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Abstract: As the educational landscape evolves, understanding and fostering student adaptability 
has become increasingly critical. This study presents a comparative analysis of (XAI) techniques to 
interpret machine learning models aimed at classifying student adaptability levels. Leveraging a 
robust dataset, we employed several machine learning algorithms with a particular focus on 
Random Forest, which demonstrated a 91% accuracy. Our study utilizes (SHAP), (LIME), Anchors, 
(ALE), and counterfactual explanations to reveal the specific contributions of various features 
impacting adaptability predictions. Consistently, 'Class Duration' and 'Financial Condition' emerge 
as key factors, while the study also underscores the subtle effects of 'Institution Type' and 'Load-
shedding'. This multi-faceted interpretability approach bridges the gap between machine learning 
performance and educational relevance, presenting a model that not only predicts but also explains 
the dynamic factors influencing student adaptability. The synthesized insights advocate for 
educational policies accommodating socioeconomic factors, instructional time, and infrastructure 
stability to enhance student adaptability. The implications extend to informed and personalized 
educational interventions, fostering an adaptable learning environment. This methodical research 
contributes to responsible AI application in education, promoting predictive and interpretable 
models for equitable and effective educational strategies. 

Keywords: Comparative Analysis; Educational Data Mining; Educational Predictive Modelling; 
(XAI); Feature Importance; Machine Learning Interpretability; Model Transparency; Predictive 
Analytics in Education; Student Adaptability; AI in Education Policy 

 

1. Introduction 

A critical area of concern for educators, policymakers, and academics in the quickly changing 
field of education is comprehending and improving student adaptation [1,2]. The ability of students 
to effectively navigate and respond to diverse learning environments, technological advancements, 
and varying educational methodologies highlights the importance of adaptive learning systems 
tailored to individual needs [3]. 

The field of education has seen a revolutionary change with the introduction of machine learning 
techniques, which have provided new ways to forecast and enhance student adaptation [4]. However, 
the black-box nature of complex machine learning models often impedes their interpretability, raising 
concerns regarding their applicability in educational settings where transparency and 
comprehensibility are paramount. The inability of educators to understand the machine learning 
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algorithms' decision-making process due to their black-box nature has been a key barrier in the 
learning space [5,6].  Because of this, there is increasing interest in building and evaluating 
interpretable machine learning models that can be used to identify student adaptability factors. These 
models should not only produce precise predictions but also offer valuable insights into the decision-
making process. 

Student adaptability is a complex construct encompassing the ability to effectively adapt, learn, 
and succeed in diverse educational settings. It involves factors such as socio-economic background, 
individual learning styles, technological proficiency, and environmental influences [7,8]. 
Understanding and measuring adaptability require a holistic approach that integrates diverse data 
sources and utilizes sophisticated models capable of capturing intricate patterns within these 
datasets. Even though machine learning models perform predictably well across a range of areas, 
their opacity poses a substantial difficulty when used to educational settings. Interpretability issues 
make it more difficult for stakeholders to understand model predictions and restrict the discovery of 
useful information that is essential for creating customized interventions that improve student 
flexibility. In order to close this gap, new developments in interpretable machine learning methods 
provide ways to decipher how complicated models make decisions [9–11]. 

In response to the evolving challenges and opportunities in education, this study innovates by 
introducing a comparative analysis of a novel combination of interpretable machine learning models 
tailored to enhancing our understanding of student adaptability. Through the meticulous 
employment of SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic 
Explanations (LIME), Anchor, Accumulated Local Effects (ALE), and counterfactual explanations, we 
navigate the intricacies of balancing model interpretability against predictive accuracy. By leveraging 
a dataset rich in student attributes and adaptability levels, our research offers unprecedented insights 
into the predictors of adaptability, navigating the complexities inherent in educational data. 
Grounded in cutting-edge techniques and established educational theories, our methodology 
facilitates a detailed examination of the myriad factors influencing student outcomes. The application 
of machine learning in this context, with its capacity to analyze complex datasets and reveal intricate 
patterns, marks a significant advancement in educational research. This study not only underscores 
the predictive power and interpretability of machine learning models but also highlights their 
potential to inform targeted, effective educational interventions, thereby pioneering a comprehensive 
exploration aimed at unveiling and acting upon the factors influencing student adaptability, thereby 
fostering informed and personalized educational strategies. 

The rest paper is arranged as follows: Section 2 provides an overview of related work on (XAI) 
and interpretable models for student adaptability. Section 3 describes the methodology. Section 4 
presents the results of the experiments, while Section 5 discusses comparative analysis of XAI 
techniques and synthesis of findings. Finally, Section 6 discusses future work and conclusions. 

2. Related Work 

Numerous studies have explored the correlation between student adaptability and academic 
performance, retention rates, and overall learning outcomes. The link between learning flexibility 
and self-regulated learning (SRL) in junior high school students is examined in this study by She et 
al [12], with an emphasis on the mediating roles of academic motivation and self-management. Under 
China's "double reduction" educational program, the research looks at how these elements work 
together to support SRL, which is an important ability for students to succeed. The study's 
conclusions show the independent and cumulative mediation functions of academic motivation and 
self-management, as well as the noteworthy benefits of learning adaptability on SRL. This offers 
information to help students improve their learning practices and adjust to changes in schooling. 

Martin et al.'s systematic review [13] summarizes research on adaptive learning from 2009 to 
2018, with an emphasis on publishing patterns, instructional settings, techniques, and technology. 
After analyzing 61 articles, the study found that the number of publications peaked in 2015 and that 
higher education particularly in Taiwan and the US was the main topic of interest. The study focuses 
on several stages of instructional design in the field of adaptive learning research, such as learner 
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characteristics, needs assessment, and system design and implementation. Furthermore, it classifies 
adaptive technologies into systems, applications, teaching techniques, and design solutions, and 
adaptive strategies into categories based on learner models, content, and instructional models. In the 
review, it is emphasized how important it is to have more diverse research and rigorous methods in 
adaptive learning. 

In their investigation of student adaptation following COVID-19-induced online learning, 
Tiwari et al. [14]  explore into Education 4.0. By using Explainable Machine Learning (XML), it 
investigates students' acceptance of Industry 4.0 features. Using a range of machine learning 
techniques, it finds that Neural Networks are the most accurate (93%) at classifying adaptation. The 
study emphasizes how crucial explainability is for machine learning models. It uses dataset analysis, 
model performance research, and (SHAP) techniques to clarify feature importance and model 
predictions. In the end, it emphasizes how important elements affecting students' capacity to adjust 
include age, socioeconomic situation, and type of internet. This thorough study helps teachers 
comprehend how pupils adjust to online learning and what effects it has. 

Adnan et al. [15] (XAI) model that predicts student performance in virtual learning 
environments at various course stages with detailed interpretability, utilizing Random Forest among 
other algorithms and incorporating SHAP values for insight into decision-making processes. This 
enhances educational data mining by enabling early performance prediction. In a related context, 
Gligorea et al. [16] develop an interpretable machine learning framework to analyze and predict 
student performance, focusing on commitment and grades, and improving framework efficiency 
through algorithmic tuning and GPU-based infrastructure. Another study [5] explores early 
prediction of student performance using machine learning and XAI. Logistic regression yielded the 
best results, and the integration of XAI helped educators understand the predictions, aiming to 
support at-risk students promptly. 

