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Abstract: Cigarette smoke (CS) is a major driver of many respiratory diseases including chronic
obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). Tobacco causes
oxidative stress, impaired phagocytosis of alveolar macrophages (AMs), and alterations in gene
expression in the lungs of smokers. MicroRNAs (miRNAs) are small non-coding RNAs that
influence several biological processes and interfere with several regulatory pathways. The purpose
of this study was to assess the effect of active CS on miRNAs expression in AMs obtained from
bronchoalveolar lavage (BAL) of ever- or never-smoker subjects and patients with COPD or NSCLC.
BAL specimens were collected from 43 sex-matched subjects to determine the expression of has-
miR-34a-5p, 17-5p, 16-5p, 106a-5p, 223-5p, and 20a-5p before and after in vitro CS exposure by RT-
PCR. In addition, bioinformatic analysis of miRNAs target genes linked to inflammation was
performed. Distinct and common miRNA expression profiles were identified in response to CS,
suggesting their possible role in smoking-related diseases. It is noteworthy that, following exposure
to CS, the expression levels of hsa-miR-34a-5p and 17-5p in both ever- or never-smokers, 106a-5p in
never-smokers and 20a-5p in ever-smokers, shifted towards those found in individuals with COPD,
suggesting them like a risk factor in developing this lung condition. Moreover, we identified
miRNA targets involved in the immune system or AMs property regulation using in silico analysis.
In conclusion, our study identified miRNA signatures in AMs exposed to CS, indicating that CS is
an important driver of epigenetic changes that contribute to the onset of various lung diseases.

Keywords: microRNAs; alveolar macrophages; cigarette smoke; COPD; lung cancer

1. Introduction

Cigarette smoke (CS) is the leading cause of preventable deaths worldwide and is commonly
considered a major driver of many respiratory diseases [1]. Many epidemiological studies have
established a high burden of diseases resulting from smoking, including non-small cells lung cancer
(NSCLC) and chronic obstructive pulmonary disease (COPD) [2,3]. COPD is an heterogenous disease
characterized by progressive deterioration of lung function over time and is generally associated with
lung inflammation triggered by harmful particles or gases [4-10]. COPD and lung cancer, beyond a
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common etiology, are closely linked conditions, and patients with COPD have twice the risk of cancer
diagnosis [12-16]. In the lungs of smokers, tobacco promotes oxidative stress and systemic /local
inflammation, which is characterized by the upregulation of circulating inflammatory cells and
release of inflammatory mediators [17-19]. In addition, CS has been shown to lead to genetic and
molecular impairments, which may increase the chance of mutations and lung carcinogenesis [20].
Moreover, it is becoming increasingly evident that the development of COPD or NSCLC phenotypes
in response to harmful agents is regulated by both the innate and adaptive immune systems. [20-22].
Alveolar macrophages (AMs) are essential effector cells that play a key role in the innate lung
immune system by performing pathogen clearance, recruiting other immune cells, phagocyting and
processing inhaled environmental particles, and producing pro-inflammatory mediators [23-27].
Smoking causes AMs impairment in phagocytosis and responses to pathogens, compromising their
protection from noxious agents [28-30]. Importantly, AMs gene expression can be altered in response
to environmental exposure, leading to epigenetic changes such as DNA methylation, covalent histone
modifications, and microRNAs (miRNA) expression [31-33]. miRNAs are small non-coding
endogenous RNA molecules capable of modulating gene expression by binding their target mRNAs
at 3’ end and, leading to gene silencing through mRNA cleavage or translational repression. miRNAs
influence most biological processes and interfere with several regulatory networks, thereby
coordinating gene expression under pathological conditions [34-36]. Indeed, aberrant miRNA
expression appears to be a signature of human diseases, including tumors and inflammatory lung
diseases [37,38]. In our previous study, we reported that has-miR-34a-5p, 17-5p, 16-5p, 106a-5p, 223-
5p, and 20a-5p expression profiles in AMs are dysregulated in NSCLC, COPD and ever- or never-
smoker controls, suggesting their potential role as an index of the smoking-related disease
microenvironment [39]. Notably, all selected miRNAs have been shown to influence processes related
to inflammation, carcinogenesis or immunity, which are closely linked to CS [40-46]. However,
despite the known association between CS and lung diseases, little is known about the effect of active
smoking on the expression levels of miRNAs in AMs, and how it affects the identification of potential
candidate miRNAs as biomarkers of pulmonary conditions. Therefore, to further assess the role of
CS in the regulation of AMs miRNA expression, we evaluated the levels of the above mentioned-
miRNAs in AMs of bronchoalveolar lavage (BAL) from ever- or never-smoker controls and patients
with COPD or NSCLC before and after CS exposure.

