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Featured Application: The technique uses Machine Learning (ML) models to support decision-
making on software testing scope and resources allocation to augment the outcomes with the 
available resources. 

Abstract: As digitalization expands across all sectors, the economic toll of software defects on the 
U.S. economy reaches up to $2.41 trillion annually. High-profile incidents like the Boeing 787-Max 
8 crash have shown the devastating potential of these defects, highlighting the critical importance 
of software testing within quality assurance frameworks. However, due to its complexity and 
resource intensity, the exhaustive nature of comprehensive testing often surpasses budget 
constraints. This research utilizes a machine learning (ML) model to enhance software testing 
decisions by pinpointing areas most susceptible to defects and optimizing scarce resource allocation. 
Previous studies have shown promising results using cost-sensitive training to refine ML models, 
improving predictive accuracy by reducing false negatives through addressing class imbalances in 
defect prediction datasets. This approach facilitates more targeted and effective testing efforts. 
Nevertheless, the generalizability of these models across different projects (cross-project) and 
programming languages (cross-language) remained untested. This study validates the model's 
applicability across diverse development environments by integrating various datasets from 
distinct projects into a unified, using a more interpretable ML approach. The results demonstrate 
that ML can support software testing decisions, enabling teams to identify up to seven times more 
defective modules with the same testing effort as a benchmark. 

Keywords: machine learning; imbalance; software defect prediction; NASA MDP; random forest; 
software quality; generalization; cost-sensitive; cross-language; cross-project 

 

1. Introduction 

Over the last decades, society has been experiencing growth in digitalization in practically all 
professional activities. As economic activities become more dependent on software, the impact of 
software quality issues increases. Studies have estimated the annual cost of software bugs to the US 
economy from $59.5 billion to $2.41 trillion [1,2] which means a per capita yearly cost of software 
issues reaching $7230.9. In fact, software malfunctions have been playing an essential role in accidents 
damaging the reputation and market value of traditional companies, such as the example of the 
Maneuvering Characteristics Augmentation System (MCAS) in the Boeing 787-Max 8 case [3], 
resulting in a $29Bi market value loss in a few days [4] and taking over 350 human lives [5]. Thus, it 
is possible to say that software quality assurance plays a pivotal role in the US economy. Since 
software testing is one of the core activities in software quality assurance [6], ultimately, it plays a 
crucial role in the US economy. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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However, testing every potential software condition is an unattainable task [7–9]. Despite the 
resources available to be invested in, it is impossible to test all possible software conditions [10,11] 
since it could take millions of years [12], making the activity useless. On the one hand, because of its 
complexity, software testing consumes a considerable fraction of software development projects. In 
fact, it is estimated that up to 50% of the total budget is consumed by the testing activity [13]. On the 
other hand, the resources available for software testing are usually very scarce [14–17]. 

As a result, software testing planning requires challenging decision-making to balance 
conflicting variables (scope size, test coverage, and resource allocation) to obtain most of the effort. 
Managers must be able to plan the activity to cover the software as much as possible [13]. At the same 
time, they must be able to reduce the test scope safely [18]. Finally, they need to have the capability 
to allocate the available resources wisely (testers, tools, and time) [19] to test the software. 

Machine learning (ML) models can help managers make better-informed decisions about 
optimizing the outcomes of a software testing effort, given the availability of resources. Illustrated in 
Figure 1 is a commonly utilized pipeline in software defect prediction projects. ML classifier models 
have the capability to be trained using a historical dataset containing each module’s static source-
code metrics and an indication of whether it was defective or not [20–24] to highlight the system 
modules most prone to defects [25–27]. By knowing which software modules have higher defect risks, 
managers can reduce the software testing scope around them and assign the available resources to 
concentrate their efforts in a more focused approach. 

 
Figure 1. Typical ML training process to create a model to predict defective software modules. 

An extensive body of research software defects prediction based on ML models exists. Literature 
approaches defective prediction models from various angles [28–37]. One of the most well-known 
datasets used in many of those studies are the NASA MDP open datasets [38,39]. Because of their 
popularity and frequency, they have been used as a common ground to establish a benchmark to 
support performance comparison among distinct studies. However, in contrast, [34] exclusively relies 
on datasets sourced from the PROMISE repository for its research endeavors. As will be shown, the 
most common techniques to tackle the problem of software prediction datasets are Naïve Bayes (NB) 
and Decision Tree (DT). [29] concluded that the utilization of dagging-based classifiers enhanced 
software defect prediction models relative to baseline classifiers like NB, DT, and k-Nearest Neighbor 
(kNN). Additionally, the study noted that the efficacy of machine learning algorithms can vary 
depending on the performance metrics employed and the specific conditions of the experiment. [35] 
conducted a study comparing Extreme Learning Machine (ELM), and Support Vector Machine 
(SVM), finding that ELM exhibited superior performance, boosting accuracy from 78.68% to 84.61%. 
ELMs can be understood as a fast supervised learning algorithm for ANNs, in which input weights 
are randomly assigned and output weights are analytically calculated. Finally, authors suggest a 
future research direction involving the application of unsupervised and semi-supervised learning 
algorithms, considering that most investigations have focused on supervised learning. [34] proposes 
a new method based on Convolutional Neural Networks (CNNs) to identify patterns associated to 
bugs. Despite the good results presented, it is shown that “the technique exhibited a negative 
response to hyperparameter instability” [34]. Put differently, applying this type of model in real-life 
scenarios could result in ”a fluctuation when focused on an individual version or project” [34]. 
Nonetheless, as mentioned in text, it's worth noting that instability may predict various types of 
defects simply by adjusting hyperparameters in alternative ways. 
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Attempting to address the issue from another perspective, some studies focus on the quality of 
the data utilized by the models. [37] proposes a resampling method utilizing NB, but it fails to 
outperform across all datasets, highlighting that there are no universally effective imbalance learning 
methods; thus, selecting appropriate methods is crucial. [36] proposes a method and compares it with 
existing ones, addressing issues with imbalanced learning such as interference with real data caused 
by the use of SMOTE, emphasizing the importance of focusing on the data quality of synthetic data. 
Lastly, in addressing the imbalance problem, [28] explores the utilization of Generative Adversarial 
Networks (GANs) for balancing datasets through synthetic sampling of the minority class. Empirical 
evidence suggests that GANs demonstrate superior performance compared to traditional methods 
like SMOTE, ROS, and RUS. However, it is important to note that the combination of undersampling 
techniques with GANs may result in a degradation in prediction performance due to the elimination 
of crucial samples. Moreover, the authors highlight the potential challenges associated with 
hyperparameter optimization in GAN-based methods and its impact on the final predictive 
performance of models. 

Another way to approach the problem is to consider it from the perspective of feature selection 
(FS). In [33], a FS approach is presented, utilizing the island binary moth flame, combined with SVM, 
NB and kNN. [31] proposed a rank aggregation-based Multi-Filter Selection Method, outperforming 
traditional methods such as DT and NB, improving prediction accuracies for both, with NB 
increasing from 76.33% to 81%-82% and DT from 83.01% to almost 85%. Furthermore, the study 
suggests that future research endeavors should delve deeper into and broaden the scope of current 
study’s discoveries to encompass a wider range of prediction models. In [30,32], both studies 
demonstrate that the effectiveness of feature selection methods is influenced by factors such as choice 
of classifiers, evaluation metrics, and dataset, and while feature selection enhances predictive 
performance, its efficacy varies across datasets and models, possibly due to class imbalance. While 
[30] employs only NB and DT, [32] also utilizes kNN and Kernel Logistic Regression (KLR). 

