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Simple Summary: In agriculture, managing pests like the sweetpotato whitefly, Bemisia tabaci MEAM1, which
can severely affect the development and yield of vegetable crops, is crucial. This study explored different
insecticide rotations to control this pest on tomato plants. We compared standard synthetic insecticide rotations
with biopesticide rotations including biochemical and microbial products alone or combined. Our trials,
conducted in the spring and fall of 2023, examined how different insecticide rotations impacted the number of
whiteflies. Results showed that while traditional synthetic insecticides consistently reduced the whitefly
numbers, biopesticides also provided whitefly control to a lower extent. Overall, although a standard synthetic
insecticide rotation adopted in Florida to manage B. tabaci MEAM1 was very effective, incorporating microbial
biopesticides could reduce the use of synthetic insecticides and potentially mitigate the risk resistance
development. These findings offer farmers new options to manage whiteflies effectively while also considering
environmental sustainability. In summary, this research contributes to the ongoing efforts in agriculture to
balance effective pest control with the need to protect the environment and reduce chemical usage.

Abstract: The sweetpotato whitefly, Bemisia tabaci MEAM]1, is a pest known to significantly impact tomato
development and yields through direct damage and virus transmission. To manage this pest, the current study
compared the effectiveness of various insecticide rotations. Field trials included rotations involving synthetic
insecticides, biochemicals, and microbial agents, applied according to their labeled highest concentrations.
Results indicated that while standard synthetic insecticides consistently reduced whitefly egg and nymph
counts significantly, microbial biopesticide rotations also achieved reductions, although less consistently. This
study demonstrated that while traditional chemical treatments remain highly effective, integrating microbial
biopesticides containing Beauveria bassiana and Cordyceps javanica present a viable alternative that could
mitigate resistance development and reduce environmental impact. The findings suggest the potential for
optimizing integrated pest management (IPM) and Insecticide Resistance Management (IRM) strategies by
incorporating a variety of modes of action to sustainably manage B. tabaci MEAM1 populations in agricultural
settings.

Keywords: Bemisia tabaci; tomato; integrated pest management (IPM); insecticide resistance;
biopesticides; Beauveria bassiana; Cordyceps javanica; agricultural sustainability

1. Introduction

The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), represents an
important threat to a diverse range of vegetable crops, including tomato (Solanum Iycopersicum L.)
(Solanaceae) [1]. Bemisia tabaci is a complex of multiple cryptic species, differentiated by the
mitochondrial cytochrome c oxidase subunit 1 (COI) DNA sequence [2,3]. Despite their identical
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appearance, these cryptic species exhibit genetic diversity associated with distinct behavior, host
preference, ability to transmit virus, and insecticide susceptibility [2-7] The B. tabaci complex includes
the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) species, with MEAM1 recognized
as a prominent pest in Florida tomato [1-3,8].

The transmission of tomato yellow leaf curl virus (TYLCV) by MEAM1 represents a serious
challenge for tomato yield and quality [9]. Additionally, the feeding activity of nymphs can lead to
disorders such as squash silverleafing [10] and tomato irregular ripening [11]. In agricultural settings,
the use of insecticides has been the primary defense against MEAM1 damage in Florida [8,12-15].
However, repetitive application of the same mode of action may induce insecticide resistance in pest
populations [16]. Insecticide resistance occurs when an insecticide consistently fails to provide pest
control, due to heritable alterations in the susceptibility of a pest population when used as specified
on the product label [17].

Many groups of conventional insecticides with distinct modes of action are routinely used to
manage MEAM1 in Florida, including dinotefuran, cyantraniliprole, buprofezin, afidopyropen, and
pyriproxyfen. The neonicotinoid dinotefuran, whose mode of action (MoA) was categorized as 4A
by the Insecticide Resistance Action Committee (IRAC), is an acetylcholine receptor agonist that has
systemic activity [17]. Group 4 insecticides are optimally used at-transplanting and 3-5 weeks after
transplanting [18]. Dinotefuran is frequently used at-planting, via drip irrigation, and through foliar
application [14,19]. This insecticide became commercially available in Florida in 2005 [19], and it is
known for its high efficacy against MEAM]1 [15,20].

Cyantraniliprole (MoA 28) is a ryanodine receptor agonist that has systemic activity, which
impacts whiteflies by interfering with their calcium signaling pathways [21]. This insecticide offers a
broader spectrum of pest control than group 4 insecticides; thus, it should be applied at latter crop
stages when caterpillars and leafminers may cause economic damage [18]. In Florida, cyantraniliprole
became commercially available in 2014; however, low to moderate resistance to this insecticide has
been reported in Florida and Georgia in less than a decade [22,23].

Buprofezin (MoA 16) and pyriproxyfen (MoA 7C) are Insect Growth Regulators (IGRs) that have
been highly effective against egg and nymphal stages of MEAM1 populations in Florida tomato [8].
(Buprofezin is a selective insecticide for management of certain hemipterans such as whiteflies, which
interferes with chitin biosynthesis and cuticle formation through contact [24]. Pyriproxyfen is a
juvenile hormone mimic (JHM) that affects hormonal balance in insects, suppressing embryogenesis,
metamorphosis, and adult formation via translaminar activity [25]. MEAM1 populations have
developed resistance to pyriproxyfen worldwide [26,27]. While there are no reports of MEAM1
resistance to buprofezin in Florida, other B. tabaci species have developed resistance to this insecticide
in other regions [28-32].