The adaptability of Bangladeshi pupils to online learning amid the COVID-19 pandemic is 
investigated by Suzan et al. [1] the study uses machine learning models including Decision Tree, 
Random Forest, Naive Bayes, SVM, KNN, and ANN and conducts surveys across different 
educational levels. The Random Forest Classifier, which focuses on sociodemographic characteristics, 
has the best accuracy (89.63%). This study provides insightful information for educational 
policymakers by illuminating the difficulties and degrees of adaptation faced by students in the 
context of online learning. The results highlight the need of comprehending student flexibility for the 
successful implementation of online learning and offer directions for future study in evaluating 
sociodemographic impacts on students' mental health in online learning. 

LIME  was introduced by Ribeiro et al [9]. LIME increases user trust in machine learning 
models, which are sometimes viewed as mysterious black boxes, by providing clear explanations for 
every classifier's predictions. By building an interpretable model around the prediction, the method 
offers faithful and understandable local explanations. Additionally, it suggests a way to use a group 
of representative individual forecasts to explain the global model. The study illustrates how LIME 
may be used to explain a wide range of models and how useful it is in situations when trust is needed, 
such as when choosing models, enhancing classifiers, and comprehending model choices. Rao et al.'s 
[17] study explores (XAI) in healthcare predictive models, highlighting its potential to enhance trust, 
transparency, and clinical decision-making in medical diagnostics. 

A unique model-agnostic method called anchors is introduced in the publication "Anchors: 
High-Precision Model-Agnostic Explanations" by Ribeiro et al [11]. Anchors are used to explain 
complicated model behaviors using high-precision rules. Anchors give clarity and simplicity of 
comprehension by representing local variables necessary for predictions. With high-probability 
assurances, the authors suggest an algorithm to calculate these explanations for every given black-
box model. The versatility of anchors is shown in a number of domains, such as text, tabular data, 
and pictures. A user research demonstrates that, in comparison to current linear explanations, 
anchors enable more precise and effective prediction of model behavior on unseen instances. This 
method offers a compromise between accuracy and understandability in model explanations, 
addressing the interpretability problem in machine learning. 
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To examine several approaches to machine learning counterfactual explanations, highlighting 
their significance for comprehending and assessing AI judgments. Using determinantal point 
processes, Mothilal et al.'s research [18], focuses on producing a variety of realistic counterfactuals 
while taking user context into account for realism. Their tests demonstrate that their approach 
generates locally correct counterfactuals, improving machine learning systems' decision-making 
capabilities. Van Looveren and Klaise [19] provide a fast, model-independent technique for creating 
counterfactual scenarios with class prototypes that works with a variety of data kinds. By using this 
approach, black-box model interpretability is enhanced and computational difficulties are resolved. 
Finally, Wachter et al. [20], address counterfactual explanations in relation to the General Data 
Protection Regulation (GDPR), emphasizing how they can make automated judgments more 
transparent without jeopardizing the specifics of private algorithms. Collectively, these works 
highlight the significance of counterfactual explanations in making AI more understandable and 
accountable. 

3. Methodology 

3.1. Dataset 

This research dataset is taken from Kaggle.com [21] and consists of an instance with 1205 rows 
and 14 features (columns) with these columns: Gender, Age, Education Level, Institution Type, IT 
Student, Location, Load-shedding, Financial Condition, Internet Type, Network Type, Class 
Duration, Self Lms, Device, and the Adaptivity Level which is the target feature with the adaptivity 
level set to Low, Moderate or high adaptivity level. This dataset was chosen for its rich representation 
of student demographics, allowing a detailed exploration of student adaptability's multifaceted 
nature, highlighting the interplay of socio-economic, institutional, and personal factors impacting 
student adaptability. In order to ensure a thorough assessment of the prediction performance and 
interpretability of the machine learning models used, we used 80% of the dataset (964 instances) for 
training the models and the remaining 20% (241 instances) for testing the models for this study. 

We trained and tested our machine learning models using an 80/20 split in this study's 
methodology. The choice was taken in light of our dataset's size and characteristics, which limited 
the possibility of assigning a distinct validation set without appreciably decreasing the size of the 
training set. In order to guarantee the accuracy of our model predictions, we placed a high priority 
on keeping a solid training dataset. We do identify this as a research drawback, though, since an extra 
layer of model evaluation and fine-tuning may have been supplied by a second validation step. 

3.2. Research Framework 

This paper's main contribution is its innovative approach to evaluating student adaptability 
predictions from ML models, a critical component in educational settings. The proposed method, 
outlined in Figure 1, is a comprehensive, multi-stage process that begins with meticulous data 
collection, ensuring a robust foundation for subsequent analysis. The preprocessing stage addresses 
the typical challenges of educational data, such as encoding categorical variables and normalizing 
features, to prepare a clean, analysis-ready dataset. 
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Figure 1. Block Diagram for implementing the Proposed framework. 

The method's thorough training of a wide range of machine learning models, from simpler ones 
like Multinomial Logistic Regression to more complex ensembles, is one of its distinguishing features. 
This inclusive approach not only compares predictive power across various algorithms but also 
enhances the process of interpretation analysis by providing diverse perspectives on the same 
dataset. The central tenet of the methodology is the application of multiple XAI techniques, such as 
SHAP, LIME, Anchors, Counterfactuals, and ALE. This diverse mix allows for a detailed exploration 
of how different features influence the adaptability predictions, providing global and local 
interpretability. Each XAI technique offers unique insights: SHAP quantifies feature contributions, 
LIME provides locally faithful explanations, Anchors generate high-precision rules, Counterfactuals 
suggest minimal changes for outcome alteration, and ALE analyzes feature effects, averting 
confounding interactions. 

The subsequent comparative analysis of these XAI techniques is a methodological innovation 
that critiques their coherence, identifies consistencies, and pinpoints anomalies in their explanations. 
The final synthesis of findings distills a holistic understanding of the ML models, offering actionable 
insights for educational stakeholders. This methodology empowers educators and policymakers with 
a deeper comprehension of the predictive models, facilitating informed decisions to foster student 
adaptability in diverse learning environments. 

3.3. Data Preprocessing 

We process the data by loading the dataset using the data manipulation library ‘Pandas’ in 
Python. Understanding the dataset's structure is necessary for further investigation. The 
characteristics and target columns may be identified by reviewing the column titles; to understand 
the data distributions depicted in Table 1, summary statistics for numerical columns must be 
collected. Categorical variables are converted into a numerical format using One-Hot Encoding. 
Scaling of numerical features using the `StandardScaler` method ensures uniformity in the 
magnitude of features. The mapping for our target variable was Moderate: 2, Low: 1, High: 0. The 
handling of unbalanced data is then considered and customized to meet the needs of the model and 
particular dataset features. The dataset is then split into training and testing sets using 
`train_test_split` for building the model and model evaluation. 