A critical aspect of those datasets used for training ML model to predict defective modules, 
including NASA’s, is their imbalance. That is because defective modules are expected to be a small 
ratio of the system. Thus, since the ratio of dataset instances with defective modules is usually much 
smaller than the non-defective ones, the class imbalance becomes a natural characteristic of those 
datasets. Proper ML model training should be considered by compensating for the imbalance with 
one of the existing techniques. However, among limitations already pointed out by the literature [39] 
many studies did not account for the imbalance of the dataset used to induce the ML models [40]. 
Consequently, reported results are biased towards the majority class (non-defective), resulting in 
high accuracy levels that hide the ML classifier's actual performance. That unreal information 
supports poor decision-making for software testing because they usually classify many defective 
modules as non-defective. Those false negatives (FN) create wrong expectations and optimism about 
a non-existing high quality of the software, misleading managers to lower the software testing efforts 
and deflecting the efforts from those many misclassified defective modules. Accordingly, those issues 
remain in the software, resulting in future operational failures that could lead to severe consequences. 

Previous research proposed and evaluated a novel approach to support managers in making 
better decisions to optimize the outcomes of a software testing effort. Studies proposed novel 
techniques to enhance the learning of the ML model. For example, research [27] demonstrated better 
ML classifiers for predicting defective software modules using a novel automatic feature engineering 
approach to create new features that enabled superior information gain in the ML learning process. 
However, studies relying on that strategy tackled only one aspect of the existing issues. Their ML 
models were superior at indicating that the software testing scope was most prone to defects. 
Nevertheless, that optimization ignored vital decision-making information: available resources. 
Ignoring it reduces their practical utility in actual software testing decision-making since they may 
suggest a scope that can either not be afforded by or underuse the available resources. 

A method leveraged the dataset imbalance and cost-sensitive ML training to improve the ML 
model results, considering resource availability and smoothing unwanted FN effects. Using cost-
sensitive ML training, a study [40] demonstrated an approach to handle dataset imbalance in 
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predicting defective software modules. Based on adjusting the costs imposed on FN, the technique 
has been shown to support decision-making on software testing scope while considering resource 
availability. Nonetheless, the ML model was tested with unseen data derived from the same single 
project dataset it used for learning. Although a cross-validation strategy was used, the study did not 
investigate the ML model’s generalizability in cross-project and cross-language scenarios. 

ML generalizability refers to a model's ability to effectively apply what it has learned from the 
training data to a new context. Developing models that can generalize is a core goal in ML because it 
directly impacts a model's practical usefulness. A model that generalizes well can accurately interpret 
and predict outcomes in real-world new situations, highlighting its adaptability and robustness. This 
is particularly significant in fields like the one studied here, where ML models must adapt to diverse 
software projects, teams, architectures, and programming languages to be useful. Models with low 
generalizability perform well on training data but poorly on real-world data, resulting in potentially 
severe implications in safety-critical applications [41–43]. 

In the present domain, generalizability also plays an important role when a new software system 
development project begins without a considerable system defect track record. The lack of a 
considerable dataset makes it hard for managers to use ML models to get insights about the software 
testing scope on which their resources should be focused. However, a cross-project and cross-
language generalizable ML model could be a game changer. That ML model, trained with data from 
other systems based on other programming languages, would support managers in making decisions 
on software testing scope and resource allocation from the initial software development iterations. 
That would enhance the usefulness of those ML model-based techniques. 

Another limitation of the study using cost-sensitive ML training to support software testing 
decision-making [40] is that it was validated only with a single ML technique, the artificial neural 
network (ANN), which has several disadvantages in this problem domain. ANNs require large 
amounts of data, long training times, and suitable hardware due to their high computational cost, 
which may not be available [44–46]. They also require more challenging data preprocessing, feature 
engineering, and hyperparameters tuning, which may require a specialization beyond the 
conventional software testing staff [47,48]. Furthermore, they tend to overfit, especially when the 
model is too complex relative to the amount and diversity of the training data, leading to poor 
generalization in new contexts, which is highly undesired in the domain investigated [49,50]. Finally, 
its black-box nature makes its explainability and interpretability poor [51,52]. The lack of 
explainability and interpretability prevents managers from getting additional information about root 
causes linked to classifying a module as defective, which could support better decision-making on 
what to work on to improve the development teams continuously. Thus, a gap exists in evaluating 
the cost-sensitive approach using lighter, easier-to-use, and more explainable and interpretable ML 
techniques. 

In this context, the present study aims to tackle those limitations to validate the potential of the 
cost-sensitive approach to identify the software testing scope while accounting for resource 
availability. A distinct, computationally lighter, and easier-to-use ML technique with better 
explainability and interpretability was used on an assembled dataset combining distinct software 
development projects based on different programming languages. Furthermore, the present work 
expanded the investigation, using a dataset almost 4.5 times larger than the baseline study [40]. To 
our knowledge, no other study has used the proposed approach in the defect prediction domain and 
validated its generalization ability in the way executed here. 

This study is organized into five sections. Section 2 presents the methodology used to support 
the study’s goal. Section 3 presents the experimental results. Section 4 presents the discussion. Finally, 
Section 5 presents the final remarks and conclusions of the present study. 

2. Materials and Methods 

This section contains the experimental protocol and materials used to support the research. First, 
the dataset used for training and evaluating the ML model is described. Then, a brief overview of the 
ML technique used to induce the ML model is presented. Right after, the experimental protocol used 
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for evaluating the experiment is explained. Finally, the evaluation metrics used to support the 
analysis are detailed. 

2.1. Dataset 

NASA opened 14 datasets regarding distinct software development projects to support research 
on software module defect prediction [53]. The datasets cover 14 software development projects 
based on various programming languages. Each dataset instance corresponds to a software module’s 
diverse static source-code metrics (features) and a class indicating whether the module was found to 
be defective or not. Those source-code metrics characterize code features associated with software 
quality: distinct lines of code measures, McCabe metrics, Halstead’s base, derived measures, and 
branch count metrics [54–57]. The number of features in each dataset varies slightly, with some 
having additional source-code metrics compared to others. Moreover, each dataset's number of 
instances is distinct because of each project's different number of modules. Since NASA MDP datasets 
became popular, slightly different versions have been available in distinct repositories. The pre-
cleaned version [58] was used in the present study. Table 1 shows each NASA dataset's 
characteristics. 

Table 1. A map of dataset characteristics and their features source-code static metrics for supporting 
cross–language and cross–project merging. A bold X with a dark gray background indicates the 
feature is present in all the datasets. 

