider the above weighted Hilbert spaces Hg,, .,
Rdw’y € {rdzx'y/lpda'yrwdzx'y}

Note that lim —2 = = lim N = 0. It follows from Lemma 11 that
j—oo ln( ) j— ]

Inn(e, APP;) < 25In(e~!) + Zln(l + Taa 111 (g 1)y )
j=1

= 2qln(e™) + fln(l o+ [ar] 119G ([ar )27
j=1

<27In(e™) + ZPXH g ([ ]y)27,
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where we used that In(1+ x) < x for all x > 0. It yields that

2pin(e) + Y- ay] M0 ([ay] )2
j=1

Inn(e, APP;)
dt +In(e-1)

dt+1In(e~1)

< limsup
d+e1—00

lim sup
d+e 100

j
dt+1In(e~1)

[e9)

[aq 11117 (Tay]7p) ¥ 277

=1
dt+1In(e~1)

d ‘
[aq 11117 (Tar 1) :127’”

< 217 + limsup

d+e 100

<25 + limsup

d4e 100

= 211.

Setting 1 — 0, we have
Inn(e, APP;)

lim sup dt +In(e~1)

d+e1—00

Hence APP is EC-(t,1)-WT for t < 1.

Remark 16. We note that for Example 14 with vy; = j~2and aj =j+1forall j € N, APP is EC-WT, but not
EC-(t,1)-WT for t < 1. Indeed, let ¢ = ¢4 € (0,1) such that

1 ded(/xl]/Z

11’1(872 |VDC1~| [Dtl]f)/d> far] _ d, ie., 871 _ W'

forlarge d € N. From Lemma 12 we have

1

-2 a1 L
Inn(e, APP,) N 11’1’7(8 Ml”’xﬂ’yd) 1 —‘ 1n<€72 |—“1-|[a1]')’d) faq]

dt+In(e-1) — dt+1In(e-1) = dt+1In(e-1)
_ d - d
S dt+In(el)  dt+[aq]d/2+Ind — [ag](Infag])/2
1

T A T+ [ag|/2+1Ind/d — [aq](In[aq])/(2d)°
For the above fixed € and t < 1 we obtain

lim Inn(e, APP;) > lim 1 2
dsoo d+1In(e7l) T dscod1 4 [ag]/2+1Ind/d — [ar](In[ag])/(2d)  [ar]’

This means that APP is not EC-(t,1)-WT for t < 1.

Remark 17. Obviously, for Example 15 with y; = 27 and aj = 2j for all j € N, APP is also EC-WT. Indeed,
if APP is EC-(t,1)-WT for t < 1, then it is EC-WT. Assume that APP is EC-(t,1)-WT for t < 1, then we have

‘m 1n1’l(€,APPd) .
drelseo df+In(el)
Since In APP In APP
0 < lim Tl(s, d) < lim TI(S, d)
d4e1oc0 d+ ln(€71) d+e~1—00 dt + 11'1(871)

7
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we further get
lim lnn(e,APlzd) _
dte 1o d+1In(e1)

which means that APP is EC-WT.

In this paper we discuss the EC-WT and EC-(t,1)-WT with ¢ < 1 for the problem APP in weighted

Hilbert spaces Hg duy for Ry, € {"dayyr Yduyr Wiy} With parameters 1 > 91 > 92 > -+ > 0 and

Y

1 <ay <ap <---. We obtain the matching necessary and sufficient condition
lim 7; =0
]—0

on EC-WT, and the matching necessary and sufficient condition

Inj

lim =0

oo In(y; )

on EC-(t,1)-WT with t < 1. The weights are used to model the importance of the functions from the
weighted Hiblert spaces, so we plan to further study the other EC-tractability notions such as EC-UWT
and EC-QWT.
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