Afidopyropen (MoA 9D) provides an additional MoA by targeting the chordotonal organs of
whiteflies, interfering with insect feeding and movement [33]. Afidopyropen is primarily
translaminar, with limited systemic activity [33,34]. This insecticide became commercially available
in Florida in 2018; nonetheless, different species within the B. tabaci complex exhibited some degree
of resistance to afidopyropen in Florida [23] and across the globe [35,36]. Given the global trend of
insecticide resistance, alternative integrated pest management (IPM) and insecticide resistance
management (IRM) strategies are necessary to maintain the efficacy of synthetic insecticides, while
providing sustainable pest management.

In recent years, there has been a growing interest in the use of biopesticides as a part of IPM
strategies. Biopesticides, including biochemical and microbial insecticides, offer a more
environmentally friendly approach, potentially reducing the reliance on synthetic chemicals and
mitigating resistance development. Biochemical insecticides such as insecticidal soaps and mineral
oils have shown potential in managing B. tabaci populations by mechanisms of action that likely do
not select for resistance, including suffocation and anti-feedant properties [37-42]. Similarly,
microbial insecticides containing Beauveria bassiana and Cordyceps javanica as active ingredients have
demonstrated efficacy against B. tabaci through the pathogenic activity of the fungi [41,43-45].
Despite the potential benefits of biopesticides, their performance can be variable and influenced by
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environmental conditions, UV light, and application methods [43,46-48]. Therefore, a thorough
understanding of their effectiveness, particularly in rotation with synthetic insecticides, is crucial for
their successful integration into IPM and IRM programs.

The potential of biopesticides to mitigate resistance development is economically desirable,
whereas the potential to reduce the negative impacts of synthetic insecticides to pollinators,
applicators, and environment is socially desirable. Therefore, the goal of the present study was to
address the gaps in understanding how biopesticide rotations compare with standard synthetic
insecticide rotations in managing B. tabaci and TYLCV. We hypothesized that a strategic rotation of
biopesticides and synthetic insecticides will equally provide effective control of B. tabaci. Our specific
objective was to evaluate the efficacy of distinct biopesticide rotations compared with a standard
rotation of synthetic insecticides in managing MEAM1. The current study aims to provide insights
into the optimization of pest management strategies that balance efficacy with sustainability,
contributing to the broader goals of IPM and IRM in agriculture.

2. Materials and Methods

2.1. Treatments

Field experiments were conducted in the Spring and Fall of 2023 at the University of Florida
(UF) Gulf Coast Research and Education Center (GCREC) to evaluate the efficacy of distinct
biopesticide rotations compared with a standard rotation of synthetic insecticides to control MEAMI.
The treatments are detailed in Table 1. The first treatment, serving as an untreated control, involved
no material application. In subsequent treatments, the highest concentration of each insecticide
according to each product label was used. The second treatment consisted of a rotation of biochemical
insecticides applied once a week between the third and eighth week after transplanting tomato to the
field. This rotation included the insecticidal soap M-Pede (Gowan Company, Yuma, AZ), the mineral
oils SuffOil-X (hereafter SX) (BioWorks®, Victor, NY), and Trilogy® (Certis Biologicals, Columbia,
MD). M-Pede was applied in the third- and fourth-weeks post-transplanting, SuffOil-X in the fifth
and sixth weeks, and Trilogy® in the seventh and eighth weeks. The third treatment comprised a
rotation of two microbial insecticides applied weekly from the third to the eighth week post-
transplanting. These included BotaniGardES (hereafter BG) (BioWorks®, Victor, NY), which contains
B. bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) as active ingredient, and PFR-97
20WDG (hereafter PFR) (Certis Biologicals, Columbia, MD), which contains C. javanica (Kobayasi &
Shimizu) (Hypocreales: Cordycipitaceae) as active ingredient. BG was used in the third-, fourth-, and
fifth-week post-transplanting, whereas PFR was used in the sixth, seventh, and eighth week after
transplanting. The fourth treatment consisted of combinations of biochemical and microbial
insecticides. In this regimen, BG + M-Pede were applied in the third week, BG + SX in the fourth week,
BG + Trilogy in the fifth week, PFR + M-Pede in the sixth week, PFR + SX in the seventh week, and
PER + Trilogy in the eighth week. The fifth treatment, which was a standard rotation of synthetic
insecticides, started with a dinotefuran (Venom®, Valent USA, Walnut Creek, CA) drench
application at-plant, followed by applications of various insecticides with different modes of action.
Dinotefuran was applied again three weeks after transplanting tomato seedlings to the field.
Cyantraniliprole (Exirel® FMC Corporation, Philadelphia, PA) was applied in the fifth week,
buprofezin (Courier® 70WP, Nichino America, Inc.) in the sixth week, afidopyropen (Sefina®, BASF,
Research Triangle Park, NC) in the seventh week, and pyriproxifen (Knack®, Valent USA, Walnut
Creek, CA, USA) in the eighth week after transplanting.
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Table 1. Treatments, material applications, and sampling timetable post-transplantation to evaluate
the effectiveness of rotating biopesticides and synthetic insecticides in managing MEAMI.