2. Materials and Methods
2.1. Ethics Statement

This study belongs to a cross-sectional nonpharmacological clinical study recorded at
clinicaltrials.gov (NCT04654104) and all procedures and protocols described were approved by the
local Ethics Committee “Calabria Centro”. The criteria of the Institutional Review Board/Human
Subjects Research Committee, the Declaration of Helsinki, and the Guidelines for Good Clinical
Practice were followed and, all patients or legal guardians signed an informed consent form prior of
the beginning of the study.

2.2. Study Population

We enrolled 43 individuals who were equally distributed in terms of age (=18 years) and sex, at
the “Mater Domini” Hospital in Catanzaro, Italy. All participants underwent spirometry in
compliance to international guidelines as well as bronchoscopy and BAL for suspected pulmonary
neoplasia [47]. Samples that were not employed for histopathological purposes or in our previous
research were used in the current study 8 [39]. Based on the clinical data and the pathological
diagnosis obtained after bronchoscopy, we divided the enrolled subjects into:1) healthy never-
smoker control (“HNS”; n=9); 2) healthy ever-smokers control (“HS”; n=11); 3) smokers with Global
Initiative for Obstructive Lung Diseases (GOLD) stage 1-4 (“COPD,” n =11); 4) non-small cell lung
cancer (“NSCLC”; n=12). The main clinical and pathological characteristics of the cohorts are reported
in our previous study and are available in the online version, at
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https://doi.org/10.3390/biomedicines12051050. In summary, those who had lung infections,
extrapulmonary tumors, airflow obstruction other than COPD, autoimmune disorders, or who did
not sign the informed consent form were excluded. All enrolled subjects were smokers except for
HNS group; specifically, HS were 8 current and 3 former smokers, COPD were 11 current smokers
and NSCLC were equally distributed between current and ex-smokers. Within each group, the
subjects were comparable in terms of age, sex, and lung cancer histology. Indeed, only those with
NSCLC were enrolled among the subject’s presenting cancer. The most frequent comorbidities were
hypertension (p < 0.05), and the most used drugs were bronchodilators (p < 0.0001).

2.3. Bronchoalveolar Lavage and AMs Extraction

After obtaining informed consent, the subjects underwent standard flexible bronchoscopy for
clinical indications [47]. Premedication and local anesthesia were followed by BAL with 200 ml of
sterile isotonic saline solution (37 °C) in the right middle lobe. Specifically, BAL was obtained by
instilling 50 ml up to four times, as previously reported [39]. The samples were filtered through sterile
gauze and centrifuged at 400 g for 10 min at 4 C° to pellet cellular material. The cells were washed,
resuspended in buffer phosphate saline (PBS), and counted in a Biirker chamber. The cell yield was
determined as the total cells /total volume obtained for each saline installation. Then, cell viability
was determined by Trypan blue exclusion assay, and differential cell count was performed with
QUICK-DIFF staining; at least 100 cells were counted.

2.4. Preparation of CS Extract

CS extract was prepared as previously described bubbling ten Red Marlboro cigarettes (Phillip
Morris; Cracow, Poland) without a filter through 250 ml of serum-free RPMI with a customized
vacuum pump apparatus. The obtained suspension was adjusted to pH 7.4 and filtered through a
0.20 um pore filter to remove bacteria and large particles [19].

2.5. TH-P1 Culture and Cytotoxicity Assay

Macrophages from acute monocytic leukemia (THP-1) ware used as a pilot model to establish
the exact dose (2%, 5%, or 10%) of CS that was able to affect cell viability at 24h using the Thiazolyl
Blue Tetrazolium Bromide solution (MTT) assay. THP-1 cells (ATCCR TIB-202™), purchased from the
American Type Culture Collection (Manassas, Virginia, USA), were maintained at 2 x 105 cells/ml in
RPMI-1640 medium containing 10% FBS and 2 mM L-glutamine, 200 U/ml penicillin, and 200 mg/ml
streptomycin. To obtain a macrophages-like phenotype, THP-1 cells were treated with 100 ng/ml
phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) for two days. The cells were then incubated
with fresh medium for one day to allow cell recovery and exposed to 2%, 5%, or 10% CS medium for
24h. Following 24 h MTT was added and incubated for 4 h to perform the proliferation assay. MTT
is a colorimetric method that allow to assess the mitochondrial reductive function as an indicator of
growth inhibition. After 4 h, DMSO was added to measure the absorbance at 595 nm using a
microplate reader.

