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Abstract: A one-dimensional model for fluid and solute transport in poroelastic materials (PEM) is studied.

Although the model was recently derived and some exact solutions, in particular steady-state solutions and their

applications, were studied, special cases occurring when some parameters vanish were not analysed earlier. Since

the governing equations are nonintegrable in nonstationary case, the Lie symmetry method and modern tools for

solving ODE systems are applied in order to construct time-dependent exact solutions. Depending on parameters

arising in the governing equations, several special cases with new Lie symmetries are identified. Some of them

have a highly nontrivial structure that cannot be predicted from a physical point of view or using Lie symmetries

of other real-world models. Applying the symmetries obtained, multiparameter families of exact solutions are

constructed, including those in terms of elementary and special functions (hypergeometric, Whittaker, Bessel and

modified Bessel functions). A possible application of the solutions obtained is demonstrated and it is shown that

some exact solutions can describe (at least qualitatively) the solute transport in PEM. The obtained exact solutions

can also be used as test problems for estimating the accuracy of approximate analytical and numerical methods

for solving relevant boundary value problems.
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1. Introduction

The poroelastic theory considers the system formed by an elastic material with pores that can
be penetrated by a fluid and/or dissolved solutes. A typical biological example is the glucose solute
penetrating a tissue layer. The basic theory of poroelasticity was developed by Biot [1] and its state-of-
the-art can be found in the well-known books [1–3] (see also recent studies, e.g., [4–8]). A poroelastic
material is considered as the superposition of two continuous media: the matrix (skeleton), occupying
the fractional volume θM, and the system of pores saturated by a fluid, occupying the fractional volume
θF (θF + θM = 1). The deformation of the system under the fluid pressure is described by a deformation
vector, and the dynamics of the deformation under the forces needs in general to be described by
second order tensors. The relationship between stress and strain is usually assumed to be linear. The
flux of fluid depends on the hydrostatic pressure and solute gradient (called osmotic pressure). The
diffusive and convective transport mechanisms should be taking into account as well. The general
three-dimensional theory describing transport in poroelastic materials (PEM) is very complex because
relevant mathematical models involve 3D nonlinear partial differential equations (PDEs). As a result,
in order to obtain analytical results, one-dimensional versions are usually discussed [9–11]. Here we
study a one-dimensional model for fluid and solute transport in poroelastic materials(PEM) that was
derived in [10] and generalized [11]. The governing equations of the model read as

2utx = k(pxx − σ1cxx), (1)

ρutt + ρtut + ρututx = (λ + 2µ)uxx − (px − σ1cx), (2)
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ρt + ρxut = k(ρ0
F − ρ)(pxx − σ1cxx), (3)

θFt + θFxut = k(1 − θF)(pxx − σ1cxx), (4)

(cθF)t + (cθF)xut + 2cθFutx = kS
(

c(px − σ1cx)
)

x
+ Dcxx, (5)

where σ1 = σRT and ρF = ρ0
F are positive constant and the lower subscripts t and x denote differentia-

tion with respect to these variables. The physical/biological meanings of the notations used above are
presented in Table 1.

Table 1. Description of the symbols used in equations (1)–(5).

Symbol Description
u deformation vector
ρ mass density
θF fractional volume of fluid phase F
θM fractional volume of matrix phase M
ρF mass density of fluid phase F
c solute concentration in PEM
p mechanical pressure in PEM
σ reflection coefficient of PEM

RT gas constant times temperature
λ + 2µ elastic modulus with Lame constants λ and µ

k hydraulic conductivity
D solute diffusivity in PEM

S = 1 − σ sieving coefficient of solute in the PEM

The nonlinear system of PDEs (1)–(5) was integrated in the stationary case. As a result, all steady-
state solutions were identified and examples of their application for the glucose fluid transport in a
biological tissue was provided [10]. In the nonstationary case, system (1)–(5) is not integrable, therefore
the classical Lie method [12–16] was adopted for search exact solutions. Nowadays this method is
widely used for construction of exact solutions of nonlinear PDEs arising in real-world applications
and the most remarkable works are cited in the above cited books. However, it can be easily noted
that there are not many studies devoted to multicomponent systems of PDEs because essential technical
difficulties occur if one intends to find exact solutions for such systems by applying Lie symmetries.
Taking into account the above observation, we refer the reader to the recent works [17–22], devoted to
applications of the classical Lie method to the nonlinear three-component systems of PDEs.

Although several nontrivial Lie symmetries were identified and successfully applied for finding
exact solutions in [10] (see also generalisations in [11]), some limiting cases have been not analysed
therein. In particular, the special cases D = 0 and/or S = 0 were not examined in [10,11]. It is proved
here that the special cases listed above lead to a rich Lie symmetry involving symmetry operators that
do not occur for system (1)–(5) with DS ̸= 0. It should be stressed that the governing equations with
D = 0 and/or S = 0 can still be used as a real-world model in some cases. For example, it is known
that the diffusion term in equation (5) is negligible (i.e. D = 0) if molecules of large size (because of
high atomic weight) are dissolved. A typical example is albumin, for which the diffusivity is circa 50
times smaller than the glucose diffusivity [23].