Adaptivity Level is the target variable for classification. This column contains three different 
levels: Moderate, Low and High. Feature distribution of the adaptivity level in the dataset yields the 
following frequency counts: Moderate: 625, Low: 480 and High: 100, from these counts, you can see 
that the dataset is not perfectly balanced. 
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Table 1. Summary statistics of the dataset. 

Variable Count Unique Top Freq 
Gender 1205 2 Boy 603 

Age 1205 6 21-25 374 
Education Level 1205 3 School 530 
Institution Type 1205 2 Non-Government 623 

IT Student 1205 2 No 501 
Location 1205 2 Yes 135 

Load-shedding 1200 2 Low 1004 
Financial Condition 1206 3 Mid 676 

Internet Type 1205 2 Mobile 655 
Network Type 1205 3 4G 775 
Class Duration 1205 3 1-3 840 

Self Lms 1205 2 No 955 
Device 1205 3 Mobile 1013 

Adaptivity Level 1205 3 Moderate 625 

The student adaptivity levels are shown in Figure 2 as a balanced frequency chart after using the 
Synthetic Minority Over-sampling Technique (SMOTE). This visualization represents the 
distribution of adaptivity levels (Moderate, Low, and High) after addressing the initial class 
imbalance inherent in the dataset. Before the application of SMOTE, the adaptivity levels were not 
proportionately distributed, which could have led to a predictive model biased toward the majority 
class. By synthesizing new examples of the minority classes, SMOTE equalizes the representation of 
each adaptivity level, as depicted in the figure. 

 
Figure 2. Balanced Frequency plot of Adaptivity level. 

Each bar in the graph corresponds to one of the three adaptivity levels, and the height reflects 
the frequency of instances within the dataset after balancing. The near-equal heights of the bars 
indicate that each class now has a similar number of instances (625), thus ensuring that the predictive 
models trained on this dataset are not biased towards any particular adaptivity level. 

3.4. Model Training 

We undertake a series of extensive classification experiments by applying several machine 
learning algorithms to classify levels of student adaptability. They were analyzed and classified as 
shown in Table 2. 
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Table 2. Models Trained and Their Parameters. 

S/N Model Parameters Values 

1 
Multinomial Logistic  

Regression 
MaximumIterations(max_iter)

multi_class 
1000 
auto 

2 Decision Tree 

max_depth 
min_samples_leaf 
min_samples_split 

criterion 
splitter 

max_features 

range (1, 20, 2) 
range (1, 100, 5) 

range (2, 10) 
gini and entropy 
best and random 

sqrt 
3 Random Forest random_state 0 
4 K-Nearest Neighbors n_neighbors 5 

5 XG Boost 
max_depth 

learning_rate 
n_estimators 

5 
0.01 
200 

6 Gradient Boosting n_estimators 
random_state 

100 
42 

7 Gaussian Naive Bayes Gaussian Naive Bayes Normal no special 
setup 

8 Support Vector Machine (SVM) 
Kernel 

Regularization Parameter (C) 
Random State 

Linear 
1.0 
42 

9 Ensemble 

Random Forest Classifier 
random_state 

Gradient Boosting Classifier 
random_state 

Logistic Regression 
max_iter 

random_state 
Ensemble method used 

 
42 

 
42 

 
1500 
42 

voting 

10 AdaBoost 

Base Classifier 
max_depth 

n_estimators 
random_state 

Decision Tree 
1 

50 
42 

11 CatBoost 

Iterations 
Depth 

learning_rate 
verbose 

random_state 
early_stopping_rounds 

1500 
6 

0.1 
200 
42 
50 

12 Neural Network 

Input Layer 
Activation Function 
First Hidden Layer: 

Units 
Second Hidden Layer 

Units 
Third Hidden Layer 

Units 
Output Layer 

Units 
Activation Function 

X_train_stand 
ReLU 

 
64 

 
32 

 
16 

 
3 

Softmax 
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3.5. Explainable Artificial Intelligence (xAI) Used 

The classifications made by the models are then analyzed using several (XAI) techniques to 
interpret the model's decision-making process. These techniques include: 

3.5.1. SHAP (Shapley Additive exPlanations) 

SHAP is a high-level machine learning interpretability method built on game theory concepts to 
explain the output of any machine learning technique. It was developed by Lundberg and Lee as a 
unifying approach to explaining the predictions of machine learning algorithms. The SHAP value 
measures the predictive influence of each feature on the base prediction. The base prediction is 
typically the average prediction of the dataset used to train the model [10]. The SHAP value for the 
i-th feature is calculated using the formula: ϕ୧ = ෍ |S|! ሺ|F|− |S| − 1ሻ!|F|! ሾF୶ሺS ∪ ሼiሽሻ − f୶ሺSሻሿୗ⊆୊\{୧}  (1)

where: ϕ୧ is the SHAP value for the i-th feature, S is a subset of all features F excluding the i-th 
feature, f୶(S) is the prediction made by the model using only the features in set S, ∣S∣ is the number 
of features in set S, and ∣F∣ is the total number of features. 

For example, consider a machine learning model that predicts student adaptability based on 
various features. Let's calculate the SHAP value for the feature ‘Class Duration’. The base prediction 
(the average prediction of the training dataset) might have a 50% chance of a student being adaptable. 
If a particular student studies 5 hours a day and this changes the prediction to 70% adaptability, the 
SHAP value for ‘Class Duration’ in this case would quantify how much of that 20% increase is 
attributed to studying 5 hours specifically, compared to the average student. To apply this, one would 
calculate the difference in prediction with and without the ‘Class Duration’ feature over all possible 
combinations of other features, weighted by the number of features included. This exhaustive 
calculation considers all possible interactions with other features, thus allocating the ‘Class Duration’ 
feature its fair share of influence on the increase in adaptability prediction. 

The SHAP framework meets several desirable qualities, including consistency, missingness, and 
local accuracy, and it is model-agnostic any machine learning technique can adopt [22–25]. These 
characteristics guarantee the accuracy and dependability of SHAP explanations, which makes them 
especially useful in critical situations where interpretability is just as crucial as predictive 
performance. SHAP is used in many fields, such as energy to predict power consumption trends, 
healthcare to assess patient risk, and finance to evaluate credit risk. Its broad use highlights how 
crucial interpretability is to machine learning [24,26]. 

The practical application of SHAP in our study allows us to identify the most influential factors 
determining student adaptability. For example, SHAP analysis revealed that "Class Duration" and 
"Financial Condition" are critical in predicting adaptability levels. This insight is invaluable for 
educational institutions seeking to understand the determinants of student success and can inform 
targeted interventions to support student adaptability. 

3.5.2. LIME (Local Interpretable Model-Agnostic Explanations) 

LIME is a machine learning technique that provides an accurate and understandable explanation 
for the classification made by machine learning models [9]. LIME works by perturbing input data 
and observing changes in the model's predictions. It then selects the most influential features for a 
particular prediction and fits a simple model, such as a linear regression, to these features. LIME 
seeks to explain the reasoning behind a model’s prediction y for an individual instance x by 
approximating the complex model f locally with an interpretable model g. This interpretable model, 
typically a linear model, operates on a binary feature representation z′, which is derived from the 
original feature space of x. The local surrogate model is defined as: 𝑔ሺ𝑧ᇱሻ = 𝛽଴ + ෍ 𝛽௜௡௜ୀଵ 𝑧௜ᇱ (2)
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where: 𝑔ሺ𝑧ᇱሻ represents the prediction of the interpretable model, β_0 is the intercept term of the 
linear model, 𝛽௜ represents the weight associated with the 𝑖-th feature in the interpretable space, and 𝑧௜ᇱ is the binary representation of the i-th feature. 