Week Sample

Treatment Rotation Material applied: No.
1 Control No material applied -
M-Pede 3-4 1-2
2 Biochemical Insecticides SuffOil-X 5-6 3-4
Trilogy® 7-8 5-6
. . . BotaniGardES 3-5 1-3
3 Microbial Insecticides PER.97 20WDG 68 16
BotaniGardES + M-Pede 3 1
BotaniGardES + SuffOil-X 4 2
Treatments 2 and 3 combined (bio +BotaniGardES + Trilogy® 5 3
micro) PFR-97 20WDG + M-Pede 6 4
PFR-97 20WDG + SuffOil-X 7 5
PFR-97 20WDG + Trilogy® 8 6
Dinotefuran at-plant N/A
Dinotefuran 3 1-2
5 Standard Cyantran'iliprole 5 3
Buprofezin 6 4
Afidopyropen 7 5
Pyriproxifen 8 6

! Application time expressed in weeks post-transplanting tomato to the field. 2 Sample number related to the
week(s) post-transplanting in which tomato terminal leaflets were collected.

2.2. 2023 Spring Trial

The spring field trial was organized into four replicates, each comprising five treatments in a
randomized complete block design. This setup consisted of 20 plots placed in single rows, with each
plot accommodating 14 plants spaced ~ 45 cm apart. Overall, the trial included 280 plants. The
experiment was conducted using hybrid tomato seeds of the Florida 91 variety (Seedway LLC, Hall,
NY). Planting began on February 16, 2023, with tomato seeds sown in five seedling trays, each
containing 128 cells, resulting in 640 seeds. Seedlings were fertilized once with 1.5g of Osmocote®
Plus 15-9-12 fertilizer (The Scotts Company, Marysville, OH, USA) and watered every 2-3 days. To
obtain uniform plants for transplantation, the plant growth regulator Dazide® 85 WSG (Fine
America, Inc.,, Walnut Creek, CA) was applied at a rate of 8 g per gallon after three weeks of sowing,
with leaves being sprayed until dripping wet. Transplantation of the best 280 seedlings into the field
occurred on March 27, 2023. Tomato transplants were established in 20-cm-high, 80-cm-wide beds of
Myakka fine sand, spaced on 1.5-m centers, and covered with white impermeable plastic mulch
(Kennco Manufacturing, Ruskin, FL). After transplanting, field plots consisted of 14 plants in a 6.4 m
long row that was separated by 3 m of unplanted beds within rows. Then, seedlings were watered
and a dinotefuran drench was applied to treatment 5. The subsequent treatments, including foliar
applications and drenches, were applied to different treatment groups as described above. Foliar
applications were performed with a CO2-pressurized backpack sprayer, fitted with Albuz orange
nozzles (Evreux, France), pressurized to 241.3 kPa (35 psi), and calibrated to deliver 560 to 840 liter/ha
(60-90 gallons/acre), depending on the height of the crop. Sampling began with a pre-sample
collection three weeks after transplanting tomato seedlings on April 17, 2023, and ended with a fifth
sample collected on May 22, 2023.

2.3. 2023 Fall Trial

The fall trial was expanded to include three-row plots. This setup involved four replicates
arranged in a randomized complete block design, each with five treatments spread across 20 plots.
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Each row hosted 14 plants, maintaining a 45 cm spacing. The entire trial required 840 plants. For the
fall trial, the same seed source and agronomic practices were implemented as described in the spring
trial. Seeding for the fall trial began on August 8, 2023, with the seeds planted in ten seedling trays
(128 cells each), totaling 1,280 seeds. The best 840 seedlings were transplanted into the field on
September 11, 2023. A dinotefuran drench was applied to treatment 5 at planting immediately after
plants were watered. The subsequent treatments involved various sprays and drenches as described
above, with changes in the application methods as the trial progressed. The major change in the
application method in the fall trial included the adoption of an air-boom sprayer to improve plant
coverage, beginning with the treatments applied at the sixth week after transplanting, when plants
were tall enough and tied. The sprayer was set to deliver a similar concentration of insecticides as
described in the spring trial. In the fall trial, a pre-sample collection was conducted three weeks
after transplanting tomato seedlings on October 2, 2023, and ended with a sixth sample collected on
November 13, 2023.

2.4. Data Collection

2.4.1. Weather

The weather data, including daily temperature, humidity, and cumulative rainfall, were
recorded from the Florida Automated Weather Network (FAWN) database during the period of both
spring and fall trials.

2.4.2. Whitefly Eggs and Nymphs

Whitefly eggs and nymphs were evaluated by examining the bottom leaflet of the sixth leaf from
the tomato apex of ten central plants in each plot [49]. In the lab, ten leaflets per plot, one from each
plant, were analyzed using a stereomicroscope, focusing on the underside of the leaflets. Starting
from the third week post-transplanting, the presence of eggs and nymphs at different developmental
stages (first, middle stages - second and third, and fourth instar) was recorded for each trial once a
week for a period of five and six weeks during the 2023 spring and fall, respectively.

2.4.3. Statistical Analysis

All datasets underwent statistical analysis using the R statistical software [50]. Analysis of
variance (ANOVA) assumptions were checked using the “car” package [51]. Residual plots and a
Shapiro-Wilk test were employed to assess the normality of residuals, whereas Levene's test was used
to evaluate homogeneity of variances. The main effects of insecticide rotation, sampling dates, and
their interaction on counts of whitefly eggs and nymphs were assessed using linear mixed-effect
models implemented with the "Ime4" package [52]. These models were fitted to both log-transformed
egg and nymph counts. The model per sample included the fixed effects of sample date, insecticide
rotation, and their interaction, while replication was a random effect. The combined model included
the fixed effect of insecticide rotation, while replication and sample date were random effects. The
estimated marginal egg/mymph means for treatments within each sample and total samples
combined were then calculated using the “emmeans” function from the "emmeans" package [53].
Pairwise comparisons for mean eggs and nymphs, both per sample and total combined, were
performed with “TukeyHSD()” function using the "stats" package [50]. All results presented in tables
and figures are displayed as untransformed data.