This paper is organised as follows. In Section 2, all possible extensions of the Lie algebra of
invariance of the nonlinear system of PDEs (1)–(5) are derived. It is proved that there are four
inequivalent cases when the system admits additional Lie symmetries depending on the values of the
parameters D and S. Section 3 is devoted to the constructions of exact solutions of system (1)–(5) with
S = 0. Because the system admits an additional Lie symmetry, new reductions to systems of ODEs
and, as a result, new exact solutions of the nonlinear model in question are derived. In Section 4, an
exact solution is analysed in order to show its applicability for modeling solute transport in PEM. The
analysis is supported by 3D plots of the solution. In Section 5, new exact solutions of the nonlinear
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system (1)–(5) with arbitrary D and S are constructed. The solution obtained were not identified in the
previous study [10]. In Section 6, we present conclusions highlighting the main results obtained.

2. Lie Symmetries

Here we start from the governing equations (1)–(5) of the model for fluid and solute transport in
poroelastic materials that was derived in [10]. By the application of the substitution

p∗x = px − σ1cx, (6)

where p∗ is a so-called effective pressure, the above system takes the form

2utx = kp∗xx,
ρutt + ρtut + ρututx = λ∗uxx − p∗x,
ρt + ρxut = k(ρ0

F − ρ)p∗xx
θFt + θFxut = k(1 − θF)p∗xx,
(cθF)t + (cθF)xut + 2cθFutx = Dcxx + kS(cp∗x)x.

(7)

In (7), parameters k, λ∗, D, and S are constants satisfying the restrictions

k > 0, λ∗ > 0, ρ0
F > 0, D ≥ 0, 0 ≤ S ≤ 1. (8)

Theorem 1. [10] System (7) with arbitrary given parameters k, λ∗, ρ0
F, D, and S is invariant under an

infinity-dimensional Lie algebra generated by the Lie symmetries :

∂t, ∂x, ∂u, x∂u, c∂c, g(t)∂p∗ , (9)

where g(t) is an arbitrary smooth function (hereafter, the notations ∂z ≡ ∂
∂z

, (z = t, x, u, . . . ) are used).

According to the standard terminology, Lie algebra (9) is called the principal algebra of system
(7) (see, e.g., Chapter 1 in [16]). Because the latter involves several parameters, a Lie symmetry
classification problem arises that was not solved in [10].

We remind the reader that Lie symmetry classification (LSC) problems (group classification
problems) are the most difficult those in Lie symmetry analysis. One may claim that Sophus Lie carried
out some theoretical foundations for solving LSC problems, in particular he has done classification
of Lie symmetries for a class of linear two-dimensional PDEs. During the last few decades, a vast
number of papers were published devoted to theoretical foundations and applications of algorithms
for classification of Lie symmetries of specific PDEs (systems of PDEs). Unfortunately, a misleading
terminology is used in many of them because instead of a complete solving of the LSC problem
for a given PDE, only examples of extensions of the principal algebra are presented. The current
state-of-the-art and the relevant list of most important publications can be found in [16] (see Chapter 2
therein).

Theorem 2. System (7) with restrictions (8) admits the extensions of the principal algebra (9) only in the cases
presented in Table 2.
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Table 2. Lie symmetries of system (7).

Restrictions Lie symmetries extending algebra (9)

1 S = 1, D ̸= 0 ∂c

2 S = 0, D ̸= 0 x∂p∗ +
x2

2λ∗ ∂u

3 S = 1, D = 0 h(c) ∂c

4 S = 0, D = 0 x∂p∗ +
x2

2λ∗ ∂u, cH2
(

θF−1
ρ0

F−ρ
, cθF

ρ0
F−ρ

)
∂c,

H1
(

θF−1
ρ0

F−ρ
, cθF

ρ0
F−ρ

)(
(θF − 1)∂θF +

c
θF

∂c

)
In Table 2, H1, H2 and h are arbitrary smooth functions.

Proof of this theorem is based on the infinitesimal criteria of invariance, which was formulated by
S. Lie in his pioneering works [12,13]. In the case of a system of PDEs of arbitrary order, this criteria
can be found, e.g., in [14] (see Section 1.2.5). Note, system (7) consists of five PDEs of the second order.
So, a linear first-order operator of the form

X = ξ0∂t + ξ1∂x + η1∂u + η2∂ρ + η3∂p∗ + η4∂θF + η5∂c

(here the coefficients ξ0, ξ1 and ηi, i = 1, . . . , 5, to-be-determined functions of independent and
dependent variables) is a Lie symmetry (operator of Lie’s invariance, point symmetry) of system (7)
provided the following equalities are simultaneously satisfied

X(2)
(

2utx − kp∗xx

)
= 0,

X(2)
(

ρutt + ρtut + ρututx − λ∗uxx + p∗x
)
= 0,

X(2)
(

ρt + ρxut − k(ρ0
F − ρ)p∗xx

)
= 0,

X(2)
(

θFt + θFxut − k(1 − θF)p∗xx

)
= 0,

X(2)
(
(cθF)t + (cθF)xut + 2cθFutx − kS(cp∗x)x − Dcxx

)
= 0,

(10)

for each solution
(

u(t, x), ρ(t, x), p∗(t, x), θF(t, x), c(t, x)
)

of the PDE system (7). Here X(2) is the
second-order prolongation of the operator X, which is again the first-order operator with coefficients
defined by the well-known formulae via the first- and second-order derivatives of unknown coefficients
ξ0, ξ1 and ηi (see, e.g., [14], Section 1.2.1).