2.6. AMs Culture and CS Exposure

BAL cell pellets were suspended in RPMI-1640 medium supplemented with 10% FBS, 2 mM L-
glutamine, 200 U/ml penicillin, and 200 mg/ml streptomycin. The cell suspension was added at 0.5 x
10¢ cells/mL to a 75 tissue culture flask and maintained at 37 °C in a 5% CO2 humidified milieu for 2
h to allow AMs adherence. Lymphocytes, red blood cells and other non-adherent cells were removed
by washing several times with PBS. AMs purity, as determined by morphology, was greater than
95%. The AMs were then exposed to 10% CS for 24 h, based on THP-1 treatments results.

2.7. Biochemistry Assays and Real Time PCR (RT-PCR)

The extraction of miRNAs in AMs obtained from BAL was carried out through the miRNeasy
mini kit and RNA was eluted at a volume of 15 pL, as previously described 37). RNA degradation
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was assessed using a qubit RNA Integrity and Quality (IQ) assay (catalog number Q33222) with a
Qubit 4 fluorometer (serial number 2322618032114). The expression levels of has-miR-34a-5p, 17-5p,
16-5p, 106a-5p 223-5p and 20a-5p were determined using TagMan™ Advanced miRNA Assay RT-
PCR, following Thermo Fisher Scientific procedures (Waltham, MA, USA), with U6 snRNA as the
housekeeping miRNA as previously described [39]. Nine biological replicates for the HNS group,
eleven for HS, eleven for COPD, and twelve for NSCLC were analyzed, and all samples were run in
triplicate; after the achievement of the RT-PCR, the cycle threshold (Ct) of the reactions was
determined. Data from all RT-PCR experiments and miRNA expression was analyzed applying the
comparative and normalizing to the endogenous miRNA control 2Pt method, where DCt = Ctmirna
— Ct housekeeping mikNA, Whereas the relative differences in expression was determined with DDCt = DCt

HS/COPD/NSCLC (with or without c5) — DCt HNs.

2.8. In Silico Prediction of hsa-miRs Target Genes

mRNA targets of has-miR-34a-5p, 17-5p, 16-5p, 106a-5p 223-5p and 20a-5p that are linked to
inflammation or AMs properties were analyzed in silico using DIANA Tools
(http://diana.imis.athena-innovation.gr/DianaTools/index.php) and miRTargetLink 2.0 (https://ccb-
compute.cs.uni-saarland.de/mirtargetlink2) databases. Only genes that were already validated
experimentally were selected and potential biochemical pathways were checked using the GeneCard
database (https://www.genecards.org/).

2.9. Statistical Analysis

Unless specified, all data are expressed as mean + standard deviation (SD). The ordinary one-
way ANOVA test followed by Dunnet Multiple Comparison Test (for MTT assay) and Tukey
Multiple comparison test (for miRNAs analysis) with a single pooled variance, was used to assess the
differences between the groups. Nominal (sex, age, comorbidity, or treatment) and categorical
variables were considered and the correlation between clinical data was calculated using one-way
ANOVA followed by Tukey Multiple Comparison Test. GraphPad software (version 9.1.0) was used
for statistical analyses (GraphPad Software, San Diego, CA, USA). Differences were considered
statistically significant at p <0.05.

3. Results

3.1. CS Effect on TH-P1 Viability

To determine the dose of CS for subsequent analysis, we used THP-1 macrophage cell line.
Treatment of THP-1 cells with CS for 24h significantly affect cell viability, which peaked at 10% CS
(p <0.0001) (Figure 1). Therefore, 24h 10% CS was used to perform AMs exposure.

Cell viability assesed by MTT assay in
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Figure 1. THP-1 cells viability after CS exposure. THP-1 cells were treated with CS at 24h for the
indicated concentration, and the cell viability was assessed by MTT assay. Cell viability is shown as
absorbance at 595 nm. All samples were run in triplicate, and results are shown as means + SD. The
statistical tests used in these analyses were one-way analysis of variance followed by Dunnet Multiple
Comparison Test. *** p <0.001, *** p <0.0001.