3. Results

3.1. Weather

Throughout the spring of 2023, the mean daily temperature and relative humidity were recorded
at 24.1°C (20.0°C min, 27.0°C max) and 73.4% (55% min, 82% max), respectively, observed from
March 27 to May 22, 2023 [54]. During the fall of 2023, the mean daily temperature and relative
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humidity were recorded at 24.0°C (15.9°C min, 28.5°C max) and 78.3% (53% min, 87% max),
respectively, observed from September 11 to November 13, 2023 [54]. Furthermore, cumulative
rainfall data for these intervals provided insights into moisture conditions during our trials. For
spring 2023, cumulative rainfall was 8.7 cm. One heavy and one moderate rainfall occurred during
the 2023 spring trial on April 17, 2023 (5.0 cm) and April 24, 2023 (2.1 cm), respectively. The second
rainfall event during the 2023 spring occurred on the day after we collected our first sample, which
was unlikely to impact our data. Cumulative rainfall was 20.4 cm during the 2023 fall trial. One heavy
and one moderate rainfall occurred during the 2023 fall trial on September 29, 2023 (8.0 cm) and
September 30, 2023 (3.6 cm), respectively [54]. Those events took place ~ one week before we collected
data for our first sample, which was unlikely to affect our data during the 2023 fall. Throughout our
field trials, the prevailing weather conditions closely aligned with the optimal temperature range (16-
24°C) conducive to B. tabaci development in south Florida [55].

3.2. Rotation Effects on Whitefly Eggs and Nymphs

In the field trials conducted at the GCREC during the spring and fall of 2023, the impact of
rotation treatment, sample date, and their interaction on B. tabaci eggs and nymphs was assessed. The
statistical analysis revealed significant main effects of rotation treatment and sample date on both
eggs and nymphs, with variations observed between both seasons as shown in Table 2. In the spring
of 2023, rotation treatment exhibited a significant effect on both eggs (F4,75 = 10.11, P < 0.0001) and
nymphs (F4,75 = 21.63, P < 0.0001). Similarly, sample date demonstrated a significant effect on eggs
(F4,75 = 16.44, P < 0.0001) and nymphs (F4,75 = 24.94, P < 0.0001) during the same season. However,
the interaction between rotation treatment and sample date did not exhibit a significant effect on
either egg (F16,75 = 1.32, P = 0.2099) or nymphs (F16,75= 1.33, P = 0.2022) in the spring trials. During
the fall trials of 2023, rotation treatment significantly influenced eggs (F4,87 = 4.49, P = 0.0024) and
nymphs (F4,87 = 21.47, P < 0.0001). In contrast, while sample date had no significant impact on egg
counts (F5,87 = 0.54, P = 0.7487), it significantly impacted nymph counts (F5,87 = 9.04, P < 0.0001)
during the fall trials. The interaction between rotation treatment and sample date did not have a
significant effect on either egg (F20,87 = 0.96, P = 0.5151) or nymphs (F20,87 =1.31, P = 0.1831) during
the fall trials.

Table 2. Statistical parameters comparing the effect of rotation treatment, sample date, and the
interaction between these factors on B. tabaci eggs and nymphs for field trials carried out at GCREC
during the spring and fall of 2023.

Trial Factor Eggs Nymphs
Rotation Fa75=10.11; P =< 0.0001 Fa75=21.63; P =< 0.0001
2023 Spring Sample date Fa75=16.44; P =<0.0001 Fazs=24.94; P =<0.0001
Rotation * Sample date Fi675=1.32; P =0.2099 Fi675=1.33; P = 0.2022
Rotation Fas7=4.49; P = 0.0024 Fas7=21.47; P <0.0001
2023 Fall Sample date Fss7=0.54; P =0.7487 Fs57=9.04; P < 0.0001
Rotation * Sample date F2087=0.96; P = 0.5151 Fa087=1.31; P =0.1831

3.3. 2023 Spring Trial

The rotation responses are represented in Figure 1 as mean egg and mean nymph counts across
five samples. The untreated control (UTC) had the highest mean counts overall, with egg counts
ranging from 47.2 to 145.8 (samples 1 and 5, respectively) and nymph counts from 21.8 to 211.4
(samples 1 and 5, respectively). The biochemical rotation followed, with egg counts varying from 31.0
(M-Pede) to 169.5 (M-Pede) (samples 1 and 2, respectively) and nymph counts from 26.5 (M-Pede) to
195.6 (Trilogy) (samples 1 and 5, respectively). The biochemical plus microbial (bio + micro) rotation
showed egg counts from 11.2 (BG + M-Pede) to 179.5 (PFR + M-Pede) (samples 1 and 4, respectively)
and nymph counts from 22.2 (BG + M-Pede) to 146.7 (PFR + M-Pede) (samples 1 and 4, respectively).
There were no significant differences among these three rotations across all samples for both eggs
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and nymphs. In contrast, the standard synthetic rotation consistently and significantly reduced both
egg and nymph counts, with eggs varying from 11.9 (cyantraniliprole) to 28.6 (buprofezin) (samples
3 and 4, respectively) and nymphs from 2.25 (dinotefuran) to 33.6 (afidopyropen) (samples 1 and 5,
respectively). For sample 3, the standard rotation impact on egg and nymph counts with
cyantraniliprole was marginal and not statistically significant (11.9 and 24.6, respectively) compared
to the UTC (53.3 and 120.8, respectively). For samples 4 and 5, the standard rotation also exhibited a
marginal reduction in nymph counts (27.6 with buprofezin and 33.6 with afidopyropen, respectively),
which was not significantly different from the UTC (123.7 and 211.4 respectively). Notably, the
microbial rotation marginally reduced the number of eggs, with only one statistically significant
reduction (4.5 with BG observed in sample 1 compared to the UTC (47.2). Furthermore, the influence
of microbial rotations on nymph counts was comparable to the UTC across all samples, with
reductions not reaching statistical significance. Nevertheless, marginal reductions in nymph counts
were observed across all samples, ranging from 91.1 in sample 4 with PFR to 114.8 in sample 5 with
PFR compared to the UTC (123.7 and 211.4, respectively).