After relevant calculations, formulae (10) are reducible to a linear system of PDEs, called the
system of determining equations (DEs), for finding the functions ξ0, ξ1 and ηi. Some of the equations
belonging to the system of DEs, do not contain parameters S and D, therefore solving them, we obtain
the most general form of the Lie symmetry operator

X = α0∂t + α1∂x +
( α4

2λ∗ x2 + α3x + α2

)
∂u + (α4x + g(t))∂p∗ + η4(ρ, θF, c)∂θF + η5(ρ, θF, c)∂c, (11)

where αi (i = 0, . . . , 3) are arbitrary constants and g(t) ia an arbitrary smooth function, while the
constant α4 and the functions η4 and η5 must satisfy the restriction Sα4 = 0 and the remaining DEs
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Sη4 = 0, Sη5
ρ = 0, Sη5

θF
= 0, (12)

Dη4
c = 0, Dη5

ρ = 0, Dη5
θF

= 0, Dη5
cc = 0, (13)

D(1 − S)
(

cη5
c − η5

)
= 0, S(1 − S)

(
cη5

c − η5
)
= 0, (14)

θ2
F

(
(ρ0

F − ρ)η5
ρ + (1 − θF)η

5
θF

)
− (1 − S) θF

(
cη5

c − η5
)
− cη4 = 0, (15)

θF

(
(ρ0

F − ρ)η4
ρ + (1 − θF)η

4
θF
+ η4

)
− cη4

c = 0. (16)

If one assumes that all parameters arising in (7) are arbitrary constants then the result presented
in Theorem 1 in a straightforward way is derived. However, here we need to determine all possible
values of parameters (under restrictions (8)) when a wider Lie symmetry occurs. Looking at the system
of DEs (12)–(15), one notes (see equations (12)) that two different cases, S ̸= 0 and S = 0, should be
separately examined.

In the case S ̸= 0, we immediately obtain α4 = 0, η4 = 0, η5
ρ = η5

θF
= 0. So, the system of

determining equations (12)–(16) is reduced to the form

Dη5
cc = 0, (1 − S)

(
cη5

c − η5
)
= 0.

If S ̸= 1 then one readily finds η5 = α5c, hence the principal algebra (9) is only obtained. However,
assuming S = 1, Cases 1 and 3 of Table 2 are obtained when D ̸= 0 and D = 0, respectively.

In the case S = 0, an extension of the principal algebra (9) via the operator x∂p∗ +
x2

2λ∗ ∂u can be
easily identified. If D ̸= 0 then Case 2 in Table 2 is obtained.

Finally, special values S = 0 and D = 0 lead to the widest Lie symmetry. In fact, equations
(12)–(14) simply disappear and the remaining equations are

θ2
F

(
(ρ0

F − ρ)η5
ρ + (1 − θF)η

5
θF

)
− θF

(
cη5

c − η5
)
− cη4 = 0, (17)

θF(ρ
0
F − ρ)η4

ρ + θF(1 − θF)η
4
θF
− cη4

c + θFη4 = 0. (18)

Solving equation (18), one finds

η4 = (θF − 1)H1

(
θF − 1
ρ0

F − ρ
,

cθF

ρ0
F − ρ

)
.

Substituting the above function into equation (17), the function

η5 =
c

θF
H1

(
θF − 1
ρ0

F − ρ
,

cθF

ρ0
F − ρ

)
+ cH2

(
θF − 1
ρ0

F − ρ
,

cθF

ρ0
F − ρ

)

is obtained. Thus, the Lie symmetry operator (11) with the above functions η4 and η5 produce exactly
the Lie symmetries

cH2

(
θF − 1
ρ0

F − ρ
,

cθF

ρ0
F − ρ

)
∂c, H1

(
θF − 1
ρ0

F − ρ
,

cθF

ρ0
F − ρ

)(
(θF − 1)∂θF +

c
θF

∂c

)
,

listed in Case 4 of Table 2.
The proof is completed.

Although the cases listed in Table 2 are very special and are questionable from the applicability
point of view, new Lie symmetries are very interesting. In particular, system (7) with S = 0 admits the
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symmetry x∂p∗ +
x2

2λ∗ ∂u that can be not predicted using any physical laws. Here we study this case in
detail and our goal is to construct a wide range of time-dependent solution.

3. Ansätze, Reductions and Exact Solutions in the Case S = 0

As it was noted above, the most interesting cases from the symmetry point of view are the second
and the fourth cases (see Table 2) because they involve the Lie symmetry Y = x∂p∗ +

x2

2λ∗ ∂u that
cannot be predicted by any physical/biological consideration. The fourth case is rather artificial
from applicability point of view. Indeed, the restrictions D = S = 0 means that both diffusive and
convective transports are neglected what is very strong assumption (however, one cannot claim that
such a special case is absolutely unrealistic). Thus, we study the second case, S = 0 in what follows.

The general technique for constructing exact solution using Lie symmetries is well-known from
the theoretical point of view. There are two different approaches described, e.g., in Section 1.3 [16].
One of them is based on construction of optimal systems of inequivalent (nonconjugated) subalgebras
of the given Lie algebra of symmetries. Although this technique is very popular, one successfully
works only in the case of Lie algebras of low dimensionality (up to 4). In fact, all optimal systems for
such algebras were described in a seminal work [24]. However, a pure algebraic problem occurs if one
deals with a Lie algebra of the dimensionality 5 and higher. To the best of our knowledge, there is no
generalisations of the results presented in [24] on higher-dimensional Lie algebras. Notably, the Lie
algebra of symmetries of system (7) is infinity-dimensional (see the operator g(t)∂p∗ in Theorem 1).