3.2. miRNA Expression Levels
hsa-miR-34a-5p, 17-5p and 16-5p

We assessed miRNA signatures in each pathological condition (NSCLC and COPD), smoking
habit (HS), and control group (HNS) before and after exposure to 10% CS for 24h. The effects of CS
in vitro stimulation on hsa-miR-34a-5p, 17-5p, and 16-5p expression in BAL AMs in vitro are shown
in Figures 2—4. Following stimulation with 10% CS for 24 h, we observed a significant increase in hsa-
miR-34a-5p (p <0.01), 17-5p (p < 0.001), and 16-5p (p < 0.001) expression in AMs obtained from HNS
group (Figures 2A—4A). Interestingly, acute in vitro CS stimulation also led to significant positive
modulation of hsa-miR-34a-5p (p < 0.001), 17-5p (p < 0.001), and 16-5p (p < 0.001) expression in AMs
from HS (Figures 2A—4B). In contrast, CS stimulation of COPD and NSCLC AMs did not affect hsa-
miR expression (Figures 2C,D-4C,D). This could suggest that acute CS stimulation is sufficient to
affect hsa-miR expression exclusively in AMs from subjects without preexisting lung diseases.
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Figure 2. Analysis of hsa-miR-34a-5p AMs expression levels in HNS (2A; biological replicates n = 9),
HS (2B; biological replicates n=11), COPD (2C; biological replicates n = 11) and NSCLC (2D; biological
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replicates n = 12) before and after 10% CS at 24 h. AMs from BAL all groups were treated with CS at
10% for 24 h and the expression of hsa-miR-34a-5p was assessed by real-time RT-PCR. All samples
were run in triplicate, and results are shown as means + SD. The statistical tests used in these analyses
were one-way analysis of variance followed by Tukey Multiple Comparison Test. ** p < 0.01, *** p <
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A B
12 kK
gy
1 i -
g i
£ 5!
& 2 E
] 3
P § 2
£ g
2, . £
& . £ .
s-‘
& ® R
= N
& &
Qﬁ

O
lw)

12 12
5101 5101
g Z g
&6 &6
§ 4 g 4
:
g3 5
3 H
g2 22 : S
° 2
< -
3 :
i i
29 20

T
Q
f
O

Figure 3. Analysis of hsa-miR-17-5p AMs expression levels in HNS (2A; biological replicates n = 9),
HS (2B; biological replicates n =11), COPD (2C; biological replicates n =11) and NSCLC (2D; biological
replicates n = 12) before and after 10% CS at 24 h. AMs from BAL all groups were treated with CS at
10% for 24 h and the expression of hsa-miR-17-5p was assessed by real-time RT-PCR. All samples
were run in triplicate, and results are shown as means + SD. The statistical tests used in these analyses

were one-way analysis of variance followed by Tukey Multiple Comparison Test. *** p <0.001, **** p
<0.0001.
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Figure 4. Analysis of hsa-miR-16-5p AMs expression levels in HNS (2A; biological replicates n = 9),
HS (2B; biological replicates n=11), COPD (2C; biological replicates n =11) and NSCLC (2D; biological
replicates n = 12) before and after 10% CS at 24 h. AMs from BAL all groups were treated with CS at
10% for 24 h and the expression of hsa-miR-16-5p was assessed by real-time RT-PCR. All samples
were run in triplicate, and results are shown as means + SD. The statistical tests used in these analyses
were one-way analysis of variance followed by Tukey Multiple Comparison Test. *** p <0.001, **** p
<0.0001.

hsa-miR-106a-5p

Following in vitro exposure to 10% CS for 24 h, we observed a significant increase in hsa-miR-
106a-5p expression in HNS AMs (p < 0.01) (Figure 5A) and in AMs from the COPD group (p < 0.05)
(Figure 5C). Interestingly, CS led to the opposite trend in AMs from HS (p < 0.01) (Figure 5B) while it
did not affect hsa-miR-106a-5p expression in AMs obtained from patients with NSCLC (Figure 5D).
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Figure 5. Analysis of hsa-miR-106a-5p AMs expression levels in HNS (2A; biological replicates n =9),
HS (2B; biological replicates n=11), COPD (2C; biological replicates n =11) and NSCLC (2D; biological
replicates n = 12) and after 10% CS at 24 h. AMs from BAL all groups were treated with CS at 10% for
24 h and the expression of hsa-miR-106a-5p was assessed by real-time RT-PCR. All samples were run
in triplicate, and results are shown as means + SD. The statistical tests used in these analyses were
one-way analysis of variance followed by Tukey Multiple Comparison Test. * p <0.05, ** p <0.01.

hsa-miR-223-5p and 20a-5p

RT-PCR results showed that CS significantly decreased hsa-miR-223-5p (p < 0.001) and 20a-5p
(p <0.01) expression in HNS AMs (Figures 6A and 7A). In contrast, in vitro CS stimulation in COPD
AMs induced both hsa-miR-223-5p (p < 0.01) and 20a-5p (p < 0.05) upregulation (Figure 6C and 7C).
Moreover, CS affected only hsa-miR-20a-5p expression in AMs from HS, leading to a significant
positive modulation (p <0.0001) (Figure 7B), while did not further impact hsa-miR expression in AMs
from individuals with NSCLC (Figure 6D and 7D).
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Figure 6. Analysis of hsa-miR-223-5p AMs expression levels in HNS (2A; biological replicates n = 9),
HS (2B; biological replicates n=11), COPD (2C; biological replicates n = 11) and NSCLC (2D; biological
replicates n = 12) before and after 10% CS at 24 h. AMs from BAL all groups were treated with CS at
10% for 24 h and the expression of hsa-miR-223-5p was assessed by real-time RT-PCR. All samples
were run in triplicate, and results are shown as means + SD. The statistical tests used in these analyses
were one-way analysis of variance followed by Tukey Multiple Comparison Test. ** p < 0.01, ** p <
0.001.
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Figure 7. Analysis of hsa-miR-20a-5p AMs expression levels in HNS (2A; biological replicates n =9),
HS (2B; biological replicates n=11), COPD (2C; biological replicates n = 11) and NSCLC (2D; biological
replicates n = 12) before and after 10% CS at 24 h. AMs from BAL all groups were treated with CS at
10% for 24 h and the expression of hsa-miR-20a-5p was assessed by real-time RT-PCR. All samples
were run in triplicate, and results are shown as means + SD. The statistical tests used in these analyses
were one-way analysis of variance followed by Tukey Multiple Comparison Test. * p < 0.05, ** p <
0.01, **** p < 0.0001.