LIME aims to optimize the following objective function: 𝜉ሺ𝑥ሻ = 𝑎𝑟𝑔min௚∈ீ ℒ ሺ𝑓,𝑔,𝜋௫ሻ + Ωሺ𝑔ሻ (3)

where: ξ(x) is the local explanation for the instance x, ℒ measures the fidelity of 𝑔 in approximating 
f within the locality defined by 𝜋௫, Ωሺ𝑔ሻ quantifies the complexity of the interpretable model 𝑔, and 
G denotes the family of interpretable models, such as linear regressions or decision trees. 

Consider a machine learning model that predicts a student's adaptability level. For a particular 
student, the model predicts a "High" adaptability level. LIME is employed to explain this prediction, 
focusing on features like ‘Class Duration’, ‘Financial Condition’, and ‘Institution Type’, etc. 
Perturbing the input data around the student's features, LIME fits a local linear model to these 
perturbations to approximate the prediction of the original complex model f. The linear model 
constructed by LIME provide the following coefficients for an interpretable explanation: 

Adaptability Score=0.10+0.25×Class Duration−0.15×Financial Condition+0.10×Institution Type. 
An increase in ‘Class Duration’ by one unit (e.g., one hour) enhances the adaptability score by 0.25, 
suggesting the critical role of engagement time in educational adaptability. A decline in ‘Financial 
Condition’ from ‘Mid’ to ‘Poor’ (encoded as a decrease by one unit) reduces the adaptability score by 
0.15, highlighting the potential barriers faced by economically disadvantaged students. A positive 
change in ‘Institution Type’ from ‘Government’ to ‘Non-Government’ (encoded as an increase from 
0 to 1) raises the adaptability score by 0.10, possibly reflecting the influence of institutional resources 
and support. 

LIME explanation shows how each feature impacts the adaptability prediction. The positive 
coefficient for ‘Class Duration’ underscores the importance of classroom engagement in fostering 
adaptability, suggesting that longer classes may lead to better student outcomes. The negative 
coefficient for ‘Financial Condition’ points to the need for targeted support to students from less 
wealthy backgrounds. The positive coefficient for ‘Non-Government’ institutions indicates potential 
benefits of these environments, which may include innovative teaching methods or more 
personalized attention. 

Educational policymakers can leverage these insights to ensure that class time is used effectively, 
provide additional resources for students in need, and encourage beneficial practices observed in 
‘Non-Government’ institutions. This approach proves especially valuable in domains where 
decisions are individual-specific, such as healthcare, education, and finance [27]. The localized 
interpretability provided by LIME empowers stakeholders to make informed decisions, promoting 
adaptability and improving outcomes in these critical areas. 

3.5.3. Anchor 

The Anchor algorithm is designed to provide high-precision rules, known as anchors, which 
offer interpretable and reliable explanations for the decisions of machine learning models [8]. The 
interpretable explanations as high-precision rules, which are local conditions sufficient to guarantee 
the prediction with high confidence. An anchor explanation for a prediction can be expressed as: IFሺ𝐴ଵ ∧ 𝐴ଶ ∧ …∧ 𝐴௡ሻTHEN prediction 𝑃 with confidence c (4)

where: 𝐴௜ are anchor conditions (predicates) for features, P is the predicted class or outcome, and c 
is the confidence level associated with the rule. The algorithm aims to maximize the precision 
(confidence) of the anchor while ensuring that the coverage (the proportion of instances for which 
the anchor applies) is above a user-defined threshold. The objective function can be formulated as: Maximize Precision(𝐴) subject to Coverage(𝐴) > 𝜃 (5)
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where: Precision(A) is the probability that the prediction P is correct given that anchor A applies, 
Coverage(A) is the proportion of instances in the dataset for which anchor A applies, and θ is the 
coverage threshold. 

Suppose our machine learning model has predicted the adaptability level of students. To 
provide an interpretable explanation using the Anchor algorithm, consider an instance where the 
model predicts a student's adaptability level as "Moderate." After the application of the Anchor 
algorithm, the following rule-based explanation is produced: 

IF (Network Type >1) ∧(Age≤1) ∧ (Gender > 0) ∧ (Institution Type>0) ∧ (Financial Condition ≤ 1) 
THEN Predict ‘Moderate’ with confidence 97.32%. 

This explanation infers that for this particular student, the presence of certain conditions such as 
having access to a 3G or 4G network, being in the '16-20' age group, being female, attending a non-
government institution, and not being classified as 'Rich' in financial status, are collectively sufficient 
to predict a 'Moderate' adaptability level with high confidence. This rule-based explanation provides 
clarity on the factors influencing the adaptability prediction. It suggests that access to quality internet 
and certain demographic characteristics are significant predictors of adaptability. The high 
confidence level associated with this anchor allows educators to trust the prediction under the 
specified conditions. By identifying and understanding these anchor conditions, educational 
institutions can tailor support and interventions to improve student adaptability. For instance, efforts 
can be made to enhance internet access for students, and special attention can be given to gender-
specific educational experiences and resources for students from different socio-economic 
backgrounds. 

3.5.4. Accumulated Local Effects (ALE) 

ALE is a technique used to interpret the predictions of machine learning models, specifically 
focusing on understanding how features affect predictions on average. ALE addresses the limitation 
of global methods that average effects over the entire data distribution, which can be misleading if 
there are interactions between features. This method was developed to provide a better 
understanding of the feature effects by averaging them locally and thus avoiding the introduction of 
such interactions, as described by [28]. 

The ALE of a feature is given as 𝑋௝  at a particular value 𝑥௝  is calculated by integrating the 
marginal effects of 𝑋௝ over the range of the dataset, while marginalizing over the distribution of other 
features. For a given feature 𝑋௝, the ALE is computed as follows: 𝐴𝐿𝐸൫𝑥௝൯ = න ቆ𝐸 ቈ𝜕𝑓(𝑥)𝜕𝑥௝ |𝑋௝ = 𝑧቉ − 𝐸 ቈ𝜕𝑓(𝑥)𝜕𝑥௝ ቉ቇ௫ೕ௫ೕ,௠௜௡ 𝑑𝑧 (6)

where: 𝑓(𝑥) is the prediction model, డ௙(௫)డ௫ೕ  is the partial derivative of the model prediction with 

respect to the feature 𝑋௝ , 𝑥௝,௠௜௡  is the minimum value of the feature 𝑋௝  in the dataset, and  𝐸ൣ. |𝑋௝ = 𝑧൧ is the conditional expectation over the distribution of the dataset given the feature 𝑋௝ =𝑧. 
Consider a dataset where we aim to understand the impact of ‘Class Duration’ on the 

adaptability level of students. We can calculate the ALE for ‘Class Duration’ by following these steps: 

1. Discretize ‘Class Duration’ into a grid of values. 
2. For each interval in the grid, compute the difference in the model's prediction as ‘Class 

Duration’ changes within that interval. 
3. Accumulate these local effects across the grid to estimate the average effect of ‘Class Duration’ 

on the model's prediction. 