 Merged Datasets (NASA Project Name) 
Dataset characteristics C J K K MC M M P PC PC PC PC

Number of Instances 34 95 20 20 8737 12 263 73 14 10 13 169
Number of Features 37 21 21 39 38 39 37 37 36 37 37 38 
Programming Language C C C+ Ja C/C C C C C C C C 

Feature Name Common features 
LOC_BLANK x x x x x x x x  x x x 
BRANCH_COUNT X X X X X X X X X X X X 
CALL_PAIRS x   x x x x x x x x x 
LOC_CODE_AND_COMM X X X X X X X X X X X X 
LOC_COMMENTS X X X X X X X X X X X X 
CONDITION_COUNT x   x x x x x x x x x 
CYCLOMATIC_COMPLEXI X X X X X X X X X X X X 
CYCLOMATIC_DENSITY x   x x x x x x x x x 
DECISION_COUNT x     x x x x x x x x x 
DECISION_DENSITY x     x   x x x x x x   
DESIGN_COMPLEXITY X X X X X X X X X X X X 
DESIGN_DENSITY x     x x x x x x x x x 
EDGE_COUNT x     x x x x x x x x x 
ESSENTIAL_COMPLEXITY X X X X X X X X X X X X 
ESSENTIAL_DENSITY x     x x x x x x x x x 
LOC_EXECUTABLE X X X X X X X X X X X X 
PARAMETER_COUNT x     x x x x x x x x x 
HALSTEAD_CONTENT X X X X X X X X X X X X 
HALSTEAD_DIFFICULTY X X X X X X X X X X X X 
HALSTEAD_EFFORT X X X X X X X X X X X X 
HALSTEAD_ERROR_EST X X X X X X X X X X X X 
HALSTEAD_LENGTH X X X X X X X X X X X X 
HALSTEAD_LEVEL X X X X X X X X X X X X 
HALSTEAD_PROG_TIME X X X X X X X X X X X X 
HALSTEAD_VOLUME X X X X X X X X X X X X 
MAINTENANCE_SEVERIT x     x x x x x x x x x 
MODIFIED_CONDITION_ x     x x x x x x x x x 
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MULTIPLE_CONDITION_C x     x x x x x x x x x 
NODE_COUNT x     x x x x x x x x x 
NORMALIZED_CYLOMAT x     x x x x x x x x x 
NUM_OPERANDS X X X X X X X X X X X X 
NUM_OPERATORS X X X X X X X X X X X X 
NUM_UNIQUE_OPERAND X X X X X X X X X X X X 
NUM_UNIQUE_OPERATO X X X X X X X X X X X X 
NUMBER_OF_LINES x     x x x x x x x x x 
PERCENT_COMMENTS x     x x x x x x x x x 
LOC_TOTAL X X X X X X X X X X X X 
GLOBAL_DATA_COMPLE       x x x           x 
GLOBAL_DATA_DENSITY       x x x           x 

Based on them, an assembled dataset was used to support the investigation of the cost-sensitive 
approach [40] regarding cross-project and cross-language generalizability. Its assembly was done by 
carefully merging the 12 NASA datasets. From the original NASA database, KC2 and KC4 were 
excluded due to significant discrepancies in their features, which could potentially lead to problems 
in experiments. However, the slight difference in each dataset's number of features imposes some 
challenges in this merging process, which could be one of the reasons for the existing literature gap 
since it may have prevented the exploration of this repository's full potential to investigate cross-
project and cross-language generalizability. The features “common denominator” among all datasets 
were identified to overcome this challenge, as shown in Table 1. As a result, a total of 20 features were 
identified as present in all datasets marked with a light gray background in Table 1. A newer and 
compatible version of all the datasets was created by removing all the features that did not belong to 
this set of features obtained with the intersection of the dataset’s common features. Then, all those 
new compatible datasets were merged into a single cross-project and cross-language dataset, which 
was used to support the present study and will be opened to the research community for future 
investigations. 

While the dataset used in the original study had 9,593 instances with 21 features of a single 
project’s software modules in C language, the assembled dataset contains 43023 instances and 20 
features based on source-code static metrics corresponding to software modules in C, C++, and Java, 
with no missing values. As expected, the assembled dataset is imbalanced because only 7.4% of 
modules were defective. Although that imbalance is more aggressive than the original study’s 
(18.33% of the classes defective), no technique, such as oversampling [59], under-sampling [60,61], 
case weighting [62], or synthetic minority oversampling technique (SMOTE) [63], was used to balance 
the dataset classes to follow the same protocol used by the original research. 

2.2. Machine Learning Technique 

Although ANNs are very popular, diverse, and powerful, they have essential disadvantages in 
applications related to the current study’s domain, as previously mentioned. Thus, unlike the ANN 
approach used in the original study [40], aiming to avoid the ANNs’ weakness, the present research 
used Random Forest (RF) as the ML technique to induce the ML models.  

RF is a decision-tree-based ML technique using the ensemble method principle by averaging 
multiple DTs to improve predictive accuracy and control overfitting. This approach leverages the 
strengths of multiple DTs, each trained on random subsets of the data and features, to produce a 
more robust model than any single tree could offer. RF significantly reduces the variance without 
substantially increasing bias by aggregating the predictions from many trees through majority voting 
for classification tasks or averaging for regression tasks [64]. 

RFs have many advantages over ANNs. RF requires smaller datasets than ANNs to perform 
similarly, making the ML approach more suitable for situations with limited data availability [65]. It 
also requires shorter training times and less advanced hardware for training [66]. Unlike ANNs, RFs 
can handle categorical and numerical data without extensive preprocessing or feature scaling and 
require much simpler hyperparameter tuning, not requiring highly specialized staff to use them [65]. 
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RF is less prone to overfitting than ANNs because of the ensemble method of averaging multiple 
DTs, which leads to better generalization by reducing variance, which is essential in the investigated 
domain [64]. Finally, although RFs are not entirely white-box, they have higher explainability and 
interpretability than ANNs since their induced decision paths through the trees can be examined [67]. 
Feature importance scores can be generated, offering insights into model decisions, and supporting 
managers’ decision-making on policies and actions to improve the software quality in future 
development iterations. 

2.3. Experimental Protocol 

The same original study [40] protocol was used here. However, a distinct ML classifier type was 
used in the present study to support its goals. Like in [40], a cost-sensitive approach was used in 
training to compensate for the effect of the unbalanced dataset in generating the worrisome FNs. 
Therefore, distinct cost values were assigned as a penalty to the FNs to reduce the ML model bias 
towards the most represented class (non-defective), aiming to understand the effect of assigning 
different cost values to the quality of the final model predictions and lower the FN rate. However, a 
larger set of costs assigned to FN ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}) was 
experimented to broaden the investigation of the effects of the cost-sensitive training. Since, as in 
[68,69], distinct, and a larger number of ML classifiers (RF) models were induced when compared to 
[40]. The dataset composition and research protocol are depicted in Figure 2. 

 

Figure 2. Cost-sensitive ML training protocol used to create distinct models to predict defective 
software modules using different RC values to support decision-making. 