3.3. In Silico Identification of Target mRNAs

The relationship between miRNAs and lung response to CS, was assessed by in silico analysis
of sequence similarity between miRNAs and different mRNAs. Experimentally validated target
genes were compared in two different databases of which miR target Link 2.0 was chosen as it had a
higher number of validated genes for each miRNA. We analyzed all selected miRNA targets, focusing
on those that are common to several miRNA and implicated in the cellular pathways regulating
inflammation or AMs properties. Abbreviations, names of the selected genes, methods, and
validation tissues are listed in Table 2. The results showed that the miRNA may be involved in
regulation of several inflammation driver genes, such as BCL2, LAMTOR, MCL1, SOCS5 or VEGFA,
among others. However, other target genes linked to apoptosis or cytokines production were found,
as shown in Table 3. Given that several authors have experimentally confirmed all genes, miRNA
might modulate these targets in a coordinated or individual manner, affecting several hallmarks of
lung response to CS.
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Table 1. Bioinformatics tools for in silico analysis. Number of validated genes for each miRNA
analyzed in miR Target Link 2.0 and Diana Tools databases.
Number of Target Genes
miRNA miR Target Link 2.0 DIANA Tools
hsa-miR-223-5p 551 10
hsa-miR-16-5p 2.279 455
hsa-miR-20a-5p 1.659 611
hsa-miR-17-5p 1.817 136
hsa-miR-34a-5p 968 324
hsa-miR-106a-5p 1.166 435
Table 2. Abbreviations, gene names, methods, and tissue on which the miRNA selected were
validated targets from miR Target Link 2.0.
Abbreviation Gene Name Methods Tissues References (PMID)
20371350
ATG14 Autophagy Related 14 Sequencing, k]f;ber}?z):flz 22473208
HITS-CLIP §
B cells
17877811
Cervix cells, 18449891
gastric cells, 18362358
bone cells, 17351108
Luciferase reporter marrow cells, 17707831
assay, qRT-PCR, spleen, liver, 20643754
Western blot, kidney, lymph 20876285
Proteomics analysis, node, 19269153
BCL2 Apoptosis  Immunohistochemistry,tracheal/bronchial 16166262
BCL2 . -
Regulator Microarray, epithelial cells, 19903841
Sequencing, HITS-  breast cells, ovary 20371350
CLIP, Immunoblot, cells, human 23907579
Immunoprecipitaion embryonic 22473208
kidney cells, B 24148817
cells, mesothelial 25435430
cell, glioma cells 26397135
26722459
Carnitine Proteomics
CPTIA Palmitoyltransferase HITS-CLIP niil;‘;:a(l:ilgis 18668040
1A 23313552
FOXC1  Forkhead Box C1 PAR-CLIP Human 21572407
embryonic
kidney cells

HAS2 HITS-CLIP B-cell 22927820
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Hyaluronan Synthase

2
. Leukemic cells,
HFii’ﬁhoACl;I_I;m;%l)n Microarray pSILAC, cervix cells, 18362358
HSPA1A y oA (Hsp Proteomics, PAR-CLIP  human 18668040
Member 1A .
embryonic stem 22012620
cells
Cervix cells,
brain tissue
LAMTORI1 Late Proteomics, human 18668040
Endosomal/Lysosomal PAR-CLIP embrvonic 24398324
Adaptor, MAPK And . 23446348
MTOR Activator 1 taney celis, 20371350
B cells
HITS-CLIP, microarray,
MCL1 Apoptosis Immunohistochemistry, Human 22473208
Regulator, BCL2 Luciferase reporter embryonic 18362358
MCL1 . .
Family Member assay, qRT-PCR, kidney cells, 23594563
Western blot, PCR leukemic cells, 28097098
array liver
Mitofusin 2 rIe)r(())tretZin;zz;llui/vlfz’?esfn Breast cells, 18668040
MEFN2 P blot CL}IZ SH lungs, human 27640178
’ embryonic 23622248
kidney cells
SCAMPS Secretory Carrier HITS-CLIP B cell 22473208
Membrane Protein 5 e 22473208
S%M?jpecflc HITS-CLIP, Human
cprdase PAR-CLIP embryonic 22473208
SENP1 kidney cells 20371350
21572407
CLASH, Human
PAR-CLIP embryonic
ki 11
Suppressor Of erild;lsfafilf’);) d 23622248
SOCS5  Cytokine Signaling 5 P mpn | 23592263
ononuciear 23446348
cells,
macrophages,