The second technique for constructing exact solution via Lie symmetries is based on the most
general linear combination of basic operaintors of the Lie algebra in question. Of course, many
technical difficulties arise in the case of higher-dimensional Lie algebras, however, these difficulties can
be overcome by a careful analysis of the relevant invariant surface condition. Here this is demonstrated
in the case of Lie algebra with the basic operators

∂t, ∂x, ∂u, x∂u, c∂c, g(t)∂p∗ , Y = x∂p∗ +
x2

2λ∗ ∂u.

Let us consider the most general linear combination of Lie symmetries listed above

X = α1∂t + α2∂x +

(
β3

x2

2
+ β1x + β0

)
∂u + β2c∂c + (β3λ∗x + g(t))∂p∗ , (19)

where α1, α2 and βi (i = 0, 1, 2, 3) are arbitrary constants, α2
1 + α2

2 ̸= 0 (if α1 = α2 = 0 then there is no
reduction to an ODE system).

Depending on the value of the constants α1 and α2, operator (19) produce three inequivalent
ansätze for reduction of system (7) to ODE systems. Thus, one need to consider such cases :
I. α1α2 ̸= 0 ⇒ α1 = 1, α2 = α ̸= 0;
I I. α1 ̸= 0 ⇒ α1 = 1, α2 = 0;
I I I. α1 = 0, α2 ̸= 0 ⇒ α2 = 1.

From the very beginning, it can be noted that the function g(t) does not play role in the first two
cases and we may set g(t) = 0 without losing a generality. In fact, ansätze obtained contain the added
term g∗(t) in expressions for the function p∗ and this term vanishes after substituting into system
(7). So, one always can generalise an arbitrary solution by inserting into the pressure component the
additional term g∗(t) that simply follows from the Lie group generated by the operator g(t)∂p∗ :

(p∗)′ = p∗ + εg(t).

In the third case, the function g(t) does play a role.
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In the case I operator (19) leads to the ansatz

u(t, x) = f1(ω) + β3
6α x3 + β1

2α x2 + β0
α x, ω = x − αt,

ρ(t, x) = f2(ω),
p∗(t, x) = f3(ω) + λ∗β3

2α x2,
θF(t, x) = f4(ω),

c(t, x) = f5(ω)e
β2
α x,

(20)

where fi(ω) (i = 1, . . . , 5) are new smooth functions.
Substituting ansatz (20) into PDE system (7), one arrives at the ODE system

F′ = − k
2α

(
ϕ′ + λ∗β3

α

)
,

(1 + F) f2F′ + f2
′F = λ∗

α2 F′ − ϕ

α2 +
λ∗β1

α3 ,

(1 + F) f2
′ = k

α ( f2 − ρ0
F)
(

ϕ′ + λ∗β3
α

)
,

(1 + F) f4
′ = k

α ( f4 − 1)
(

ϕ′ + λ∗β3
α

)
,

(1 + F)( f4 f5)
′ + f4 f5

(
β2
α F + 2F′

)
= −D

α

(
f5
′′ + 2β2

α f5
′ +
(

β2
α

)2
f5

)
,

(21)

where new notations F = f1
′ and ϕ = f3

′ are used.
We are looking for exact solutions of the ODE system (21) in the two essentially different subcases

(i) 1 + F = 0 and (ii) 1 + F ̸= 0.
Subcase (i). System (21) after the relevant calculations leads to the result

f1 = −ω + C1,

f2 = −λ∗β3

2α3 ω2 +

(
C2

α2 − λ∗β1

α3

)
ω + C4,

f3 = −λ∗β3

2α
ω2 + C2ω + C3,

f4 = f4(ω),

f ′′5 +
2β2

α
f ′5 +

((
β2

α

)2
− β2

D
f4

)
f5 = 0, (22)

where Ci are arbitrary constants and constant D > 0.
If β2 = 0, then the general solution of equation (22) has the form f5 = C5 + C6ω. Thus, taking

into account ansatz (20) and the above formulae, the exact solution of the PDE system (7) with S = 0

u(t, x) =
β3

6α
x3 +

β1

2α
x2 +

(
β0

α
− 1
)

x + αt + C1, (23)

ρ(t, x) = −λ∗β3

2α3 (x − αt)2 +

(
C2

α2 − λ∗β1

α3

)
(x − αt) + C4, (24)

p∗(t, x) =
λ∗β3

2
(2x − αt)t + C2(x − αt) + C3, (25)

θF(t, x) = θF(x − αt),

c(t, x) = C5 + C6(x − αt)

(here θF is an arbitrary smooth function) is obtained.
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If β2 ̸= 0, then the general solution of equation (22) can be found in an explicit form only for some
fixed function f4. Let us solve equation (22) assuming f4(ω) = θ0ωn (here θ0 > 0 and n are arbitrary
constants). So, one need to construct exact solutions of the equation

f ′′5 +
2β2

α
f ′5 +

((
β2

α

)2
− β2θ0

D
ωn

)
f5 = 0. (26)

Equation (26) has essentially different general solutions depending on the value of the constants β2

and n. In the simplest case when n = 0 the general solution of equation (26) has the form

f5(ω) =


C5 exp

[(
− β2

α +
√

θ0β2
D

)
ω

]
+ C6 exp

[(
− β2

α −
√

θ0β2
D

)
ω

]
, if β2 > 0,

exp
(
− β2

α ω
)[

C5 cos
(√

− θ0β2
D ω

)
+ C6 sin

(√
− θ0β2

D ω

)]
, if β2 < 0.