Presume after computing the ALE, we find that increasing ‘Class Duration’ from 1 hour to 3 
hours increases the model's prediction for ‘High’ adaptability by 0.2 on average. This implies that 
longer class durations are associated with a higher likelihood of students being classified as highly 
adaptable. 
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The ALE plot for ‘Class Duration’ might show a positive slope, which indicates that as ‘Class 
Duration’ increases, so does the adaptability prediction. Educational stakeholders can interpret this 
to mean that policies or interventions designed to extend class durations could potentially improve 
student adaptability levels. By integrating ALE into the predictive modeling process, educators and 
policymakers can gain a more detailed understanding of the factors that influence student outcomes. 
This understanding is crucial for designing educational environments that foster adaptability, a key 
component of student success in dynamic learning contexts. 

3.5.5. Counterfactual Explanations 

Counterfactual explanations are interpretability methods in machine learning that focus on 
"what-if" scenarios, illustrating minimal changes needed for desired output predictions. Originating 
from the philosophy of causation and decision-making, they provide insights into complex model 
decision-making, especially in classification tasks. Popularized by [14], they aim to provide 
explanations for machine learning model decisions that meet legal and non-discrimination 
requirements. 

Counterfactual explanations in machine learning involve finding an instance x′ that is minimally 
different from the original instance x but leads to a different prediction outcome. Counterfactual 
explanation seeks to solve the following optimization problem: 𝑚𝑖𝑛௫ᇲ𝑑(𝑥, 𝑥ᇱ) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓(𝑥′) ≠  𝑓(𝑥) (7)

where: f(x) is the prediction of the original instance, f(x′) is the prediction of the counterfactual 
instance, and d(x, x′) is a distance metric (such as Euclidean distance) that quantifies the dissimilarity 
between the original instance and the counterfactual. 

For example, imagine a machine learning model predicts a ‘Low’ adaptability level for a student 
based on features such as ‘Class Duration’, ‘Financial Condition’, and ‘Institution Type’. A 
counterfactual explanation might reveal that a slight increase in 'Class Duration' could change the 
prediction to ‘High’ adaptability. 

For instance, if the original feature values are  
x=[1 (Low Class Duration),0 (Poor Financial Condition),0 (Government Institution)] and the 

model's prediction f(x) is 'Low adaptability', a counterfactual explanation would search for a new set 
of feature values x′ that lead to a different prediction f(x′) = ‘High adaptability’. Suppose the 
counterfactual feature values are x′= [2 (High Class Duration),0,0], indicating that only ‘Class 
Duration’ needs to be increased to alter the prediction. The counterfactual explanation therefore 
might suggest that improving the ‘Class Duration’ from Low to High could enhance the student’s 
adaptability level according to the model. 

Counterfactual insights, like increased instructional time positively affecting student 
adaptability, guide educational resource allocation and intervention strategies. Educators, leveraging 
counterfactual explanations, pinpoint influential factors in the learning process for targeted 
improvements. This forms a feedback loop, enhancing both educational strategies and machine 
learning models. Beyond education, counterfactual explanations facilitate understanding and 
actionable insights in finance, revealing changes for loan approval, and in healthcare, illustrating 
shifts in patient risk categories based on lifestyle or clinical parameters [29,30]. 

4. Results and Discussion 

4.1. Experimental Setup 

A personal computer with a Core i7-6600v central processing unit (CPU), 16 GB DDRAM, and 
256 GB solid state drive was used for the research. A version of Python 3.11.5 packaged by Anaconda, 
Inc. was used. It ran Windows 10 Pro as its operating system. 
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4.2. Model Selection and Prediction 

A thorough comparison between many machine learning algorithms was carried out in an effort 
to identify the best model for the classification of student adaptability levels. These include 
Multinomial Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), 
XGBoost, Gradient Boosting, Gaussian Naïve Bayes, Support Vector Machine (SVM), Ensemble 
methods, AdaBoost, CatBoost, and Neural Networks. Tables II and III include confusion matrices 
and a variety of performance metrics, providing a comprehensive summary of each model's 
predictive performance. 

The three adaptability classes (High, Low, and Moderate) of each model's predictions were 
broken down in depth by the confusion matrices as shown in Table 3. For example, the Multinomial 
Logistic Regression model accurately predicted ‘High’ adaptability 11 times, but it also incorrectly 
categorized 7 ‘Moderate’ and 5 ‘Low’ instances as ‘High’. Understanding the predictive dynamics of 
each classifier, including their advantages and disadvantages in differentiating between classes, 
depends on the specificity of the data. 

To give a complete view of each model's effectiveness, the associated performance measures 
were generated, including accuracy, precision, recall, and F1 score for each class, as shown in Table 
4. Random Forest model had a strong predictive capacity overall, with precision values of 0.93, 0.94, 
and 0.94 for the High, Low, and Moderate classes, respectively. These results are further supported 
by the F1 scores, where high values show a balanced precision-recall trade-off. 

Table 3. Confusion Matrices of the Deployed Models. 

Actual 

Model Class Name 
Predicted 

High Low Moderate 

Multinomial Logistic Regression 
High 11 5 7 
Low 1 57 45 

Moderate 3 14 98 

Decision Tree 
High 15 0 8 

Low 2 95 6 

Moderate 1 7 107 

Random Forest 
High 15 0 8 
Low 2 97 4 

Moderate 0 7 108 

K-Nearest Neighbors 

High 10 1 12 
Low 1 89 13 

Moderate 2 19 94 

XG Boost 
High 12 0 11 
Low 3 67 33 

Moderate 2 8 105 

Gradient Boosting 
High 13 0 10 
Low 2 87 14 

Moderate 0 14 101 

Gaussian Naive Bayes 
High 13 3 7 
Low 2 62 39 

Moderate 6 20 89 

Support Vector Machine (SVM) 
 

High 13 1 9 
Low 3 57 43 

Moderate 4 9 102 

Ensemble 
High 12 1 10 
Low 0 92 11 

Moderate 0 4 111 
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AdaBoost 
High 8 3 12 
Low 2 69 32 

Moderate 3 22 90 

CatBoost 
High 15 0 8 
Low 2 95 6 

Moderate 0 8 107 

Neural Network 
High 15 0 8 
Low 2 93 8 

Moderate 0 7 108 

Table 4. Performance Metrics of The Deployed Models. 