As in the benchmark study [40], for each distinct cost value assigned for the FN, distinct ML 
classifiers (RF) were induced using a 10x10-fold cross-validation strategy [70]. The 10x10-fold cross-
validation supports a more reliable validation of the proposed technique. Among the arguments by 
[71], the 10-fold was used rather than the leave-one-out cross-validation because it yields better 
results for the size of the dataset and it results in less variance, which helps to compare the 
performance of distinct ML models induced as the FN assigned cost is increased. Smoothing out the 
extreme effects of the luckiest and unluckiest data selection for training and testing leads to more 
realistic conclusions. Moreover, compared to vanilla train/test dataset split strategies, it reduces 
problems like underfitting and overfitting and helps to estimate better how accurately the model will 
perform in practice.  

Therefore, 100 validations were performed for each distinct cost assigned to FN. A unitary cost 
(1) was assigned to TP, TN, and FP for all the ML models in this study. Since 20 distinct FN cost 
values were used, 2000 RFs were generated. The average value of the evaluation metrics (subsection 
D) from the 100 RF was computed for each distinct cost value experimented. 
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2.4. Evaluation Metrics 

Various metrics were collected or computed to evaluate the ML model's performance. They were 
all average values computed from the 100 samples measured from the RFs induced for each cost 
value assigned. The fundamental metrics collected were those from the confusion matrix. The true 
positive (TP) is the number of defective software modules correctly classified as defective by the ML 
model. Thus, they correctly inform the software testing team about the modules that must be 
considered in the software testing scope because they are defective, using the available resources 
appropriately. The true negative (TN) is the number of non-defective software modules correctly 
classified as non-defective by the ML model. Thus, they correctly inform the software testing team 
about the modules that could be left outside the software testing scope since they are not defective, 
saving the available resources appropriately. The false positive (FP) is the number of non-defective 
software modules incorrectly classified as defective by the ML model. Thus, they wrongly induce the 
software testing team to consider them inside the testing scope, although they are not defective, 
wasting resources, which reduces their efficiency. The false negative (FN) is the number of defective 
software modules incorrectly classified as non-defective by the ML model. Thus, they wrongly induce 
the software testing team to leave those defective modules outside the testing scope, reducing their 
efficacy. Therefore, FNs are dangerous and must be avoided since those defective modules can cause 
severe consequences when the software operates in production.  

When managers design the software testing scope informed by the ML classifier, they include 
all the modules classified as defective (TP + FP). Thus, the metric number of modules tested (MT) is 
defined by Equation 1 [40]. 

MT = TP + FP, (1) 

Therefore, using a decision-making process informed by the ML classifier, managers will 
exclude from the software testing scope the modules indicated as non-defective (TN + FN). Thus, 
Equation 2 defines the metric number of modules not tested (MNT). 

MNT = TN + FN, (2) 

When the ML model supports decision-making, the result is a reduction in software testing 
scope, according to [40]. Equation 3 defines the metric scope reduction (SR) [40]. 

SR = ெே்ெ் ା ெே் , (3) 

On the other hand, the fraction of the total number of modules suggested by the ML classifier as 
the proper software testing scope is the relative test scope (RTS) [40], defined by Equation 4. 

RTS = 1 – SR, (4) 

Cost-sensitive training is influenced by the relationship between the costs assigned to FN (𝐶ிே) 
and FP (𝐶ி௉). Therefore, the approach core strategy is increasing the relative cost (RC) [40], defined 
by Equation 5, between the cost assigned to FN and FP and evaluating the average performance of 
the ML models.  

RC = 𝐶𝐹𝑁𝐶𝐹𝑃  , (5) 

where, in the present research, 𝐶ி௉ = 1, thus RC = 𝐶ிே, (6) 

Since 𝐶ிே ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}, RC ⊂ {1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}.  

As defined by [40], Precision (P) [72] in this research domain translates the efficiency (Eff) of 
the test effort because it represents the total number of defective modules detected from the total 
number of modules tested. Ideally, software testing effort should be spent only on defective modules 
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indicated by a 100% efficient ML model. Equation 7 indicates the expression used to compute the 
Model’s Eff [40]. 

Eff = P = 𝑇𝑃(𝑇𝑃 + 𝐹𝑃) , (7) 

Analogously, according to [40], Recall (R) [72] can be referred to as efficacy (Ef) since it indicates 
how effective the test effort can be following, considering exactly the software testing scope 
suggested by the ML model. Since the software testing goal is to discover 100% of the defective 
modules in the system, R measures the fraction of the goal achieved by the test effort informed by 
the ML model. A software testing scope delineated by a 100% effective ML model would discover all 
the defective modules. Equation 8 indicates the expression used to compute the Model’s Ef [40]. 

Ef = R = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁) , (8) 

Furthermore, the ML model Accuracy (Acc) [73,74] indicates the ratio of software modules 
correctly classified (TP + TN) from the total number of modules (TP + TN + FP + FN). A 100% accurate 
ML model would result in no misclassification, that is, nor FP or FN. Although that seems highly 
desirable, paradoxically, an ML model with 100% accuracy usually has an overfit, indicating 
compromised generalizability. That is highly undesirable since it reduces its practical application. 
Equation 9 indicates the expression used to compute the Model’s Acc [73,74]. 𝐴𝐶𝐶ோ஼ = (𝑇𝑃𝑅𝐶 + 𝑇𝑁𝑅𝐶)(𝑇𝑃𝑅𝐶 + 𝑇𝑁𝑅𝐶 + 𝐹𝑃𝑅𝐶 + 𝐹𝑁𝑅𝐶) , (9) 

As used by [40], a benchmark based on the unitary cost ML Model was used to evaluate how 
software testing efforts using the scope suggested by the induced ML models with higher RC values 
performed (Eff and Ef) compared to those with 𝑅𝐶 = 1. Thus, the relative efficiency to the unitary 
cost ML model (REffU) and the relative efficacy to the unitary cost ML model (REfU) were 
computed for each RC > 1 to support those comparisons using Equations 10 and 11, respectively. 𝑅𝐸𝑓𝑓𝑈ோ஼ =  ா௙௙ೃ಴ா௙௙ೃ಴సభ , (10) 

𝑅𝐸𝑓𝑈ோ஼ =  𝐸𝑓ோ஼𝐸𝑓ோ஼ୀଵ  , (11) 

As suggested by [40] another benchmark was used to evaluate how software testing efforts 
using the scope suggested by the induced ML models performed (Eff and Ef) compared to similar 
software testing efforts with identical scope sizes but based on the random selection of modules, 
representing a decision-making not informed by the ML models. The relative efficiency to the 
random selection (REffR) was computed using Equation 12, which 𝒑𝑻𝑷  is the probability of a 
defective module being selected randomly, which is 7.4% for the assembled dataset used in this study 
and is not affected by RC values. The relative efficacy to the random selection (REfR) was computed 
for each RC to support those comparisons using Equation 13. 𝑅𝐸𝑓𝑓𝑅ோ஼ = 𝑝்௉ = 7.4%, (12) 

𝑅𝐸𝑓𝑅ோ஼ = 𝑅𝐸𝑓𝑓𝑅ோ஼ × 𝑅𝑇𝑆ோ஼ = 7.4% × 𝑅𝑇𝑆ோ஼, (13) 