(27)

The obtained functions f4 = θ0 and f5 from (27) lead to the components

θF(t, x) = θ0,

c(t, x) =


[

C5 exp
(√

θ0β2
D (x − αt)

)
+ C6 exp

(
−
√

θ0β2
D (x − αt)

)]
eβ2t, if β2 > 0,[

C5 cos
(√

− θ0β2
D (x − αt)

)
+ C6 cos

(√
− θ0β2

D (x − αt)
)]

eβ2t, if β2 < 0

of the exact solution of the PDE system (7) with S = 0 and D > 0, while other components of the
corresponding solution are presented in formulae (23)–(25).

Now let us return to equation (26). In the case n ̸= −2, this equation is reduced to the Bessel
equation

τ2g′′(τ) + τg′(τ) +
(

τ2 − 1
(2 + n)2

)
g(τ) = 0,

if β2 < 0, and to the modified Bessel equation

τ2g′′(τ) + τg′(τ)−
(

τ2 +
1

(2 + n)2

)
g(τ) = 0

if β2 > 0, by the substitution

g(τ) =
e

β2
α ω

√
ω

f5, τ =
2

n + 2

√
|β2|θ0

D
ω

n
2 +1.

Thus, the general solution of equation (26) with n ̸= −2 can be expressed in the following forms

f5(ω) =
√

ωe−
β2
α ω

(
C5 J 1

n+2

[
2

n + 2

√
− β2θ0

D
ω

n
2 +1

]
+ C6Y 1

n+2

[
2

n + 2

√
−β2θ0

D
ω

n
2 +1

])
, (28)

if β2 < 0, and

f5(ω) =
√

ωe−
β2
α ω

(
C5 I 1

n+2

[
2

n + 2

√
β2θ0

D
ω

n
2 +1

]
+ C6K 1

n+2

[
2

n + 2

√
β2θ0

D
ω

n
2 +1

])
, (29)

if β2 > 0. Here J and Y are the Bessel functions, while I and K are the modified Bessel functions.
Note that solution (27) can be derived from (28)–(29) by setting n = 0 in the last ones.
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In the case n = −2, the general solution of equation (26) has the form

f5(ω) =


√

ω e−
β2
α ω

(
C5ω

√
4β2θ0+D

2
√

D + C6ω
−
√

4β2θ0+D
2
√

D

)
, if 4β2θ0 + D > 0,

√
ω e−

β2
α ω(C5 + C6 ln ω), if 4β2θ0 + D = 0.

(30)

Note that in the case n = −2 and 4β2θ0 + D < 0 equation (26) has only complex solutions, not real
ones.

The functions f5 (from (28)–(30)) and f4 = θ0ωn produce the components

θF(t, x) = θ0(x − αt)n, n ̸= −2,

c(t, x) =


√

x − αt
(

C5 I 1
n+2

[
ϕ
]
+ C6K 1

n+2

[
ϕ
])

eβ2t, ϕ =
2
√

|β2|θ0

(n+2)
√

D
(x − αt)

n
2 +1, if β2 > 0,

√
x − αt

(
C5 J 1

n+2

[
ϕ
]
+ C6Y 1

n+2

[
ϕ
])

eβ2t, if β2 < 0

and

θF(t, x) = θ0(x − αt)−2,

c(t, x) =


√

x − αt

(
C5(x − αt)

√
4β2θ0+D

2
√

D + C6(x − αt)−
√

4β2θ0+D
2
√

D

)
eβ2 t, if 4β2θ0 + D > 0,

√
x − αt(C5 + C6 ln(x − αt)) eβ2 t, if 4β2θ0 + D = 0

of the solutions of the PDE system (7) with S = 0. The remaining components of the corresponding
solutions are still given by formulae (23)–(25).

Subcase (ii). In this case, the functions f1, f2, f3 and f4 can be expressed via the function F,
namely :

f1(ω) =
∫

F(ω)dω,

f2(ω) = C3(1 + F(ω))−2 + ρ0
F,

f3(ω) = − λ∗β3
2α ω2 + C1ω + C2 − 2α

k

∫
F(ω)dω,

f4(ω) = C4(1 + F(ω))−2 + 1,

(31)

where the function F is a solution of the equation(
C3
(
1 + F2)

(1 + F)3 + ρ0
F(1 + F)− λ∗

α2

)
F′ − 2

αk
F − λ∗β3

α3 ω +
C1

α2 − λ∗β1

α3 = 0, (32)

while the function f5 must be founded from the equation

(1 + F)
((

C4
(1+F)2 + 1

)
f5

)′
+

(
C4

(1+F)2 + 1
)(

β2
α F + 2F′

)
f5

= −D
α

(
f ′′5 + 2β2

α f ′5 +
(

β2
α

)2
f5

)
.

(33)

ODE (32) is a nonlinear Abel type equations and its full integration is questionable, moreover,
even particular solutions are unknown. However, assuming that the function F is linear, one can find
the exact solution

F(ω) = −1 + C0 ω, (34)
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provided the following restrictions are satisfied

C3 = 0, C0 =
2α2 + kαC1 − kλ∗β1

kλ∗α
̸= 0, β3 =

α2C0(C0αkρ0
F − 2)

kλ∗ .

Another possibility to integrate ODE (32) arises if one sets

C3 = 0, C1 =
λ∗β1

α
, β3 = 0. (35)

In this case ODE (32) takes the form(
ρ0

F(1 + F)− λ∗

α2

)
F′ − 2

kα
F = 0.