brain tissue
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Colorectal cancer
cells,
umbilical cord
Immunoblot, Luciferaseblood cell, B cells, 20940405

reporter assay, human 19435428
Microarray, qRT-PCR, embryonic stem 22473208
Transforming Growth Western blot cells, human 22012620
TGFBR2 Factor Beta Receptor 2 HITS-CLIP embryonic 21572407
PAR-CLIP kidney cells, 20371350
Immunohistochemistry, B cells, 27080303
In situ hybridization epithelial cells of 27508097
the small and 26729221

large intestines,

esophageal cells

. ELISA, Luciferase

VEGFA Vaé:gij:f;ifihal reporter assay Kidney cells 18320040

Table 3. miRNA gene interaction and possible biochemical pathways involved.

Biochemical Pathways
miRNA Validated target genes

hsa-miR-16-5p
Autophagy- adaptive immune hsa-miR-20a-5p
response regulation hsa-miR-17-5p ATG14

hsa-miR-16-5p
hsa-miR-17-5p
hsa-miR-20a-5p

hsa-miR-34a-5p BCL2

Apoptosis- ROS production

hsa-miR-16-5p
hsa-miR-20a-5p
hsa-miR-17-5p CPT1A

Apoptosis- inflammatory hsa-miR-106a-5p

response regulation

hsa-miR-20a-5p
Oxidative stress-inflammation hsa-miR-17-5p

responses- cell apoptosis hsa-miR-223-5p FOXC1



https://doi.org/10.20944/preprints202405.0961.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 May 2024

d0i:10.20944/preprints202405.0961.v1

14

Cytokines, chemokines, and
matrix metalloproteinase
production

Protein folding- prevention of
protein aggregation - apoptosis

Macrophages polarization-innate
immune response regulation

Apoptosis- bacterial clearance

Mitochondrial fusion-
mitochondrial membranes
regulation

TNF secretory pathway

Cytokines secretion- NF-kB
pathway

EGEFR signaling pathway

TGF- signaling pathway

VEGF pathway- ROS generation-
Akt/eNOS/NO pathway

hsa-miR-20a-5p
hsa-miR-17-5p
hsa-miR-106a-5p

hsa-miR-16-5p
hsa-miR-34a-5p
hsa-miR-223-5p

hsa-miR-16-5p
hsa-miR-20a-5p
hsa-miR-17-5p

hsa-miR-16-5p
hsa-miR-17-5p
hsa-miR-20a-5p
hsa-miR-34a-5p

hsa-miR-16-5p

hsa-miR-17-5p
hsa-miR-34a-5p
hsa-miR-106a-5p

hsa-miR-16-5p
hsa-miR-20a-5p
hsa-miR-17-5p

hsa-miR-20a-5p
hsa-miR-16-5p
hsa-miR-34a-5p
hsa-miR-223-5p

hsa-miR-16-5p
hsa-miR-20a-5p
hsa-miR-17-5p

hsa-miR-20a-5p
hsa-miR-17-5p
hsa-miR-34a-5p

hsa-miR-16-5p
hsa-miR-20a-5p
hsa-miR-17-5p

HAS2

HSPA1A

LAMTOR1

MCL1

MFN2

SCAMP5

SENP1

SOCS5

TGFBR2

VEGFA



https://doi.org/10.20944/preprints202405.0961.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 May 2024 d0i:10.20944/preprints202405.0961.v1