As in the original study [40], other performance comparisons were performed using the metric 
Relative Percent Correct (RPC), which represents the ratio of the number of modules classified 
correctly by the ML model to the number of modules classified correctly by each benchmark. The 
Relative Percent Correct relative to the Unitary cost ML model benchmark (RPCU) was computed 
using Equation 14, while the Relative Percent Correct relative to the Random selection of modules 
(RPCR) was computed using Equation 15. 
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𝑅𝑃𝐶𝑈ோ஼ =  𝐴𝐶𝐶ோ஼𝐴𝐶𝐶ோ஼ୀଵ , (14) 

𝑅𝑃𝐶𝑅ோ஼ =  𝐴𝐶𝐶ோ஼7.8% , (15) 

The metric Misclassified Defective Modules (MDM) indicates the ratio of the number of 
defective modules misclassified as non-defective by the ML model to the total number of existing 
defective modules in the system (3196 in the assembled dataset, and k is the number of folds). The 
metric Misclassified Non-defective Modules (MNDM) indicates the ratio of the number of non-
defective modules misclassified as defective by the ML model to the total number of existing non-
defective modules in the system (39827 in the assembled dataset, and k is the number of folds). Those 
metrics were computed for each RC value using Equations 16 and 17, respectively. 𝑀𝑁𝑀ோ஼ =  𝐹𝑁ோ஼3196 𝑘 , (16) 

𝑀𝑁𝐷𝑀ோ஼ =  𝐹𝑃ோ஼39827 𝑘 , (17) 

Finally, the metric Unnecessary Tests (UT) [40] was computed to evaluate the ratio of module 
tests that were wasted because they were unnecessary. Equation 18 shows how UT was calculated 
for each value of RC evaluated. 𝑈𝑇 =  𝐹𝑃ோ஼𝑀𝑇ோ஼ , (18) 

3. Results 

The protocol described in the previous section was executed entirely, providing a dataset of 
results with the metrics used to support the analysis presented here. Table 2 shows the models’ 
accuracies for each relative cost. A paired t-test (with correction) was used to compare the accuracies’ 
averages with the significance test performed at a 5% level. The statistical significance of the t-test is 
indicated by “*” where the p-value was lower than 5% (compared to the benchmark, 𝑅𝐶 = 1). Like 
the reference study [40], as RC increases, the accuracy decreases. However, here, the reduction was 
only 2.2% (93.27% to 91.19%), much smaller than observed in the reference study, where it was 
reduced to almost half (52%) when the RC was 10 times higher. Notably, an average accuracy of 
92.27% cannot be considered a good result for a model trained with an imbalanced binary dataset, 
with 92.6% of the instances belonging to the most representative class (non-defective module). 

Table 2. TP, TN, FP, FN, MT, MNT, SR x RC. 

RC ACC TP FP TN FN MT MNT SR 
1 93.3% 84.04 54.11 3928.59 235.56 138.15 4164.15 96.8% 
2 92.9% * 115.65 * 101.62 * 3881.08 * 203.95 * 217.27 4085.03 94.9% 
3 92.6% * 127.42 * 127.5 * 3855.2 * 192.18 * 254.92 4047.38 94.1% 
4 92.3% * 134.5 * 144.87 * 3837.83 * 185.1 * 279.37 4022.93 93.5% 
5 92.2% * 139.28 * 157.48 * 3825.22 * 180.32 * 296.76 4005.54 93.1% 
6 92.0% * 143.87 * 168.35 * 3814.35 * 175.73 * 312.22 3990.08 92.7% 
7 91.8% * 147.32 * 179.02 * 3803.68 * 172.28 * 326.34 3975.96 92.4% 
8 91.5% * 150.83 * 195.57 * 3787.13 * 168.77 * 346.4 3955.9 91.9% 
9 91.3% * 152.98 * 205.86 * 3776.84 * 166.62 * 358.84 3943.46 91.7% 

10 91.2% * 157.08 * 216.51 * 3766.19 * 162.52 * 373.59 3928.71 91.3% 
11 91.1% * 159.89 * 225.09 * 3757.61 * 159.71 * 384.98 3917.32 91.1% 
12 90.9% * 162.06 * 234.29 * 3748.41 * 157.54 * 396.35 3905.95 90.8% 
13 90.7% * 165.53 * 244.49 * 3738.21 * 154.07 * 410.02 3892.28 90.5% 
14 90.6% * 168.42 * 253.82 * 3728.88 * 151.18 * 422.24 3880.06 90.2% 
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15 90.5% * 171.04 * 262.29 * 3720.41 * 148.56 * 433.33 3868.97 89.9% 
20 89.8% * 183.01 * 303.94 * 3678.76 * 136.59 * 486.95 3815.35 88.7% 
30 88.4% * 203.88 * 383.56 * 3599.14 * 115.72 * 587.44 3714.86 86.3% 
40 86.8% * 220.73 * 468.54 * 3514.16 * 98.87 * 689.27 3613.03 84.0% 
50 85.7% * 234.74 * 529.99 * 3452.71 * 84.86 * 764.73 3537.57 82.2% 
100 79.8% * 275.76 * 824.1 * 3158.6 * 43.84 * 1099.86 3202.44 74.4% 

Table 2 also shows the information from the confusion matrix (TP, TN, FP, FN), indicating how 
its distribution and RC change. As found in the reference study, increasing RC results in increasing 
TP and decreasing FN, which is positive for using ML models to support test effort allocation. 
However, while the TP almost doubled from 𝑅𝐶 = 1 to 10, it increased over 7 times in the reference 
study using a different classifier on a single project and language dataset. Naturally, the increase in 
TP and decrease in FN could only happen with an increase in FP (~4x) and a slight decrease in TN 
(4%). Consequently, as shown in Table 2, the number the classifier indicates to be tested (MT) grows 
as RC increases. That growth (2.7x) is lower than observed in the reference study (18.4). Moreover, 
while SR was reduced from 96% to 29% in the benchmark research, the reduction was much more 
moderate (96.8% to 91.3%) for protocol run. Figure 3 illustrates the behavior of TP, TN, FP, FN, MT, 
and MNT over the distinct costs. Like all charts with results in the present study, the lower chart 
represents the full range of RC evaluated, and the upper one zooms in on RC [1,15] to better observe 
the initial behavior in a range compatible with the benchmark study. It is worth noting that the 
findings reveal a pattern of decreasing marginal returns leading to a saturation of earnings with the 
technique, demonstrating an asymptotic behavior that persists from the initial points onward. 

 

(a) Initial RC range 

 
(b) Full RC range 

Figure 3. {TP, TN, FP, FN, MT and MNT} x RC. 

Table 3 shows the classifiers' test efficiency and efficacy metrics and a theoretical benchmark 
obtained with the expected results from a random selection of modules to be tested with the same 
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scope size for each RC. The TP, TN, FP, and FN changes have essential implications for the efficiency, 
efficacy, and scope of software testing activities. The RC increase implicated in ML models resulted 
in lower test efficiency and higher efficacy with an increase of RTS, which corroborated the 
benchmark study’s findings. However, in the benchmark study [40], the efficiency is reduced to 41.4% 
when 𝑅𝐶 = 10, while in the present study, a much lower reduction for the same RC was observed, 
equivalent to 68.9% of the initial one, indicating a smoother effect on the efficiency. In the same way, 
the efficacy increased by 7.6x, comparing the model with 𝑅𝐶 = 10 to 𝑅𝐶 = 1 in the benchmark 
study [40], while in the present study, a smoother effect was observed since it was increased by 1.9x. 
Finally, a smoother effect was also observed for RTS (an increase of 2.7x) compared to the reference 
study (an increase of 17.8x). 