The latter is integrable via the Lambert function:

F(ω) = exp

(
C(ω)− LambertW

(
ρθ

Fα2

ρθ
Fα2 − λ∗ eC(ω)

))
, (36)

where

C(ω) =
2α(ω + C5)

k
(
ρθ

Fα2 − λ∗) .

The exact solution (36) can also be presented in the implicit form

(F(ω))

(
1− λ∗

α2ρ0
F

)
= exp

(
2(ω + C5)

αkρ0
F

− F(ω)

)
.

It can be easily seen that a special case occurs when λ∗

α2ρ0
F
= 1. In this case, one again arrives at the

linear function
F(ω) =

2α

kλ∗ ω + C5. (37)

Each of the exact solutions (34)–(37) can be used for finding the function f5 by solving the linear
ODE (33). Because the formulae obtained are very cumbersome (in particular, the Heun functions are
obtained if one applies (37)), here we present only the details concerning solution (34). In this case,
ODE (33) can be rewritten in the form

D f ′′5 +

(
C0αω +

C4α

C0ω
+

2Dβ2

α

)
f ′5 +

(
C0β2ω − C4β2

C2
0ω2

+
C4β2

C0ω
+ 2C0α − β2 +

Dβ2
2

α2

)
f5 = 0. (38)

Although this equation is very awkward, one may find the substitution

g(τ) = exp
(

C0α

4D
ω2 +

β2

α
ω

)
ω

DC0+C4α
2DC0 f5, τ =

C0α

2D
ω2, (39)

transforming ODE (38) into the well-known Whittaker equation (see, e.g., [25])

g′′ +

(
−1

4
+

µ

τ
+

1
4 − ν2

τ2

)
g = 0, (40)

where

µ =
3C0Dα − C4α2 − 2Dβ2

4C0Dα
, ν =

√
C2

4α2 + 2C4D(2β2 − C0α) + C2
0 D2

4C0D
.
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The general solution of equation (40) has the form

g(τ) = C5Mµ,ν(τ) + C6Wµ,ν(τ), (41)

where M and W are the Whittaker functions. In the case µ = 1
2 + ν (that leads to the conditions β2 = 0

or β2 = C0α), the function M takes the form M 1
2+ν,ν(τ) = e−

τ
2 τ

1
2+ν. Thus, the general solution of the

Whittaker equation in this special case has the form

g(τ) = e−
τ
2 τ

1
2+ν

(
C5 + C6

∫
eττ−1−2νdτ

)
. (42)

Taking into account (39) and (42), we arrive at the solution of ODE (38) under restrictions β2 = 0
and β2 = C0α, namely :

f5(ω) = exp
(
−C0α

2D
ω2
)

ω
1− C4 α

DC0

(
C5 + C6

∫
e

C0α ω2

2D ω
−2+ C4 α

DC0 dω

)
, β2 = 0; (43)

f5(ω) = exp
(
−C0ω − C0α

2D
ω2
)

ω
− C4 α

DC0

(
C5 + C6

∫
e

C0α ω2

2D ω
C4 α
DC0 dω

)
, β2 = C0α. (44)

Using the obtained functions f5 and the above formulae, one can construct exact solutions of the
PDE system (7). In particular, setting C6 = 0 in (43) for simplicity, an exact solution of the system in
question can be written down in the form

u(t, x) = β3
6α x3 + β1

2α x2 +
(

β0
α − 1

)
x + αt + C0

2 (x − αt)2,

ρ(t, x) = ρ0
F,

p∗(t, x) = λ∗β3
2 (2x − αt)t +

(
C1 − C0α

k (x − αt)
)
(x − αt) + C2,

θF(t, x) = C4
C2

0(x−αt)2 + 1,

c(t, x) = C5 exp
[
−C0α

2D (x − αt)2
]
(x − αt)1− C4 α

DC0 ,

(45)

where

C0 =
C1α − λ∗β1

λ∗α
̸= 0, β3 =

α2C0(k α ρ0
FC0 − 2)

kλ∗ .

Similarly, setting C6 = 0 in (44), another solution of the PDE system (7) with S = 0 can be derived
in the form

c(t, x) = C5 exp
[

C0α t − C0α

2D
(x − αt)2

]
(x − αt)−

C4 α
DC0 ,

while other components have the same form as in (45).
In the case I I operator (19) leads to the ansatz

u(t, x) = f1(x) + P2(x)t,
ρ(t, x) = f2(x),
p∗(t, x) = f3(x) + λ∗β3 tx,
θF(t, x) = f4(x),
c(t, x) = f5(x)eβ2t,

(46)

where fi(x) (i = 1, . . . , 5) are new smooth functions, while P2(x) = β3
2 x2 + β1x + β0.

The special case is P2(x) = 0, it means that the operator x∂p∗ +
x2

2λ∗ ∂u is not taken into account,
hence one may apply ansatz (46) to system (7) with an arbitrary parameter S (see Section 5).
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Here we substitute ansatz (20) with P2 ̸= 0 into PDE system (7) with S = 0 to obtain a reduced
ODE system. As a result, one arrives at the system

f ′′3 = 2
k P2

′,

f ′′1 = 1
λ∗
(

f ′3 + P2
′P2 f2

)
,

f ′2 =
k(ρ0

F− f2)
P2

f ′′3 ,

f ′4 = k(1− f4)
P2

f ′′3 ,

D f ′′5 − P2( f4 f5)
′ −
(

β2 + 2P2
′) f4 f5 = 0.