Spring 2023
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Figure 1. Mean number of eggs (top) and nymphs (bottom) per sample for field trial carried out at
GCREC during spring 2023. Tukey’s mean separation letter designate statistical differences within
samples, not across samples. Columns with different letters in each sample are statistically different
(P <0.05).

These findings are consolidated in Figure 2, which illustrates the combined impact of the studied
rotations over the entire spring trial period. The standard rotation demonstrated clear superiority in
its efficacy when compared to the other rotations, significantly reducing nymph counts to an average
of 21.8 + 3.9, which represents an 84.3% reduction compared to the UTC. While its impact on mean
egg counts was not significantly different from the microbial rotation (44.9 + 10.2), it significantly
outperformed the other rotations, reducing mean egg counts to 18.9 + 3.6, representing a 78.7%
reduction compared to the UTC. Similarly to the results by sample, no significant differences on both
egg and nymph counts were observed among the UTC (88.9 + 14.0 and 132.1 + 20.2, respectively),
biochemical (84.6 + 16.0 and 126.0 + 20.6, respectively), and bio + micro rotations (88.3 £ 17.5 and 109.8
+14.9, respectively) in the combined results. By contrast, the microbial rotation delivered an overall
significant reduction of 49.5% in mean egg counts (44.9 + 10.2) when compared to the UTC (88.9 =
14.0), but this reduction was not significantly different compared to the biochemical (84.6 + 16.0) and
bio + micro rotations (88.3 + 17.5). Although the microbial rotation provided a notable reduction of
31.1% in mean nymph counts (87.2 + 13.5) in relation to the UTC, this was not statistically significant
than UTC (132.1 + 20.2), biochemical (126.0 + 20.6), or bio + micro rotation (109.8 + 14.9).
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Figure 2. Mean (+SEM) number of eggs (top) and nymphs (bottom) combined for field trial carried
out at GCREC during spring 2023. Tukey’s mean separation letter designate statistical differences
within treatments (insecticide rotations). Columns with different letters are statistically different (P <
0.05).

3.4. 2023 Fall Trial

Both mean egg and nymph counts by rotation were recorded across six samples during the fall
2023 field trial, as shown in Figure 3. There were no significant differences in egg counts between the
untreated control (UTC) and the other treatments, except when compared with the standard rotation
in most samples. The UTC exhibited mean egg counts from 40.4 to 81.5 (samples 4 and 3, respectively)
and nymph counts ranging from 106.1 to 262.8 (samples 5 and 1, respectively). The biochemical
rotation had mean egg counts varying from 24.2 (M-pede) to 87.9 (Trilogy) (samples 2 and 6,
respectively) and mean nymph counts ranging from 88.9 (SX) to 202.9 (Trilogy) (samples 3 and 6,
respectively). The microbial rotation showed mean egg counts from 41.8 (PFR) to 85.4 (BG) (samples
4 and 3, respectively) and nymph counts from 37.7 (PFR) to 160.5 (BG) (samples 4 and 1, respectively).
The bio + micro treatment displayed mean egg counts from 18.0 (BG + SX) to 66.2 (BG + Trilogy)
(samples 2 and 3, respectively) and nymph counts from 49.2 (BG + SX) to 222.5 (BG + M-Pede)
(samples 2 and 1, respectively). In contrast, the standard synthetic rotation significantly reduced
mean counts in most of the analyzed samples, with eggs counts varying from 10.2 (dinotefuran) to
41.0 (dinotefuran) (samples 1 and 2, respectively) and nymph counts varying from 19.5 (dinotefuran)
to 45.0 (pyriproxifen) (samples 1 and 6, respectively). Notwithstanding, this pattern showed slightly
more consistency in the decrease of nymphs counts. The standard rotation did not significantly
reduce the number of nymphs in samples 3 (cyantraniliprole) and 4 (buprofezin) (36.9 and 36.4,
respectively), when compared to the UTC (110.4 and 108.6, respectively). However, this ~ 3-fold
marginal difference was consistent and notable. On the other hand, the standard rotation exhibited
slightly less consistency in the decrease of egg counts. The standard rotation did not significantly
reduce the eggs counts in samples 2 (dinotefuran), 4 (buprofezin), 5 (afidopyropen), and 6
(pyriproxifen) (41.0, 21.4, 31.1, and 37.9, respectively) in comparison to the UTC (41.0, 40.4, 60.6, and
62.1, respectively). Notably, the standard rotation provided an approximate 2-fold marginal
reduction in egg counts compared to the UTC, except in the second sample, where egg counts were
equal.
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Figure 3. Mean number of eggs (top) and nymphs (bottom) per sample for field trial carried out at
GCREC during fall 2023. Tukey’s mean separation letter designate statistical differences within
samples, not across samples. Columns with different letters in each sample are statistically different
(P <0.05).