Table 3. EFFICIENCY and EFFICACY (Models and Random Benchmarks), RTS, RELATIVE 
EFFICIENCY, EFFICACY and RPC (Benchmark: Unitary Cost ML Model and Benchmark: Random 
Selection) x RC. 

RC 
ML Model 

Benchmarks 

Random Selection Unitary Cost ML 
Model 

EFF EF RTS EFF EF REFF RE RPC REFF RE RPC 

1 61.0% 26.0% 3.2% 7.4
% 

0.2
% 

821.2
% 

10899.8
% 

1255.6
% 

100.0
% 

100.0
% 

100.0
% 

2 53.0% * 36.0% * 5.1% 7.4
% 

0.4
% 

713.5
% 9596.2% 1250.6

% 86.9% 138.5
% 99.6% 

3 50.0% * 40.0% * 5.9% 7.4
% 

0.4
% 

673.1
% 9087.6% 1246.1

% 82.0% 153.8
% 99.2% 

4 48.0% * 42.0% * 6.5% 7.4
% 

0.5
% 

646.2
% 8706.9% 1242.9

% 78.7% 161.5
% 99.0% 

5 47.0% * 44.0% * 6.9% 7.4
% 

0.5
% 

632.7
% 8587.0% 1240.5

% 77.0% 169.2
% 98.8% 

6 46.0% * 45.0% * 7.3% 7.4
% 

0.5
% 

619.2
% 8347.3% 1238.5

% 75.4% 173.1
% 98.6% 

7 45.0% * 46.0% * 7.6% 7.4
% 

0.6
% 

605.8
% 8163.6% 1236.2

% 73.8% 176.9
% 98.5% 

8 44.0% * 47.0% * 8.1% 7.4
% 

0.6
% 

592.3
% 7858.0% 1232.1

% 72.1% 180.8
% 98.1% 

9 43.0% * 48.0% * 8.3% 7.4
% 

0.6
% 

578.8
% 7747.0% 1229.6

% 70.5% 184.6
% 97.9% 

10 42.0% * 49.0% * 8.7% 7.4
% 

0.6
% 

565.4
% 7596.2% 1227.6

% 68.9% 188.5
% 97.8% 

11 42.0% * 50.0% * 8.9% 7.4
% 

0.7
% 

565.4
% 7521.9% 1225.8

% 68.9% 192.3
% 97.6% 

12 41.0% * 51.0% * 9.2% 7.4
% 

0.7
% 

551.9
% 7452.2% 1223.5

% 67.2% 196.2
% 97.4% 

13 40.0% * 52.0% * 9.5% 7.4
% 

0.7
% 

538.5
% 7345.0% 1221.5

% 65.6% 200.0
% 97.3% 

14 40.0% * 53.0% * 9.8% 7.4
% 

0.7
% 

538.5
% 7269.6% 1219.5

% 65.6% 203.8
% 97.1% 

15 39.0% * 54.0% * 10.1
% 

7.4
% 

0.7
% 

525.0
% 7217.2% 1217.6

% 63.9% 207.7
% 97.0% 

20 38.0% * 57.0% * 11.3
% 

7.4
% 

0.8
% 

511.5
% 6779.3% 1208.3

% 62.3% 219.2
% 96.2% 

30 35.0% * 64.0% * 13.7
% 

7.4
% 

1.0
% 

471.2
% 6309.7% 1190.0

% 57.4% 246.2
% 94.8% 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2024                   doi:10.20944/preprints202405.1028.v1

https://doi.org/10.20944/preprints202405.1028.v1


 13 

 

40 32.0% * 69.0% * 16.0
% 

7.4
% 

1.2
% 

430.8
% 5797.7% 1168.6

% 52.5% 265.4
% 93.1% 

50 31.0% * 73.0% * 17.8
% 

7.4
% 

1.3
% 

417.3
% 5528.5% 1153.8

% 50.8% 280.8
% 91.9% 

10
0 25.0% * 86.0% * 25.6

% 
7.4
% 

1.9
% 

336.5
% 4528.5% 1074.6

% 41.0% 330.8
% 85.6% 

Furthermore, Table 3 and Figure 4 support a comparison between the software testing efforts 
informed by ML models and the benchmark's performance based on a non-informed approach, 
where the modules for software testing are selected randomly. Notably, in the present study, the 
random benchmarks are worse than in the reference study because of the higher imbalance of the 
dataset used here. In the original study, the ratio of defective classes is 2.5, the number of defective 
classes in the current dataset, resulting in a random benchmark efficiency 2.5x higher than the one 
obtained here. The results indicate that, despite the RC value, the informed approach outperforms 
the non-informed approach, demonstrating superior performance. That corroborates findings from 
the benchmark study. Moreover, it also aligns with the field literature since, despite the existing gaps 
and limitations, the results indicate that even a suboptimal ML model can improve the software 
testing performance and outperform a non-informed approach. 

 
(a) Initial RC range  

 
(b) Full RC range 

Figure 4. {TP, TN, FP, FN, MT and MNT} x RC. 

Aiming to compare quantitatively the ratio of the decrease in efficiency with the increase in 
efficacy as RC is increased, a linear model was built with a linear regression to explain the efficacy 
and efficiency behaviors, having RC as the independent variable, resulting in Equations 19 and 20. 𝑅𝐸𝐶𝐴𝐿𝐿  = 0.00151 ⋅ 𝑅𝐶  +  0.3348; 𝑅ଶ = 0.8394, (19) 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁  =   − 0.012 ⋅ 𝑅𝐶  +  0.5497;  𝑅ଶ = 0.8322, (20) 
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It's important to highlight that all linear regressions conducted in this study were tailored to RC 
ranges from 1 to 15 for two primary reasons. Firstly, the baseline study [40] had a narrower range of 
1 to 10, necessitating an adjustment of parameters to facilitate a more accurate comparison. Secondly, 
the focal point of our current research lies in assessing the aggressiveness of initial RC range gains. 
Therefore, the extrapolation employed in these current experiments aimed to provide a 
comprehensive view of the models' performance in higher-cost scenarios. 

The plots and descriptions of those models are illustrated in Figure 4. Since both models reached 𝑅ଶ > 80%, they can be considered suitable for explaining efficiency and efficacy variances by RC 
changes. Comparing the effect sizes of RC on efficiency (-0.0120) and efficacy (0.0151), each decrease 
in test efficiency (caused by the increase of the RC) results in an average rise of test efficacy that is 
25.8% higher than the efficiency decrease. Thus, each RC unit increment returns an improvement in 
test efficacy higher by almost 26% (on average) than the price paid in test efficacy decrease. Since the 
reduction in efficiency is less than the improvement in efficacy, the same advantage observed in the 
benchmark study was demonstrated in the present study.  