(47)

The first four equations of the ODE system (47) can be easily integrated, producing the functions

f1(x) = 2
λ∗k

∫
(
∫

P2dx)dx + C3
λ∗
∫

ln P2dx +
ρ0

F
2λ∗
∫

P2
2dx + C1

2λ∗ x2 + C5x + C6,

f2(x) = C3
P2

2 + ρ0
F,

f3(x) = 2
k

∫
P2dx + C1x + C2,

f4(x) = C4
P2

2 + 1,

(48)

while the last equation on the function f5(x) takes the form

D f ′′5 −
(

P2 +
C4

P2

)
f5
′ −
(

β2 + 2P2
′ +

β2C4

P2
2

)
f5 = 0. (49)

It is difficult to construct exact solutions of equation (49) without additional restrictions. Note
that equation (49) in the case C4 = 0 is the Heun equation and its general solution can be constructed
using software such as Maple. Since this case leads to very cumbersome formulae, we omit those here.

Let us set β0 = β1 = β2 = C4 = 0, β3 ̸= 0, then equation (49) takes the form

f ′′5 − β3

2D
x2 f5

′ − 2β3

D
x f5 = 0.

The latter is integrable in the terms of modified Bessel functions. Thus, we arrive at the exact solution
of the PDE system (7) with S = 0 :

u(t, x) = β3
2 tx2 + 2C3

λ∗ x ln x +
β2

3ρ0
F

40λ∗ x5 + β3
12λ∗k x4 + C1

2λ∗ x2 + C5x + C6,

ρ(t, x) = 4C3
β2

3x4 + ρ0
F,

p∗(t, x) = λ∗β3 tx + β3
3k x3 + C1x + C2,

θF(t, x) = 1,

c(t, x) =
√

x eβ x3
[(

β3x3 + 4D
)(

C7 I 1
6

[
β x3]+ C8K 1

6

[
β x3])+

β3x3
(

C7 I− 5
6

[
β x3]− C8K 5

6

[
β x3])], β = β3

12D .

Let us set β0 = β3 = 0, β1 ̸= 0, then equation (49) takes the form

D f ′′5 −
(

β1x +
C4

β1x

)
f5
′ −
(

β2 + 2β1 +
β2C4

β2
1x2

)
f5 = 0. (50)
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Applying the substitution

g(τ) = e−
β1
4D ω2

ω
Dβ1−C4

2Dβ1 f5, τ =
β1

2D
ω2

to equation (50), we again arrive at the Whittaker equation (40) with the parameters

µ = −C4 + D(3β1 + 2β2)

4Dβ1
, ν =

√
C2

4 + 2C4D(β1 + 2β2) + β2
1D2

4Dβ1
.

Note that we consider only the special case µ = 1
2 + ν that leads to the condition

C4 = −
D
(
6β2

1 + 5β1β2 + β2
2
)

2β1
.

Now making the same calculations as in subcase (ii), we obtain the general solution of equation (50)

f5(x) = x−2− β2
β1

(
C7 + C8

∫
e

β1
2D x2

x
(β1−β2)(2β1+β2)

2β2
1 dx

)
. (51)

Setting for simplicity C8 = 0 and using formulae (46), (48) and (51), we arrive at the exact solution
of the PDE system (7)

u(t, x) = β1tx +
β1(2+β1ρ0

Fk)
6λ∗k x3 + C1

2λ∗ x2 + C3
λ∗ x ln x + C5x + C6,

ρ(t, x) = C3
β2

1x2 + ρ0
F,

p∗(t, x) = β1
k x2 + C1x + C2,

θF(t, x) = 1 − D(6β2
1+5β1β2+β2

2)
2β3

1

1
x2 ,

c(t, x) = C7x−2− β2
β1 eβ2t.

In the case I I I operator (19) produces the ansatz (we remind the reader that the operator g(t)∂p∗

should be taken into account in this case):

u(t, x) = f1(t) +
β3
6 x3 + β1

2 x2 + β0x,
ρ(t, x) = f2(t),
p∗(t, x) = f3(t) + g(t)x + λ∗β3

2 x2,
θF(t, x) = f4(t),
c(t, x) = f5(t)eβ2x,

(52)

where fi(t) (i = 1, . . . , 5) are new smooth functions. Substituting ansatz (52) into the PDE system (7)
with S = 0, we arrive at the condition β3 = 0. In this case the corresponding ODE system has the form

f2 f1
′′ = λ∗β1 − g(t),

f2
′ = 0, f4

′ = 0,
β2 f4 f5 f1

′ + f4 f5
′ − β2

2D f5 = 0.
(53)
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Solving system (53), we obtain the exact solution of the PDE system (7) with S = 0 as follows

u(t, x) = λ∗β1
2ρ0

t2 − G(t) + β1
2 x2 + β0x,

ρ(t, x) = ρ0,
p∗(t, x) = p∗(t) + g(t)x,
θF(t, x) = θ0,

c(t, x) = C3 exp
(

β2x +
β2

2D
θ0

t − λ∗β1β2
2ρ0

t2 + β2G(t)
)

,

where G′′ = g(t)
ρ0

and p∗(t) are arbitrary smooth functions.

Remark 1. In order to find exact solutions, the condition β3 = 0 was used in several case. It means that the
operator x∂p∗ +

x2

2λ∗ ∂u is not taken into account, hence one may apply the relevant ansätze to system (7) with a
nonzero parameter S. This is done in Section 5.