The combined data presented in Figure 4 further illustrates the overall impact of insecticide
rotations throughout the Fall 2023 trial. The standard synthetic rotation consistently demonstrated
significant reduction in both mean egg (29.2 + 5.1) and mean nymph (30.9 + 4.1) counts compared to
all other treatments. The other insecticide rotations had mean eggs ranging from 49.3 +6.1 (bio +
micro) to 59.7 +9.7 (microbial) and mean nymphs ranging from 101.9 + 17.6 (microbial) to 158.5 + 20.8
(UTC). Their mean egg counts were not significantly different (P > 0.05). However, the microbial
treatment, with a mean nymph count of 101.9 + 17.6, showed a significant reduction in mean nymph
counts when compared to the UTC (158.4 + 20.8) but did not significantly differ from the biochemical
(132.0 + 15.9) or bio + micro rotations (106.3 + 15.9).
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Figure 4. Mean (+SEM) number of eggs (top) and nymphs (bottom) combined for field trial carried
out at GCREC during fall 2023. Tukey’s mean separation letter designate statistical differences within
treatments (insecticide rotations). Columns with different letters are statistically different (P < 0.05).

4. Discussion

The 2023 field trials at the UF GCREC were designed to compare various biopesticide rotations
and a standard synthetic insecticide treatment for managing MEAM1 whiteflies. The main objective
of our study was to assess how different biopesticide rotations compared to synthetic insecticides in
their overall impact on B. tabaci management. The results of both trials revealed a significant influence
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of rotation treatment and sample date on whitefly egg and nymph populations. Nevertheless, both
trials highlighted a lack of significant interaction between rotation treatment and sample date. This
may suggest that while some insecticide rotations affected pest populations, their influence was
independent of the time frame over which samples were collected. The lack of significant interaction
may indicate that the effectiveness of the rotations did not vary significantly over time, or it could
reflect a need to further refine the timing and combination of pesticide applications for optimal pest
control.

In both spring and fall trials, M-Pede was applied alone during the two initial weeks of the
biochemical rotation, as well as combined with BG and PFR before samples 1 and 4 were collected,
respectively. Overall, those samples resulted in egg/nymph counts that were not different than the
UTC. Previous greenhouse [40] and field [42] studies had constating results, with M-Pede being
effective in reducing both adult and immature whitefly populations. Although M-Pede was applied
carefully in our study, field conditions inherently introduce more variability and challenges in
ensuring thorough coverage, especially on plants with complex architectures like tomatoes. These
differences could also result from environmental conditions, application methods, and plant
structures that may contribute to variations observed in M-Pede performance [46]. Furthermore, M-
Pede may precipitate in hard water, which could affect its efficacy in field applications [46].

SX was applied during the mid-season of the biochemical rotation and combined with BG and
PFR before samples 2 and 5 were collected, respectively. This material demonstrated an inconsistent,
low impact on egg and nymph counts when applied alone or combined, with no significant
differences compared to the UTC. Previous studies have demonstrated that SX has potential to
control B. tabaci in greenhouse settings [38,39]. However, our study indicates that careful
considerations must be taken when deciding to use SX in commercial tomato fields. Variables such
as temperature, humidity, and plant surface characteristics may affect the coverage and efficiency of
mineral oils. An open environment with variable microclimate and structural complexity of tomato
foliage might pose challenges for achieving thorough coverage and maximum effectiveness of SX.
This underlines the importance of refining application strategies, including timing, concentration,
and coverage, to improve the performance of SX under varying field conditions.

Trilogy was applied in the later weeks of the biochemical rotation and combined with BG
(samples 1 to 3) and PFR (samples 4 to 6). As mentioned above, the sixth sample was not collected
during the spring trial. This material showed consistent low efficacy in managing B. tabaci eggs and
nymphs across both seasons, being statistically similar to the UTC. The primary active ingredient in
Trilogy is azadirachtin, a triterpenoid derived from the neem tree Azadirachta indica A. Juss
(Meliaceae), known for its minimal toxicity to humans and lesser harm to non-target organisms
compared to other botanical biopesticides [56]. Despite these benefits, the major challenge with neem-
based products lies in their rapid photodegradation, particularly due to UV radiation, when applied
as foliar treatments [47]. This vulnerability to external factors such as UV-light is exacerbated when
neem is deposited on the leaf surface through foliar application [47]. Interestingly, neem has shown
potential as an oviposition deterrent, with fewer eggs laid on treated leaves compared to untreated
controls, indicating its role in disrupting the reproductive cycle of whiteflies [56]. However, our study
suggests that while neem alone may offer limited control against B. tabaci, its efficacy could
potentially be enhanced when combined with a biological control agent such as B. bassiana. This
combination has been shown to increase B. tabaci mortality [57]. Similarly, we found a 44.6%
reduction on nymph counts in our third sample during the fall 2023, which was collected one week
after BG (B. bassiana) was applied in combination with Trilogy. However, this reduction was not
significantly different compared to the UTC neither consistent across both spring and fall trials.