Model Class 
 Name 

Precision Recall F1-score 

Multinomial Logistic Regression 
High 0.73 0.48 0.58 
Low 0.75 0.55 0.64 

Moderate 0.65 0.85 0.74 

Decision Tree 
High 0.88 0.65 0.75 

Low 0.88 0.92 0.90 

Moderate 0.88 0.89 0.88 

Random Forest 
High 0.88 0.65 0.75 
Low 0.93 0.94 0.94 

Moderate 0.90 0.94 0.92 

K-Nearest Neighbors 

High 0.77 0.43 0.56 
Low 0.82 0.86 0.84 

Moderate 0.79 0.82 0.80 

XG Boost 
High 0.71 0.52 0.60 
Low 0.89 0.65 0.75 

Moderate 0.70 0.91 0.80 

Gradient Boosting 
High 0.87 0.57 0.68 
Low 0.86 0.84 0.85 

Moderate 0.81 0.88 0.84 

Gaussian Naive Bayes 
High 0.62 0.57 0.59 
Low 0.73 0.60 0.66 

Moderate 0.66 0.77 0.71 

Support Vector Machine (SVM) 
 

High 0.65 0.57 0.60 
Low 0.85 0.55 0.67 

Moderate 0.66 0.89 0.76 

Ensemble 
High 1.0 0.52 0.69 
Low 0.95 0.89 0.92 

Moderate 0.84 0.97 0.90 

AdaBoost 
High 0.62 0.35 0.44 
Low 0.73 0.67 0.70 

Moderate 0.67 0.78 0.72 

CatBoost 
High 0.88 0.65 0.75 
Low 0.92 0.92 0.92 

Moderate 0.88 0.93 0.91 

Neural Network 
High 0.88 0.65 0.75 
Low 0.93 0.90 0.92 

Moderate 0.87 0.94 0.90 
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A comparison of the accuracy obtained by several machine learning algorithms used in the 
classification of student adaptability levels is shown in Figure 3. The accuracy of an algorithm is 
represented by each bar, which is measured as the proportion of test cases that are correctly classified, 
with Random forest coming the overall best with 91%, followed by Neural Network and Catboost 
with 90% each. Performance metrics and confusion matrices highlight how crucial model selection is 
in the field of educational data analytics. In particular, the Random Forest, CatBoost, and Neural 
Network models have demonstrated encouraging possibilities for use in learning environments with 
the goal of predicting and improving student adaptability. 

 
Figure 3. Model Accuracy Comparison. 

4.3. Result Analysis with XAI Techniques 

With our range of machine learning models, of which Random Forest performed the best with 
91% predictive accuracy, we sought to understand the decision-making processes that buttress their 
performance XAI. The following XAI techniques were used to illuminate the contributions and 
influences of features within our models. 

4.3.1. SHAP (Shapley Additive exPlanations) 

Using the mean SHAP as a guide, Figure 4 provides a detailed examination of how different 
factors affect the adaptability levels of students. SHAP values quantify the contribution of each 
feature to the predictive model’s output, offering a measure of importance based on average impact 
magnitude. This bar graph segregates the influence of features into three adaptability predictions: 
High (green), Moderate (blue), and Low (pink). The length of each bar represents the mean absolute 
SHAP value, which is a composite measure of both the strength and consistency of a feature’s effect 
on the model's predictions. ‘Class Duration’ emerges as a dominant feature, its substantial mean 
SHAP value indicating a significant and positive correlation with student adaptability across all 
levels. Its greatest impact is observed in the High adaptability category, suggesting that extended 
instructional periods may enhance a student's ability to adapt to varying educational demands. 
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Figure 4. (Global Explanation) Mean Impact of Features on Predicted Student Adaptability Levels 
Using SHAP Values. 

‘Financial Condition’ is another prominent feature, especially in predicting Low adaptability, 
highlighting the potential obstacles faced by students with fewer economic resources. Similarly, 
‘Institution Type’ displays a varied influence, with a positive association for High adaptability, 
possibly reflecting the superior resources and support available at certain institutions. 

On the other hand, ‘Load-shedding’ predominantly affects Low adaptability predictions, 
alluding to the detrimental effects of inconsistent electricity on educational continuity. Meanwhile, 
demographic attributes such as ‘Age’ and ‘Gender’ show moderate effects, indicating their complex 
but less pronounced roles. Technology-related attributes, namely ‘IT Student’ status and ‘Device’ 
usage, although impactful, have lesser mean SHAP values, suggesting their influence is secondary 
compared to educational and socio-economic factors. 

This figure illustration using SHAP values highlights how diverse student adaptation is. It gives 
educational stakeholders a data-driven platform to build focused interventions that enhance positive 
aspects and lessen negative ones, creating a climate that encourages flexible learning. 

The use of SHAP in a prediction model to ascertain student adaptability levels is seen in Figure 
5. The figure is divided into three parts: (a) the attribute attributes under analysis, (b) the 
corresponding SHAP values, and (c) the force plot. The base value (f(x)) represents the average output 
when no features affect the prediction. In this instance, the model predicted a 'Low' adaptability level, 
indicated by a prediction value of 1. Features with red segments, such as 'Education Level' and 
'Network Type', contribute to a higher adaptability prediction ('Moderate' or 'High'), while features 
with blue segments, such as 'Financial Condition' and 'Self Lms', are associated with a lower 
adaptability prediction ('Low'). The force plot elucidates the model's complex reasoning for an 
individual prediction. For example, a favorable 'Financial Condition' and access to 'Internet Type' 
influence the adaptability prediction away from 'High', while the absence of engagement with 'Self 
Lms' and lower 'Education Level' push the prediction towards 'Low' adaptability. The analysis of this 
figure helps educational institutions understand the complex causes of student adaptability and fit 
their resources and interventions accordingly. 

 
(a) 
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(b) 

 
(c) 

Figure 5. SHAP Force Plot for an Individual Prediction of Student Adaptability. (a) Instance for an 
explanation (b) SHAP value of the instance (c) Instance local explanation. 

4.3.2. LIME (Local Interpretable Model-Agnostic Explanations 

A single prediction from a machine learning model that categorizes student adaptability levels 
is shown in Figure 6, along (LIME) study. The adaptation levels that the model predicts are 'Moderate' 
(probability = 0.62) and 'Low' (probability = 0.38). The prediction for 'High' adaptability is highly 
unlikely based on the given feature values. 

 

Figure 6. (Local) Interpretation of a Model Prediction Using LIME. 

The middle section illustrates the weighted impact of each feature on the prediction decision, 
with positive contributions towards a 'Not Low' adaptability prediction. For instance, 'Class 
Duration' and 'Institution Type' exhibit the most significant positive influence, suggesting that longer 
class durations and certain institutional characteristics may be associated with higher adaptability. 
Conversely, features such as 'Device' and 'IT Student' status have a notable negative weight, implying 
that the absence of certain technological factors may lead the model to predict a lower adaptability 
level. 

The rightmost section lists the values of the features for the specific instance being explained, 
with orange representing positive contributions and blue for negative ones. This visualization aids 
in understanding the local behavior of the machine learning model, providing transparency into how 
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feature values are aggregated into a predictive outcome. The LIME interpretation offers valuable 
insights for educators and policymakers by pinpointing specific areas that could be addressed to 
potentially improve a student's adaptability. It also emphasizes the intricate nature of the factors that 
impact educational outcomes and highlights the requirement for sophisticated approaches in 
educational interventions. 