Those results indicate that conveniently adjusting RC makes finding an optimal equilibrium 
between efficiency and efficacy and the extent of testing coverage possible. This is the core idea of the 
approach, which has been demonstrated only for a single project dataset until now. Thus, it indicates 
that the approach’s core idea can be generalized for a larger dataset encompassing multiple projects 
developed in distinct moments by different teams involving distinct technologies (programming 
languages).  

Consequently, by adjusting the RC, test managers can use ML models to optimize the test scope 
according to the resources available for the software testing effort. Using ML models with lower RC 
will help prioritize a narrower scope of testing while maintaining high efficiency, which is advisable 
in scenarios where testing resources are constrained. On the other hand, in scenarios where available 
resources are less constrained, using higher RC values will help to expand the testing scope wisely, 
aiming for an improvement in efficacy despite a potential reduction in efficiency. 

Additionally, Table 3 presents comparisons of efficiency and efficacy with other benchmarks. 
One of the benchmarks used was the efficiency and efficacy of the unitary cost model (𝑅𝐶 = 1). Thus, 
for each RC value, the table shows how the ML model’s performance (efficiency and efficacy) 
compares to the baseline model’s performance (𝑅𝐶 = 1). Table 3 also shows the relative percent 
correct (RPC), supporting a comparison between the number of modules correctly classified by each 
model obtained for RC > 1 and the baseline (𝑅𝐶 =  1). Chart (a) in Figure 5 shows the plot of the 
relative efficiency and efficacy, as well as the RPC, considering the unitary cost as a baseline. 

 
(a) Benchmark: Unitary Cost ML Model – Partial RC range. 
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(b) Benchmark: Unitary Cost ML Model – Full RC range. 

 
(c) Benchmark: Random Selection – Partial RC range. 

 
(d) Benchmark: Random Selection – Full RC range. 

Figure 5. RELATIVE EFFICIENCY, EFFICACY, and RPC. 

The same analysis performed for the absolute values of efficiency and efficacy was performed 
here to compare quantitatively the ratio of the decrease in relative efficiency with the increase in 
efficacy as RC is increased using a linear model. The expressions of regressions are shown in 
Equations 21 and 22. 𝑅𝑒𝑓  =  0.058 ⋅ 𝑅𝐶  +  1.2875;  𝑅ଶ = 0.8394, (21) 𝑅𝐸  =   − 0.0196 ⋅ 𝑅𝐶  +  0.9012;  𝑅ଶ = 0.8322, (22) 

The plots and descriptions of those models are illustrated in Figure 5. Since all the regressions 
reached 𝑅ଶ > 80%, they can be considered suitable for explaining relative efficiency and relative 
efficacy variances by RC changes. Comparing the effect sizes of RC on efficiency (-0.0196) and efficacy 
(0.0580), each decrease in the relative test efficiency (caused by the increase of the RC) results in an 
average rise of relative test efficacy that is 3x higher than the efficiency decrease. Thus, each RC unit 
increment returns an improvement in relative test efficacy 3x higher (on average) than the decline 
observed in relative test efficacy on average, corroborating the benchmark study’s finding. 
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Another benchmark comparison shown in Table 3 was related to using the random benchmark. 
The test efficiency and efficacy reached by each ML model induced with distinct RC values were 
compared against the baseline value of non-informed software testing based on random module 
selection. Chart (c) in Figure 5 shows the plot of the relative efficiency, efficacy, and RPC, with the 
random benchmark as the baseline. The results also corroborate the benchmark study’s findings, 
where the relative efficacy drops faster than the relative efficiency as RC is increased. Still, those 
values are always higher than 100%, demonstrating that the ML-based approach outperforms the 
non-informed selection of modules for testing. However, since an increase in RC implicates an 
increase in test scope, it is natural to expect that as the scope increases, it weakens the ML-based 
approach advantages since, ultimately, when 100% of the modules are tested, an ML-based approach 
offers no additional value when compared to the random selection of modules to be tested. Finally, 
charts (b) and (d) of Figure 5 show the same analyses for a more extensive RC range encompassing 
higher values. 

The last analysis was to understand how RC increases affect MDM, MNDM, and UT. Table 4 
shows the values of each of those metrics for each RC value. The experiments were conducted using 
a 10-fold cross-validation approach. Thus, each fold contained on average 320 defective modules 
(used for MDM calculation, with 𝑘 = 10 ) and 3983 non-defective modules (used for MNDM 
calculation, with 𝑘 = 10). Figure 6 shows those metrics plotted for each RC value. The upper chart 
of Figure 6 is focused on a narrow range of RC, while the bottom one shows a chart encompassing 
the full range of RC. 

Table 4. MDM, MNDM, and UT x RC. 

RC MDM MNDM UT 
1 74.0% 1.0% 39.2% 
2 64.0% 3.0% 46.8% 
3 60.0% 3.0% 50.0% 
4 58.0% 4.0% 51.9% 
5 56.0% 4.0% 53.1% 
6 55.0% 4.0% 53.9% 
7 54.0% 4.0% 54.9% 
8 53.0% 5.0% 56.5% 
9 52.0% 5.0% 57.4% 

10 51.0% 5.0% 58.0% 
11 50.0% 6.0% 58.5% 
12 49.0% 6.0% 59.1% 
13 48.0% 6.0% 59.6% 
14 47.0% 6.0% 60.1% 
15 46.0% 7.0% 60.5% 
20 43.0% 8.0% 62.4% 
30 36.0% 10.0% 65.3% 
40 31.0% 12.0% 68.0% 
50 27.0% 13.0% 69.3% 
100 14.0% 21.0% 74.9% 

 
(a) Initial RC range 
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(b) Full RC range 

Figure 6. {MDM, MNDM, and UT} x RC. 

The behavior of MDM, MNDM, and UT versus RC was compared using linear models obtained 
with linear regressions. The regressions expressions are shown in Equations 23, 24 and 25. 𝑈𝑇  =  0.0119 ⋅ 𝑅𝐶  +  0.4509;  𝑅ଶ = 0.8284, (23) 

𝑀𝐷𝐶  =   − 0.0151 ⋅ 𝑅𝐶  +  0.6652;  𝑅ଶ = 0.8394, (24) 

𝑀𝑁𝐷𝐶  =  0.0033 ⋅ 𝑅𝐶  +  0.0197;  𝑅ଶ = 0.8997, (25) 

Those models reached 𝑅ଶ values greater than 80%, indicating they could adequately explain the 
variance of those metrics using the independent variable RC. The linear model expressions are 
expressed in the chart. The MDM, MNDM, and UT’s effect sizes in the models were -0.0151, 0.0033, 
and 0.0119, respectively. Those coefficients indicate that each increase in RC causes a reduction in 
MDM 26.9% higher than the increase it causes in UT. Moreover, they suggest that each rise in RC 
causes a decrease of 457.6% in MDM, which is higher than the increase it causes in MNDM. MDMs 
are dangerous, especially in safety-critical systems, because they divert the software testing effort to 
evaluate properly those misclassified defective classes, increasing the risks of failure during customer 
use. Thus, they are highly undesired. Using the proposed approach, the MDM is reduced in a ratio 
much higher than it increases the MNDM. Although MNDMs are undesired, their negative outcome 
is to induce the software testing effort in testing a non-defective software module, which wastes 
resources. Still, they do not cause dangerous situations that could cause more severe losses, such as 
jeopardizing life or property.  