15

4. Discussion

In this study, we assessed the effect of in vitro CS exposure on the regulation of miRNA
expression in AMs, the main participants in the development of smoking-related conditions such as
COPD and NSCLC. Tobacco promotes oxidative stress, systemic inflammation, and local
inflammation in the lungs of smokers, leading to innate and adaptive immune system impairments
[17-19]. In addition, CS leads to genetic and molecular impairments, which may increase the chance
of mutations and lung carcinogenesis [20]. Given the high prevalence of smoking-related diseases,
the search for new biomarkers has prompted in-depth epidemiological studies [48,49]. Several
authors attempted to identify miRNA signature of CS and evidence for their causal role in smoking-
related inflammation. Willinger et al. profiled 283 miRNAs and found six associated with serum
levels of C-reactive protein, interleukin-6 and pulmonary function [50]. In our previous study, we
reported that has-miR-34a-5p, 17-5p, 16-5p, 223-5p, 20a-5p, and 106a-5p expression profiles in AMs
were dysregulated in NSCLC, COPD and ever- or never-smoker controls, suggesting their possible
role as an index of smoking-associated conditions [39]. To further investigate the effect of active
smoking on the expression levels of these miRNAs, we analyzed the changes in their expression
before and after in vitro CS exposure in the above mentioned groups. This profiling was carried out
in AMs recovered from BAL, a precious biological sample that is highly representative of the
pulmonary microenvironment [51]. First, we identified that never-smokers AMs in vitro stimulated
with 10% CS for 24h results in two specific trends, leading to hsa-miR-34a-5p, 17-5p, 16-5p, and 106a-
5p upregulation and negative modulation of hsa-miR-223-5p and 20a-5p levels. In contrast, in vitro
CS exposure in AMs obtained from individuals chronically exposed in vivo to CS such as ever
smokers or with pre-existing lung conditions such as COPD or NSCLC variably affects miRNAs. In
the parenchyma of COPD patients, a key hallmark of alveolar epithelial and endothelial cells is
apoptosis and, as one of the most important risk factors for COPD, CS can initiate apoptosis in several
cell types, including macrophages [52]. In this context, Long et al. reported that Notch-1 receptor
protein, a transmembrane receptor which has been implicated in cell proliferation and apoptosis
control, is lower expressed in primary lung microvascular endothelial cells (HPMECs) treated with
CS, with the upregulation of hsa-miR-34a-5p [53]. In addition, Zeng et al. showed that exposure of
BEAS-2B cells to CS increased the expression of hsa-miR-34a-5p and senescence-associated pro-
inflammatory cytokines such as IL-1B, IL-6, IL-8, and TNF-«) in a dose-dependent manner [54].
Furthermore, in our previous study, we reported a significant positive modulation of hsa-miR-34a-
5p in the tissue and AMs of COPD subjects compared to healthy never-smoker controls [55].
Consistent with these data, we observed after in vitro exposure to CS a significant positive
modulation of hsa-miR-34a-5p in the AMs of healthy individuals towards COPD level, providing
evidence of the role of CS in COPD-like dysregulation. Interestingly, in vitro CS exposure equally
affected hsa-miR-34a-5p expression in AMs obtained from HS suggesting the potent effect of acute
CS stimulation. CS can directly damage epithelial cells, the first barrier for the respiratory tract, and
cause infiltration of immune cells in the lungs, including AMs [56]. Leukocyte signal-regulatory
protein-a (SIRPa), a member of the immunoglobulin superfamily, modulates many aspects of the
inflammatory response to noxious agents, including immune cell activation, chemotaxis, and
phagocytosis [57]. In this regard, Zhu et al. showed that upregulation of hsa-miR-17-5p by
lipopolysaccharide (LPS) in macrophages is the mechanism underlying LPS-induced SIRP«a
reduction and AMs activation [58]. This was consistent with our finding of higher hsa-miR-17-5p
levels in AMs of never-smokers and ever-smokers following acute in vitro CS treatment, supporting
the importance of CS in the mechanisms underlying AMs impairment in lung diseases. The innate
immune system represents the first line of host defense against harmful particles or bacterial
infections through phagocytosis by resident macrophages [59]. One of the most important features of
this process is the activation of TLRs immune receptors and the release of a variety of toxic products,
including reactive oxygen species (ROS) such as NO, hydrogen peroxide, and superoxide anions [60].
Moon et al. reported that bacterial LPS enhanced the level of has-miR-16-5p in bone marrow—derived
macrophages, resulting in decreased phagocytosis and the generation of mitochondrial ROS [61].
Accordingly, our findings showed a positive modulation of has-miR-16-5p in never-smokers and
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ever-smokers AMs following CS treatment suggesting the ability of CS exposure to modulate the
lung inflammatory response. Although a few studies have investigated the hsa-miR-106a-5p
expression patterns associated with CS and chronic lung diseases, Liu et al. reported that it
dramatically inhibited the activation of autophagy induced by M. tuberculosis in human THP-1
macrophages [62]. Indeed, CS impairs AMs autophagy playing an important role in COPD [63].
Moreover, Sharma et al. reported that hsa-miR-106a-5p negatively regulates IL-10 expression with an
increase in proinflammatory cytokines in in vitro and in vivo model of airway inflammation [64].