4.3.3. ANCHOR Explanation 

Table 5, illustrate how Anchor algorithm predicts a 'Moderate' level of adaptability in students 
when present, based on specific features. Network Type greater than 1.00 indicates that at least 3G or 
4G connectivity is associated with a 'Moderate' adaptability prediction, reflecting the importance of 
reliable internet access for students' ability to adapt to contemporary educational demands. Age less 
than or equal to 1.00 corresponds to students in the age group '16-20', revealing that adaptability may 
be particularly complex during late adolescence. Gender greater than 0.00 suggests that female 
students are predicted to have 'Moderate' adaptability, indicating gender-specific educational 
experiences or socialization patterns that influence adaptability. Institution Type greater than 0.00 
refers to students attending 'Non-Government' institutions, suggesting that these institutions may 
have different resource levels or pedagogical approaches. Financial Condition less than or equal to 
1.00 captures 'Mid' or 'Poor' economic backgrounds, emphasizing the role of socioeconomic status in 
shaping a student's adaptability. 

Table 5. (Local) Anchor Explanation for a 'Moderate' Adaptability Prediction. 

Anchor Explanation Condition 
Feature Condition 

Institution Type >1.00 
Age <=1.00 

Gender >0.00 
Financial Condition <=1.00 

Precision 0.9732360097323601 
Coverage 0.0888 

Predicted Class Moderate 

The precision and coverage metrics accompanying these rules indicate a high level of reliability 
and relevance within the dataset, suggesting these findings are consistent and pertinent to a subset 
of the student population. By integrating these interpretive insights into the study, educators and 
policymakers can better understand the factors contributing to student adaptability levels and inform 
initiatives to upgrade digital infrastructures. The distinction between government and non-
government institutions in adaptability predictions may reflect differential access to resources, 
student support, and extracurricular opportunities, prompting a re-evaluation of resource 
distribution to ensure all institutions can foster student adaptability. 

4.3.4. Accumulated Local Effects (ALE) Explanation 

The ALE feature importance analysis, as visualized in Figure 7, provides compelling insights 
that can guide educational strategies and policy-making. The significant importance of 'Class 
Duration' suggests that students benefit from extended learning sessions, which may offer a more 
immersive educational experience. This finding supports the pedagogical approach of increasing 
instructional time to enhance understanding and retention. Policymakers might consider revising 
academic schedules to integrate long class periods or more intensive study sessions that could better 
support students' adaptability and learning outcomes. 
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Figure 7. ALE Feature Importance for Predicting Student Adaptability Level. 

The importance of ‘Age’ as a predictive factor of adaptability underscores the importance of 
developmental considerations in educational planning. Younger students may require more 
structured support to foster adaptability, such as resilience training and social-emotional learning 
programs. In contrast, older students may benefit from opportunities that challenge their adaptability 
skills, such as project-based learning and collaborative assignments that mirror real-world scenarios. 

The impact of ‘Financial Condition’ on adaptability predictions reinforces the link between 
economic factors and educational success. This suggests an urgent need for policies that aim to level 
the playing field, such as providing financial aid, resources, and support systems for students from 
less affluent backgrounds. Ensuring that all students have equal access to educational resources is 
not just a matter of fairness but also a strategic investment in the adaptability and resilience of the 
future workforce. 

Gender, network type, and education level highlight the multifaceted nature of adaptability. 
These findings suggest a tailored approach where educational interventions are sensitive to gender 
dynamics, technological access, and institutional characteristics. For example, initiatives to bridge the 
digital divide by improving network connectivity can have far-reaching effects on students' ability to 
access and engage with digital learning platforms, a necessity in an increasingly connected world. 

Furthermore, the lower importance of features such as 'Self Lms', 'IT Student', and ‘Device’ does 
not diminish their value but rather indicates that their influence on adaptability may be more 
conditional or indirect. This could inform a carefully balanced approach to technology integration in 
education, ensuring that technology enhances learning without widening the gap between different 
student groups. 

Lastly, the feature 'Load-shedding' highlights the external challenges students face, pointing to 
the broader social and infrastructural issues that can affect educational outcomes. Addressing such 
challenges may require collaborative efforts that extend beyond the education sector, involving 
partnerships with community organizations and government agencies to provide stable learning 
environments. 

The ALE feature importance analysis thus serves as a guide for developing comprehensive 
educational policies and practices that consider the complex interplay of individual, institutional, and 
societal factors affecting student adaptability. By focusing on these key features, educators and 
policymakers can create more supportive and effective learning environments that cater to the 
diverse needs of students, fostering an educational ecosystem that is both equitable and conducive 
to developing adaptable learners. 

Our analysis utilized (ALE) plots to visualize the impact of three critical features Class Duration, 
Age, and Financial Condition on the predicted adaptability levels of students. The resulting plots 
offer insightful revelations that intersect with contemporary educational theories and bear significant 
policy implications, see Figure 8. 
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(a) (b) (c) 

Figure 8. ALE Plots for Three Most Influential Features, (a) Class Duration, (b) Age, and (c) Financial 
Condition on Student Adaptability Predictions. 

Class Duration: 
The ALE plot for ‘Class Duration’ indicates that longer class times are positively associated with 

'High' adaptability predictions. This finding aligns with educational theories that stress the 
importance of sustained engagement for deeper learning and adaptability. It suggests that extended 
instructional periods may provide students with more opportunities to assimilate information, 
engage with challenging concepts, and develop critical thinking skills, all of which are crucial for 
adaptability in rapidly changing educational landscapes. Policy-wise, this supports arguments for 
restructuring school schedules to allow for longer class periods, potentially leading to improved 
educational outcomes. 

Age: 
The relationship between ‘Age’ and adaptability is less direct, as shown by the minor 

fluctuations across adaptability levels. However, the general trend indicates that ‘Low’ adaptability 
decreases with age. This could reflect the development of coping mechanisms and resilience as 
students mature, a concept supported by developmental theories. The varied adaptability across age 
groups could inform the design of age-specific curricula and support services, tailoring educational 
strategies to the developmental stage of the student cohort. 

Financial Condition: 
The steep positive slope for ‘High’ adaptability with improved 'Financial Condition' underscores 

the pivotal role of economic stability in educational success, as posited by numerous studies linking 
financial security with better academic performance. The plot highlights a stark reality: students from 
more affluent backgrounds are likely to be more adaptable, possibly due to greater access to 
resources, extracurricular activities, and learning support. This insight has profound policy 
implications, emphasizing the need for equity-focused financial initiatives such as scholarships, 
grants, and resource allocation to schools serving economically disadvantaged communities. 

The ALE plots also reveal the multidimensional nature of student adaptability, validating 
educational theories, influencing classroom and curriculum design, and emphasizing the need for 
comprehensive policies to address diverse factors contributing to student adaptability. 