BG, a key component of the microbial rotation, showed promising results in the spring trial by
significantly reducing egg counts by 90.5% the first sample in comparison to the UTC. However, its
effectiveness tended to decrease in later samples during the spring, with marginal reductions of 26.7
to 33.1% in egg counts. Overall, BG contributed to a significant reduction in egg counts when
compared to the UTC across the spring trial. In the fall trial, BG foliar applications did not reduce egg
counts in any of the analyzed samples. Our results showed that BG impact on nymphs was non-
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significant but notable, reducing nymphs by 34.4% on average compared to the UTC. Due to its slow-
acting control on B. tabaci, B. bassiana may not prevent the primary transmission of TYLCV by
viruliferous adults migrating into the field given that TYLCV can be transmitted within a few minutes
of feeding [41,58]. However, B. bassiana and other entomopathogenic fungi of equivalent mode of
action could decrease the secondary transmission of TYLCV by controlling B. tabaci immatures
derived from migratory populations [41]. These variations in performance might be attributed to the
influence of environmental conditions on fungal infections. The infection rates of BG significantly
depend on the duration of high humidity exposure, with about 50% infection achievable even in low
humidity, and ~ 47 hours of high humidity required for >90% infection by B. bassiana emulsion [59].
Such performance may highlight its limitations as a standalone treatment and underscores the
importance of incorporating BG into a multifaceted approach, including higher humidity condition.

The temporary use of cages, which can potentially increase humidity, should be evaluated when
applying B. bassiana-based insecticides in future studies. When combined with the biochemical
insecticides mentioned above, BG tended to consistently reduce egg and nymph counts to a marginal
degree across both trials. This reduction, however, was not statistically significant compared to the
UTC. The most notable reduction occurred when BG was combined with SX (sample 2) in both trials,
with nymph counts being reduced by 41.2% during the spring and by 73.5% during the fall. This
aligns with a previous report that B. bassiana treatments significantly impacted B. tabaci populations,
reducing egg numbers by up to 65% and nymph numbers by up to 58% compared to untreated plants
[45]. In our study, we used the highest concentrations of these materials according to each product
label. Future studies are warranted to investigate if different rates of BG plus SX could be more
effective in providing B. tabaci control.

In the spring trial, PFR provided a marginal reduction in egg counts by up to 57.1% in the fifth
sample compared to the UTC, and up to 36.6% decrease in nymph counts in the same sample. The
overall impact of PFR as part of the microbial rotation along with BG was significantly greater than
UTC for eggs but statistically non-significant for nymphs during the spring trial. In the fall trial, PFR
did not significantly decrease egg counts in any of the analyzed samples, whereas its overall impact
as part of the microbial rotation significantly decreased nymph counts compared to the UTC.
Furthermore, combining different biochemical insecticides with PFR was not effective across both
seasons. A previous found that repeated applications of PFR as a foliar spray were more effective in
managing the invasion of the Ficus whitefly, Singhiella simplex (Singh), compared to the untreated
control, suggesting the potential for its effective use against similar pests [60]. Environmental
conditions may significantly influence the effectiveness of fungal biopesticides such as C. javanica.
The optimum virulence of C. javanica occurs at 25°C, with reduced virulence at higher temperatures
(>30°C) [44]. Additionally, brief UV exposure of 5 to 10 min can cause significant mortality to some
strains of C. javanica [44]. Therefore, reducing UV exposure during and after the application of C.
javanica is essential for successful fungal development. Techniques might include applying PFR
during times of low UV intensity, incorporating UV-protective cages, or developing UV-resistant
strains of C. javanica.

Dinotefuran was part of the standard rotation and demonstrated marginal reduction of 74.1%
on egg counts and significant reduction of 75.9% on nymph counts during the spring trial. We also
observed significant reductions of 89.7% and 88.6% on nymph counts during the spring trial. In
addition, dinotefuran demonstrated significant reduction of 76.6% on egg counts and no reduction
on nymph counts during the fall trial. We also observed significant reductions of 92.6% and 86.9% on
nymph counts during the fall trial. The soil characteristics of the GCREC experimental site,
particularly being a Myakka fine sand with 98% sand content and low silt (1%) and clay (1%) [61],
may lead to increased drainage and reduced water retention. As a result, water-soluble insecticides
like dinotefuran can quickly leach beyond the root zone, which might reduce their availability for
plant uptake. However, the overall effectiveness of dinotefuran observed in our trials highlights its
strength as a systemic insecticide, establishing a solid base for pest control within the treatment
rotation.
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Cyantraniliprole, used in the mid-season of the standard rotation, demonstrated marginal
reductions in egg and nymph counts during both spring and fall trials, except for a significant
reduction in egg counts observed in sample 3 during the fall trial. While the decrease in egg and
nymph counts was not statistically significant, the efficacy of cyantraniliprole was notable, reducing
egg counts by 77.6% and nymph counts by 79.6% in the spring trial, and by 58.9% and 66.7%,
respectively, in the fall trial. This performance aligns with studies that have reported
cyantraniliprole's intermediate to high effectiveness against MEAM1 [7,15,18,62,63]. However,
cyantraniliprole may not be sufficient to completely manage MEAMI1 populations and TYLCV
transmission under higher pest densities [18]. The rise in resistance to cyantraniliprole is a growing
concern in southern U.S. A recent study observed low to moderate levels of MEAMI resistance to
cyantraniliprole in Florida, particularly in Hillsborough County where our trials were conducted
[23]. This emerging resistance is further supported by field scout data from Georgia, indicating a
change in the efficacy response to cyantraniliprole and suggesting a potential rise in resistance to this
insecticide [22]. Therefore, while cyantraniliprole has shown promise in managing B. tabaci and other
pests, the evolving resistance patterns underline the need for continuous monitoring and potentially
integrating it with other pest management strategies to maintain its effectiveness.