That is, the approach is very appealing to inform the software testing plan since it can improve 
the quality of the software testing effort, making it possible to accomplish more with the same (or 
less) available resources. Therefore, besides corroborating the benchmark study’s findings, this last 
analysis demonstrated that the cost-sensitive approach suits hybrid software development 
environments involving diverse projects with distinct programming languages and software 
development teams. 

4. Discussion 

This section discusses the implications of software testing scope decision-making based on the 
cross-project and cross-language ML models induced using the cost-sensitive approach using a 
hypothetical scenario.  

The test manager has a budget of 𝑛௧ software testers and 𝑛ௗ days available for software testing. 
Equation 26 gives the available software testing budget in hours (B), considering a workday of 8 
hours/day. 𝐵  = 8 × 𝑛௧ × 𝑛ௗ, (26) 
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In a comparative hypothetical situation, as presented in Figure 7, 8 software testers are available 
for a 17-day effort, resulting in B equal to 1088 hours. The project's average effort to test a software 
module (E) was estimated to be 5 hours. Thus, the available budget can afford to test around 218 
modules on average. Since in Table 2, the closest MT value to 218 is 217, which corresponds to 𝑅𝐶 =2, the ML model to be used to support the decision-making on software testing must be one trained 
with 𝑅𝐶 = 2. 

 
Figure 7. Comparison of the value added by the proposed technique in a hypothetical scenario with 
at least for decisions regarding the software testing scoping and allocation of available software 
testing resources. 

When 𝑅𝐶 = 2, the average number of defective modules discovered by a software testing effort 
following the ML model corresponding scope is 116 (Figure 7.[1]), according to Table 2. If the same 
software testing effort were performed in a same-size scope encompassing modules randomly 
selected, only 16 defective modules would be discovered (Figure 7.[3]), given by Equation 27. 𝐷𝑅  = 𝑝்௉ × MT = 7.4% × 217 = 16, (27) 

Thus, using the same budget available, the effort would identify over seven times more defective 
modules when an ML model-based decision-making process is used rather than a random selection 
of modules, which is quite impressive (Figure 7.[1] x Figure 7.[3]). Moreover, a manager would need 
a testing effort (𝑇𝐸ோ௔௡ௗ௢௠ ) of 7840 hours (given by Equation 28) to test 1568 software modules 
randomly picked to accomplish an equivalent performance in the number of defective modules 
discovered (Figure 7.[1] x Figure 7.[2]). In other words, the manager would need a software testing 
budget 7.2 times higher without using the ML model to select the modules to be tested for achieving 
the same accomplishments, which is quite impressive. 
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𝑇𝐸ோ௔௡ௗ௢௠ =  ்௉௣೅ು  ×  𝐸 = ଵଵ଺଻.ସ%  ×  5 =  7840, (28) 

Considering this hypothetical scenario, following the ML model recommendations, the software 
testing productivity (Prod) would be 9.4 hours to find each defective module on average, given by 
Equation 29. 𝑃𝑟𝑜𝑑 =  ெ்்௉  ×  𝐸 = ଶଵ଻ଵଵ଺  ×  5 =  9.4, (29) 

Thus, to reach the equivalent result of the random selection (ER) (16 defective modules), the 
software testing team informed by the ML model would need to test around 30 modules (Figure 7.[3] 
x Figure 7.[4]), according to Equation 30, which would require a total effort of only 30 x 9.4 = 282 
hours. 𝐸𝑅 =   ்௉ெ் ×  𝐷𝑅 = ଵଵ଺ଶଵ଻  ×  16 = 30, (30) 

Those results demonstrate the power of using ML models to support decision-making on 
software testing scope definition and resource allocation, helping quality assurance efforts 
accomplish better results with the available resources or even using fewer resources. 

5. Conclusions 

The current research validated the generalizability of the original study’s findings. While the 
original study used MLP classifiers and a single project dataset based on a single programming 
language, the present research demonstrated the generalizability of the cost-sensitive approach using 
the RF, a distinct ML classifier, a much larger dataset, with a higher imbalance ratio, encompassing 
multiple software development projects based on different software programming languages. 
Generalizability validation is one of the relevant contributions of the present research since it 
demonstrates that the approach can be useful and reliable across various distinct situations involving 
distinct projects, languages, and teams, indicating it can be effective in practical applications. 

Validating the results for RF is an important contribution since RF has advantages over MLP. It 
is more adaptable to different data types and manages missing values better. Also, it requires less 
data preprocessing, such as data scaling. It can efficiently process large datasets, requiring less 
computation, making its training process orders of magnitude faster and cheaper than MLP or more 
complex ANNs. It offers very rapid predictions after training. It is suitable for solving complex 
nonlinear relationships between the target and independent variables. It does not require an ML 
expert because even without good hyperparameter tuning, it can achieve good results, which are 
often comparable to those achieved by well-tuned MLPs. Finally, RF can manage to achieve high 
accuracies even with smaller data samples, which is crucial to the present application domain since 
many software development projects are small or medium, and there may not be a high volume of 
historical data about statical source-code metrics and defects. Thus, RF can reduce the entering barrier 
for software testing informed by ML models.  

Although the proposed approach uses ML model prediction to inform decision-making on 
software testing scoping, an essential aspect of ML is the potential value added with its explainability 
and interpretability. By using RF rather than MLP, the present study also enhanced the explainability 
and interpretability of the cost-sensitive trained models, expanding their initial utility. They can 
inform the software development and quality assurance managers about the main contributing 
features or source-code characteristics related to software defects, instrumenting them to act on the 
software development teams to improve the quality of their deliveries in a continuous quality 
improvement framework. 

The research also explored a more comprehensive range [1, 100] of costs (RC) associated with 
FN compared to the original study [1,10]. With that, it was possible to observe an asymptotic behavior 
in the plots of most analyzed metrics. The effect of the marginal gains decreasing with RC increments 
indicates the cost-sensitive approach reduces its advantages as the test scope is broadened. Thus, as 
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the software testing scope reduction decreases, becoming closer to a complete test, the cost-sensitive 
approach exhausts its advantages. 

The results show that it is possible to use historical data from previous projects combined with 
the current one at its beginning when almost no historical data is available yet. That enables the early 
use of ML models to inform software testing scope. However, compared to the benchmark study’s 
findings, the desired positive effects were smoother in the current research. Although the reason is 
still unknown, when considerable historical data about a system under development or maintenance 
is already available, it may be better to use the cost-sensitive approach based on a single system's 
own historical data. The reason for that difference will be the subject of a future study, which will 
also explore some of the limitations of the current one, such as evaluating other types of ML models, 
such as Bayesian, meta, tree-based, rule-based, and function-based classifiers. 

Finally, the novel dataset, encompassing all common NASA MDP datasets source-code static 
features, will be made accessible to the research community. This initiative aims to facilitate further 
investigations into the effects of cross-language and cross-project dynamics, enabling broader 
exploration and analysis of the generalization process within the software defect prediction domain. 
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