4.3.5. Counterfactual Explanation 

Figure 9 details a counterfactual analysis for Instance 3, where a model's original prediction of a 
student’s adaptability level as 'Moderate' (coded as 2) is altered to 'Low' (coded as 1). This analysis is 
pivotal in understanding the sensitivity of the predictive model to changes in feature values. The 
original feature vector [1321011011111] encapsulates the student's profile, with each element 
corresponding to various features such as Gender, Age, Education Level, etc., as outlined in the 
research methodology. The counterfactual vector [1. 3. 2. 1. 0. 1. 1. 0. 1. 1. 0.49932724 1. 1.] presents 
the minimal adjustment required to flip the prediction outcome. Notably, the alteration occurs at the 
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eleventh feature, which we can infer relates to 'Class Duration' given the 'Feature differences' array 
indicating a change of [0.5]. This modification in 'Class Duration' decreases its value by 0.5. 
Considering our encoding scheme, where 'Class Duration' might be defined within a range (e.g., '0' 
for Low, '1' for Moderate, '2' for High), a decrease suggests a shift towards a shorter class duration. 
The model's understanding that a reduced ‘Class Duration’ indicates a ‘Low’ adaptability level may 
stem from a pattern observed in the data, where shorter class durations are linked to low adaptability. 

 
Figure 9. Counterfactual Analysis Illustrating Adaptability Prediction Shift. 

The implications of this finding are significant for educational practices. It suggests that ensuring 
adequate class time may be critical for student adaptability, echoing educational theories that 
emphasize the role of engagement time in skill development and learning adaptability. Policymakers 
may need to consider this relationship when designing curriculum schedules, advocating for 
sufficient instructional time to foster an adaptable learning mindset. Also, this counterfactual result 
raises important questions for future research. Why might a slight reduction in 'Class Duration' 
correlate with a lower adaptability prediction? Does this relationship hold across various subjects 
and learning contexts? Such questions highlight the need for a deeper examination of the educational 
factors that contribute to student adaptability and the development of interventions that can 
effectively support students' learning journeys. 

The comparison between the original and counterfactual feature values for Instance 3 is shown 
in Figure 10. This comparison offers valuable insight into how the model predicts student 
adaptability levels. The bar chart highlights the differences between the original features that led to 
a 'Moderate' adaptability prediction and the counterfactual features that would result in a 'Low' 
adaptability prediction. The original feature values are denoted in blue, while the counterfactual 
values that could potentially alter the model’s outcome are shown in orange. Notably, most features 
remain unchanged between the original and counterfactual scenarios, except for 'Class Duration', 
which shows a decrement of 0.5 in the counterfactual case. This decrease suggests that a reduction in 
'Class Duration' is influential in shifting the adaptability prediction from 'Moderate' to 'Low'. 

 

Figure 10. Comparative Analysis of Original and Counterfactual Feature Values for Instance 3. 

The result also emphasizes the significant role that 'Class Duration' plays in the adaptability 
model, where a slight reduction in duration is the single change needed to alter the prediction. This 
finding has important implications for educational strategies, suggesting that maintaining or 
increasing class duration could be a critical factor in supporting higher adaptability levels among 
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students. Educators and administrators may use these insights to reassess the structure of the school 
day and the allocation of time to different subjects. The chart encourages a data-driven approach to 
curriculum planning, ensuring that students have sufficient time for in-depth exploration and 
learning, which is crucial for developing adaptability skills. This counterfactual analysis 
complements other interpretability techniques, such as SHAP and LIME, by providing a direct and 
tangible scenario where altering a single feature can change a student's predicted adaptability level. 
Such information is invaluable for policy formulation, as it highlights specific leverage points where 
educational interventions could be targeted to yield the most significant impact on student outcomes. 

5. Comparative Analysis of XAI Techniques and Synthesis of Findings 

After completing an extensive training program involving a varied set of machine learning 
models, our research delved into a thorough examination of model predictions using a range of (XAI) 
techniques. Each technique offered unique insights into the decision-making processes underlying 
the adaptability predictions, with SHAP and ALE providing a global view of feature contributions, 
LIME and Anchors elucidating local, instance-specific explanations, Counterfactuals revealing the 
sensitivity of predictions to feature perturbations, and ALE plots assessing the average feature effects 
across the data distribution. A comparative analysis of the XAI outputs revealed both similarities and 
divergence in feature importance rankings and explanations. Accordance across methods reinforced 
the perceived significance of certain features, such as 'class duration' and 'financial condition', 
suggesting these are robust determinants of adaptability predictions. Divergences prompted a careful 
reconsideration of complex feature interactions and model behavior in various scenarios, guiding 
further analytical probing.  

This study leverages a diverse set of (XAI) techniques, including SHAP, LIME, Anchors, 
Counterfactual, and ALE, to comprehensively interpret student adaptability prediction models. The 
amalgamation of these methods sheds light on key features influencing adaptability levels, 
contextualizing predictions within the educational landscape. This holistic understanding forms the 
foundation for potential educational interventions, emphasizing the necessity of considering 
engagement duration and addressing socioeconomic factors. 

The research makes a unique and valuable contribution to the areas of machine learning 
interpretability and educational policy-making by utilizing a combination of different XAI 
approaches to clarify the decision-making processes of educational data models. It not only enhances 
the interpretability of educational data through a systematic comparative analysis of various XAI 
techniques but also identifies and examines the complex socio-economic, institutional, and 
demographic factors influencing student adaptability. The thorough exploration and results of this 
study provide the basis for developing detailed and targeted interventions. A notable feature of this 
research is its innovative methodology, which integrates and compares insights from several XAI 
techniques to gain a comprehensive understanding of model predictions.  This method offers a 
detailed perspective on how various factors affect student adaptability, enabling the creation of well-
informed and impactful educational policies and practices.  By bridging the theoretical aspects of 
machine learning with practical, actionable insights, the study demonstrates the value of XAI in 
crafting educational strategies that are both equitable and tailored to enhance student outcomes. 
These contributions represent a significant advancement in the responsible application of AI within 
the educational sector, ensuring that predictive models are leveraged in a manner that is both 
transparent and beneficial to student learning and adaptability. 

6. Conclusions 

This study uses (XAI) techniques to understand factors influencing student adaptability in 
education. The application of various methods, such as SHAP, LIME, Anchors, ALE, and 
counterfactual explanations, provides a comprehensive understanding of the dynamics influencing 
student adaptability. Key factors such as 'Class Duration', 'Financial Condition', 'Age', and 'Institution 
Type' are crucial in shaping students' ability to adapt in educational settings. These findings 
emphasize the importance of considering socio-economic and institutional factors when formulating 
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educational strategies. XAI has the potential to foster a data-informed educational landscape, 
allowing for personalized learning pathways and adaptive educational systems. Integrating AI and 
analytics into educational policy and practice can enhance educational outcomes and create a more 
inclusive and effective learning environment. Future inquiries should focus on analyzing 
longitudinal data to capture the temporal changes in adaptability and integrating qualitative data for 
richer, more personalized insights. Evaluating the real-world effects of interventions informed by 
XAI and updating the interpretability framework to align with new machine learning advancements 
will be crucial. Ensuring the ethical application of AI and maintaining transparency in AI-driven 
educational tools remain essential for the responsible progression of this field. 

We suggest adding a validation stage to the model creation procedure for future studies. This 
innovation may make it easier to fine-tune and validate the model in more subtle ways, which might 
improve interpretability and prediction performance. Investigating how a certain validation set 
affects the generalizability of machine learning models in educational contexts may yield insightful 
information that advances our knowledge of student flexibility and the efficient use of XAI methods. 
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