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Abstract: This research focuses on deriving the equation of motion for fermions on a ring. The paper proposes an

alternative equation for fermions on the ring, incorporating a self-rotation angle denoted as ∆, and explores its

relationship with the original equation.
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1. Introduction

There are two types of particles known as bosons and fermions, each possessing distinct symmetry
properties regarding the interchange of identical particles. Particles that have symmetry on identical
particle position swaps are called bosons. And this property gives the statistical properties called
Bose–Einstein statistics. Particles have antisymmetric on identical particle position swaps called
fermions. And this property gives rise to the Pauli exclusion principle, which forbids identical fermions
from sharing the same quantum state. [1,2] In this research, we focus on the 2D fermionic ring scenario
and propose a novel hypothetical model for the fermionic particle wave function, incorporating its
rotational effects. In Chapter III, we point out the problem that the current fermion wave function
on the ring fails to account for the rotation effects of the system. In Chapter IV, We start from the
Schrödinger equation of fermions on the ring and introduce a self-rotation angle phase to give the
same effect of identical particle swaps when the system undergoes rotation at a particular angle.

2. Theoretical Background

When a wave propagates through arbitrary potential, we can use the Schrodinger equation with
the scalar potential V(x). [

− h̄2

2m
∂2

∂x2 + V(x)

]
Ψ(x) = EΨ(x) (1)

and we can write a free field equation on the circle with radius R as,

− h̄2

2m
∇2Ψ(x) = EΨ(x) (2)

And as the solution of Eq. (2) we can get,

Ψn(θ) =
1√
2π

einθ , En =
n2h̄2

2mR2 (3)

If we consider the ground state,

Ψ1(θ) =
1√
2π

eiθ (4)

The fermionic identical particles satisfy the condition that,

Ψ(r2, r1) = −Ψ(r1, r2) (5)
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This is also known as the anti-symmetric properties of the fermionic wave function and follows to
Pauli Exclusive principle. And if there is N-multiple fermionic particle, by using the Slater determinant,
the anti-symmetric wave function can be written as the determinant of a matrix. [3]

Ψ(x1, x2, ..., xN) =
1√
N!

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) ... χN(x1)

χ1(x2) χ2(x2) ... χN(x2)

... ... ... ...
χ1(xN) χ2(xN) ... χN(xN)

∣∣∣∣∣∣∣∣∣ (6)

And Eq. (4) simplifies the Eq. (6) that one can use the Vander Monde determinant. [4–6]

Ψ(x1, x2, ..., xN) =
1

√
2π

N√
N!

∣∣∣∣∣∣∣∣∣
eiθ1 ei2θ1 ... eiNθ1

eiθ2 ei2θ2 ... eiNθ2

... ... ... ...
eiθN ei2θN ... eiNθN

∣∣∣∣∣∣∣∣∣
=

1
√

2π
N√

N!

N

∏
i=1

eiθi ∏
1≤i<j≤N

(eiθi − eiθj)

=
1

√
2π

N√
N!

N

∏
i=1

eiNθi ∏
1≤i<j≤N

(ei(θi−θj) − e−i(θi−θj))

=
1

√
2π

N√
N!

(2i)N(N−1)/2 ∏
1≤i<j≤N

sin
(

θi − θj

2

)
(7)

3. Problem

Let us consider the four fermion particles on the ring as shown in Figure 1. Then from the
left to right figure, we can interpret this process in two different ways. First, this is the process of
swapping x1 ↔ x2, x1 ↔ x3, and x1 ↔ x4 which gives a factor of -1 to wave function for each swap.
Therefore as a result it gives a -1 sign after all swaps. However, this process is also equivalent to a π/2
counterclockwise rotation.

Figure 1. Four fermions on the ring. There are two ways to transform from a left to a right figure.
The first method involves swapping (1,2), (2,3), and (3,4). The second method is to rotate the system
counterclockwise by π/2.

Consider three fermion particles on the ring as shown in Figure 2. This configuration can be
achieved by swapping x1 ↔ x2 and x1 ↔ x3, each swap introducing a factor of -1 to the wave function.
Therefore as a result it gives a +1 sign after all swaps. However, this process is also the same as 2π/3
counterclockwise rotation.
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Figure 2. Three fermions on the ring. There are two ways to transform from a left to a right figure.
The first method involves swapping (1,2) and (2,3). The second method is to rotate the system
counterclockwise by 2π/3.

Thus we need to investigate the relationship between system rotation and the sign of the wave
function of fermions on a ring.

4. Hypothetical Model

To solve the problem, we suggest the fermion wave function also depends on the angle rotated
from the observer, not only with identical particle position swapping.

Figure 3 shows particle can rotate with its axis, and let us call this angle as self-rotation angle
and denoted as angle ∆.

Figure 3. Self-rotation of the axis of a Particle

Next Figure 4 shows particle rotation within its ring system. We designate the angle of rotation as
the system-rotation angle, denoted by θ. In this case, when the particle transitions from position A
to position B, where θ = φ, from the observer’s perspective, the particle’s self-rotation angle is also
∆ = φ.