Buprofezin, used in the mid-season of the standard rotation, demonstrated marginal reductions
in egg and nymph counts during both spring and fall trials. While the decrease in egg and nymph
counts was not statistically significant, the efficacy of buprofezin was notable, reducing egg counts
by 67.0% and nymph counts by 77.7% in the spring trial, and by 47.2% and 60.6%, respectively, in the
fall trial. The high effectiveness of buprofezin in suppressing MEAM1 nymphs has been reported in
Florida [8].

Pyriproxyfen, used in the latter-season of the standard rotation, demonstrated marginal
reductions in egg counts and significant reductions in nymph counts during the fall trial. The
reduction in egg counts was not significant, yet pyriproxyfen effectively reduced egg counts by 39.0%
and significantly reduced nymph counts by 74.6% in the fall trial. In Florida, high efficacy of
pyriproxyfen in managing MEAM1 nymphs has been demonstrated [8]. In contrast, a more recent
study conducted in Georgia reported lower efficacy of pyriproxyfen against MEAMI1 populations
[22]. However, low to high resistance to pyriproxyfen has been observed in MEAM1 population
globally [26,27]. This global trend of resistance to buprofezin and pyriproxyfen emphasizes the
necessity for continuous monitoring of resistance development of MEAM1 populations to these
insecticides in Florida. Our results reveal the importance of exploring alternative or complementary
management strategies, such as the rotation of insecticides with different modes of action, to maintain
the efficacy of buprofezin and pyriproxyfen in B. tabaci management programs.

Afidopyropen, included in the later weeks of the standard rotation, demonstrated significant
reduction of 89.4% on egg counts and marginal reduction of 84.1% on nymph counts during the
spring trial. In contrast, we observed marginal reduction of 48.7% on egg counts and significant
reduction of 78.0% on nymph counts during the fall trial. The efficacy of afidopyropen against
MEAM]1 populations has not been extensively evaluated in Florida. However, a recent report
indicates low to moderate resistance levels in two MEAMI1 populations [23], including a population
from Hillsborough County, the same County where we conducted our trials.

The consolidated findings from both the spring and fall 2023 trials highlight the complex
dynamics of insecticide rotations and their impact on B. tabaci management. In the spring, the
standard synthetic rotation was highly effective, significantly reducing both egg and nymph counts
by 78.6% and 83.5%, respectively, compared to the UTC. Interestingly, the standard rotation's impact
on egg counts was not significantly different from the microbial rotation, which provided a reduction
of 49.2% in eggs counts compared to the UTC. Although the microbial rotation did not provide a
statistically significant reduction in nymph counts compared to the UTC, this rotation reduced the
number of nymphs by 34.0%. In addition, the standard rotation was significantly more effective
than the biochemical and bio + micro rotations, which had similar egg (95.8% and 100%, respectively)
and nymph (95.4% and 83.2%, respectively) counts in comparison to the UTC. This pattern was
mirrored in the fall, where the standard synthetic rotation again demonstrated a substantial reduction
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in both mean egg (46.8%) and nymph (80.5%) counts compared to the UTC, reinforcing its consistent
efficacy across seasons.

The microbial rotation, which was effective to some extent in the spring, exhibited a significant
reduction in nymph (35.7%) counts during the fall when compared to the UTC. This reduction in
nymph counts, however, was not significantly different that the reduction provided by the
biochemical (16.7%) and bio + micro rotations (32.9%) when compared to the UTC. For egg counts,
the biochemical (>100%), microbial (>100%), and bio + micro (89.8%) rotations were statistically
similar to the UTC. These observations highlight the overall efficacy of the standard synthetic rotation
in suppressing whitefly populations and underscore the potential of microbial treatments in
integrated pest management. These results align with established understanding that synthetic
insecticides are generally more effective in providing pest control compared to biopesticides [43,64].
Furthermore, we did not observe significant synergistic or antagonistic effects when combining
microbial insecticides containing B. bassiana or C. javanica with the insecticidal soap (M-Pede) or
mineral oils tested (SX and Trilogy). Our results indicated a neutral effect when combining these
insecticides under the climatic conditions of our study. Previous studies that evaluated the
compatibility between B. bassiana or C. javanica with mineral oils reported neutral, antagonistic or
synergistic effects among these mixtures, which are likely attributed to different formulations of the
non-microbial insecticide [65-67]. Overall, our findings suggest potential for microbial biopesticides
in IPM strategies. Nonetheless, the observation that microbial rotations occasionally mirrored the
performance of other non-synthetic insecticides and UTC rotations throughout our trials indicates a
need for optimizing the application of microbial biopesticides to achieve their full potential.

5. Conclusions

In summary, the present study demonstrated the influence of insecticide rotations on MEAM1
populations, with synthetic treatments showing consistent efficacy across seasons and microbial
insecticide rotations offering potential as part of IPM strategies. The results of the present research
highlight the further necessity of exploring the rotation of insecticides with different modes of action
and integrating non-chemical control measures. Our findings suggest that the simple combination of
different types of biopesticides may not inherently enhance control efficacy and may require
additional strategies to optimize their use. The fluctuating performance of biopesticides across
different trials illustrates the complex interplay of factors such as environmental conditions and
application timing. Future research should focus on refining the integration of biopesticides within
rotation schemes, possibly by exploring synergistic combinations or optimizing application
technologies. This study not only contributes to the current understanding of MEAM1 management
but provides a foundation for further research to optimize MEAM1 control strategies in agricultural
settings.
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