This was in line with our findings of increased has-miR-106a-5p in AMs of both never-smokers and
COPD subjects following in vitro CS exposure. However, the regulatory effects of has-miR-106a-5p
in CS-related diseases are not fully understood, making its role controversial, as suggested by its
reduction in AMs from ever-smokers after in vitro CS treatment. Our findings highlight that in vitro
CS stimulation of AMs obtained from never-smokers results in negative modulation of hsa-miR-223-
5p and 20a-5p levels. Several authors have described hsa-miR-223-5p role in macrophage
differentiation, neutrophil recruitment, and pro-inflammatory responses, which are key features of
lung inflammation and remodeling [65]. Interestingly, in never-smokers AMs, CS resulted in the
modulation of hsa-miR-223-5p to levels comparable to those observed in individuals with smoking-
related conditions. Consistent with our data, Schembri et al. reported lower has-miR-223-5p levels in
bronchial epithelial cells from current smokers than in those from never-smokers [66]. Furthermore,
it is important to point out that in COPD AMs, the expression of this miRNA is increased following
exposure to CS, indicating a unique function for acute CS in COPD microenvironment. In fact, acute
CS exposure can induce chemotactic factors in the lungs, stimulate AMs, and lead to neutrophil
influx, which can require at least six months to normalize completely [67]. In this context, Roffel et al.
detected higher levels of has-miR-223-5p in the lung tissue of COPD patients, assuming that it could
be associated with impaired Iung function and higher neutrophil counts [68]. As for hsa-miR-223-5p,
CS led to hsa-miR-20a-5p downregulation in AMs obtained from never-smokers. Importantly, our
data showed that ever-smokers and patients with COPD shared increased levels of this miRNA after
exposure to CS. Specifically, exposure to CS in ever-smokers increases levels towards those reported
in COPD, highlighting the close link between CS and the development of a COPD-like phenotype.
hsa-miR-20a-5p has been shown to regulate AMs inflammatory responses by targeting SIRPa [58].
Moreover, Liu et al. reported higher hsa-miR-20a-5p levels in children with pneumonia and in lung
cells exposed to LPS, highlighting its role in inflammation through activation of the NF-«B signaling
pathway [69]. However, given its role in controlling cellular networks, such as the PI3K/Akt axis, the
regulatory effects of CS on its expression cannot be generalized, making a more in-depth analysis
necessary to explain our results in AMs from never-smokers [44]. Finally, in vitro CS exposure did
not influence the expression of any miRNAs in AMs from subjects with NSCLC. In our previous
study the same trend was seen for the Programmed death-ligand 1 (PD-L1) mRNA expression.
Indeed, we reported that after CS exposure, PD-L1 mRNA expression was increased in AMs derived
from never-smoker subjects but not in NSCLC patients, suggesting an overwhelm effect of cancer on
acute CS exposure [70]. It is important to note that the intensity of the reaction against immunogenic
antigens produced in response to CS varies across a wide range of disease manifestations
highlighting the crucial role of immune responses in regulating the development of distinct
phenotypes (such as COPD or NSCLC) in response to CS [71,72]. In this context, dysregulation of
miRNAs could reflect phenotype switching or the onset of different lung manifestations, underlining
the prominent, but not exclusive, role of CS. Indeed, miRNA expression profiles can be influenced by
other environmental factors, which can further modulate the correlation between the expression of
miRNAs and mRNA targets in response to CS [73]. Finally, to assess the potential interconnection of
miRNAs in lung response to CS, we performed in silico prediction of hsa-miR target genes.
Bioinformatic results revealed that the miRNAs analyzed may potentially be involved in the
regulation of several inflammation driver genes, such as ATG14, BCL2, CPT1A, FOXC1, HAS2,
HSPA1A, LAMTORI, MCL1, MFN2, SCAMP5, SENP1, SOCS5, TGFBR2 and VEGFA, which are
involved in immune system regulatory pathways [74-87]. Since several authors have experimentally
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confirmed all miRNA-regulated genes, miRNAs may modulate these targets combined or
individually, affecting different hallmarks of lung response to CS.

5. Conclusions

This study, even if preliminary, indicates that CS is an important driver of epigenetic changes
that contribute to the onset of various lung diseases. Moreover, we demonstrated that the effects of
acute CS on miRNA expression levels could differ between never-smokers and subjects who were
already chronically exposed to CS, such as HS, or had pre-existing lung diseases, such as COPD. It is
noteworthy that, following exposure to CS, the expression levels of hsa-miR-34a-5p and 17-5p in both
ever- or never-smokers, 106a-5p in never-smokers and 20a-5p in ever-smokers, shifted towards those
found in individuals with COPD, suggesting them like a risk factor in developing this lung condition.
A potential limitation of our study was the small sample size used for miRNA analysis, which did
not allow subanalysis according to COPD severity. However, our data could be of clinical relevance
and lead to future studies involving larger populations, allowing to better understand the networks
involved in the pathogenesis of smoking-related diseases.
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