Figure 4. Relation between self-rotation and system-rotation angle. Particle move from position A to B
by φ rotation
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We have a hypothetical model that when we rotate the fermionic-ring system by θ = φ angle, the
fermionic field equation for a single particle is,

ψi(xj) = ψi(θj, ∆j) = ei(∆j+2π)K/2χi(θj) (8)

Here, K ≡ 2S (mod 2), and S is total spin of the particle.
Then we can ask how this result could effection on the fermions on the ring. From Eq. (8) we can

suppose for single fermion with spin-half as,

ψi(xj) = ψi(θj, ∆j) = ei(
∆j
2 +π)χi(θj) (9)

And let us define,

ψ1,2,...,N(x1, x2, ..., xN) ≡ χ1(x1)χ2(x2)...χN(xN) (10)

Therefore, as Figure 4 shows when we rotate the θ = φ of the ring, it also gives the effect of
self-angle ∆ = φ, by using Eq. (9) and Eq. (10) one can get

ψ2,...,N,1(x2, x3..., xN , x1)

= eiN( ∆
2 +π)χ2(θ2)χ3(θ3)...χN(θN)χ1(θ1)

= eiN( ∆
2 +π)χ1(θ1)χ2(θ2)χ3(θ3)...χN(θN)

= eiN( ∆
2 +π)ψ1,2,...,N(x1, x2, x3..., xN) (11)

5. Examples

In this chapter, we test the hypothetical model with several examples whether it gives the same
result as the original model.

5.1. 2-Particle Case

In the case of two identical particles, N = 2, ∆ = π

If we describe the wave equation of the right figure of Figure 5 by using Eq. (11). And here θ1 = π,
θ2 = 0

Ψ(x2, x1) =
1√
2
(ψ21(x2, x1)− ψ12(x2, x1))

=
1√
2
(ψ2(x2)ψ1(x1)− ψ1(x2)ψ2(x1))

=
1√
2

ei(π/2+π)ei(π/2+π) ×

(χ2(0)χ1(π)− χ1(0)χ2(π))

=
1√
2

ei(3π)(χ2(0)χ1(π)− χ1(0)χ2(π))

= − 1√
2
(χ1(θ1)χ2(θ2)− χ2(θ1)χ1(θ2))

= −Ψ(x1, x2) (12)

And this is also the same result of swapping x1 ↔ x2 which gives -1 for each swap.
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Figure 5. Two fermion on the ring. There is two way to transform from a left to a right figure. The first
method is to swap (1,2). The second way is rotating the system anti-clockwise π

5.2. 3-Particle Case

In the case of three identical particles, N = 3, ∆ = 2π/3

ψ2,3,1(x2, x3, x1) = ψ2(x2)ψ3(x3)ψ1(x1)

= (e(π/3+π)i)3χ2(θ2)χ3(θ3)χ1(θ1)

= e4πiχ1(θ1)χ2(θ2)χ3(θ3)

= ψ1,2,3(x1, x2, x3) (13)

Ψ(x2, x3, x1) =
1√
6
(ψ1,2,3(x2, x3, x1)− ψ1,3,2(x2, x3, x1)

+ψ2,3,1(x2, x3, x1)− ψ2,1,3(x2, x3, x1)

+ψ3,1,2(x2, x3, x1)− ψ3,2,1(x2, x3, x1))

= Ψ(x1, x2, x3) (14)

And this is also the same result of swapping x1 ↔ x2, and x2 ↔ x3 which gives -1 for each swap.

5.3. n-Particle Case

In the case of four identical particles, N = n, ∆ = 2π/n

ψ2,3..,n,1(x2, x3, x4, ..., x1) = ψ2(x2)ψ3(x3)...ψ1(x1)

= (e(∆/2+π)i)nχ2(x2)...χn(xn)χ1(x1)

= (e(nπ+π)i)χ1(x1)χ2(x2)...χn(xn)

= e(n+1)πiψ1,2,3..,n(x1, x2, x3, .., xn)

(15)

And by using the levi-civita symbol,

εa1a2a3 ...an =



+1 if (a1, a2, . . . , an) is an

even permutation of (1, 2, . . . , n)

−1 if (a1, a2, . . . , an) is an

odd permutation of (1, 2, . . . , n)

0 otherwise

(16)
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Ψ2,3..,n,1(x2, x3, x4, ..., x1)

=
1√
n!

εa1a2a3 ...an ψ2,3..,n,1(x2, x3, x4, ..., x1)

(17)

And by using this, we can write down the full wave function in n-particle case as,

Ψ2,3..,n,1(x2, x3, x4, ..., x1)

= e(n+1)πiΨ1,2,3..,n(x1, x2, x3, .., xn)

(18)

Therefore, when n is odd, the total wave function remains the same, and when n is even, the total
wave function becomes negative compared to the original.

6. Conclusion and Outlook

We review the n-particle fermionic wave function by using the Schrodinger equation and Slater
Determinant. We point out the paradox of anti-symmetric properties of system-rotation and position
swap inconsistency, and suggest the new hypothetical model with a self-rotation angle. We suggest
the new phase factor on the wave equation with self-rotation angle and spin of the particle as Eq.
(8). However, further investigation into the relationship between spin and rotational phase factors is
necessary, which includes exploring the Anyon interpretation in two dimensions [7,8], and examining
the supersymmetric properties.
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