4. An Example of the Exact Solution Describing Solute Transport in PEM

In order to show that a given exact solution describes solute transport in PEM, one should check
some properties from the very beginning. In particular, the components ρ(t, x), θF(t, x), p(t, x) and
c(t, x) must be nonnegative, moreover θF(t, x) ≤ 1. The displacement function u(t, x) should be either
nonnegative (this means that PEM is expanding), or nonpositive (PEM is shrinking). There is also a
natural initial condition for the displacement, u(0, x) = 0, i.e., no deformation of PEM in the initial
time moment t = 0. Obviously, only some exact solutions satisfy the above requirements on a given
space interval [0, L] and for t ≤ T, T > 0.

Here we look in detail at the exact solution (45). By using the space translation x → x + x0 (x0 >

0) and setting β0 = α, β1 = −αC0 ⇒ C1 = 0, C4 → −C4C2
0 , and β3 = 0 ⇒ C0 = 2

αkρ0
F

, the solution

takes the form

u(t, x) = t
(

α + αt−2x−2x0
kρ0

F

)
,

ρ(t, x) = ρ0
F,

p∗(t, x) = C2 − 2
k2ρ0

F
(x + x0 − αt)2,

θF(t, x) = 1 − C4
(x+x0−αt)2 ,

c(t, x) = C5 exp
[
− (x+x0−αt)2

Dkρ0
F

]
(x + x0 − αt)

1+ 2C4
Dkρ0

F .

(54)

Obviously, the initial condition u(0, x) = 0 is satisfied. It can easily be shown that all components
of the solution (54) are bounded and nonnegative in the domain Ω = {(t, x) ∈ (0, T)× (0, L)} and
0 ≤ θF(t, x) < 1 if the following restrictions hold :

α > 0, ρ0
F ≥ 2(L+x0)

αk , C2 ≥ 2
k2ρ0

F
(L + x0)

2,

0 < C4 ≤ (x0 − αT)2, x0 > αT, C5 ≥ 0.
(55)

Using the function p∗ from (54) and formula (6) , one can derive the hydrostatic pressure of the
poroelastic materials by the formula

p(t, x) = C2 −
2

k2ρ0
F
(x + x0 − αt)2 + RTC5 exp

[
− (x + x0 − αt)2

Dkρ0
F

]
(x + x0 − αt)

1+ 2C4
Dkρ0

F . (56)
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Plots of the functions u, θF, c and p defined in the domain Ω = {(t, x) ∈ (0, 1)× (0, 1)} with the
parameter restrictions (55) are presented in Figures 1 and 2. The above restrictions (55) guarantee
positive values of displacement, i.e. a given layer of PEM is expanding.

In order to get negative values of displacement, i.e. a given layer of PEM is shrinking, one needs
the restrictions that are listed below. An example is presented in Figures 3 and 4.

If α > 0 then

kρ0
F − 2T > 0,

α(kρ0
F+T)
2 ≤ x0 ≤ L(kρ0

F−2T)
2T +

α(kρ0
F+T)
2 , C2 ≥ 2

k2ρ0
F
(L + x0)

2,

0 < C4 ≤ (x0 − αT)2, C5 ≥ 0.

If α < 0 then
0 < x0 <

α(kρ0
F+T)
2 − L +

kρ0
F L

2T ,

0 < C4 ≤ x2
0, C2 ≥ 2(L+x0−αT)2

k2ρ0
F

.

Thus, we have demonstrated that the exact solution (45) with correctly-specified coefficients can
describe (at least qualitatively) the solute transport in PEM.

Figure 1. Surfaces representing the components u (left) and θF (right) of the exact solution (54) with the
parameters D = 1, C2 = 13, C4 = 1/4, C5 = 3, α = 2, ρ0

F = 10, k = 1/2, x0 = 3.

Figure 2. Surfaces representing the components c (left) and p (right) of the exact solution (54) and (56)
with the parameters D = 1, C2 = 13, C4 = 1/4, C5 = 3, α = 2, ρ0

F = 1, k = 1/2, x0 = 3, RT = 1/5.
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Figure 3. Surfaces representing the components u (left) and θF (right) of the exact solution (54) with the
parameters D = 1, C2 = 2, C4 = 1, C5 = 3, α = −1/5, ρ0

F = 10, k = 1, x0 = 2, RT = 1/5.

Figure 4. Surfaces representing the components c (left) and p (right) of the exact solution (54) and (56)
with the parameters D = 1, C2 = 2, C4 = 1, C5 = 3, α = −1/5, ρ0

F = 10, k = 1, x0 = 2, RT = 1/5.

5. New Exact Solutions of System (7) with S ̸= 0

In [10], some simplest exact solutions of system (7) with an arbitrary parameter S are constructed.
Here we show how new solutions can be derived. As noted above in Remark 1, the condition β3 = 0
in the ansätze constructed in Section 3 means that those are applicable for (7) with nonzero S as well.

The simplest case occurs in the case of ansatz (46). Substituting the latter into system (7) with an
arbitrary parameter S, we arrive at the ODE system

f ′′3 = 0,

λ∗ f ′′1 − f ′3 = 0,

D f ′′5 + kS f ′3 f ′5 − β2 f4 f5 = 0.

(57)
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Thus, solving ODE system (57) and taking into account (46) with P2 = 0, we obtain the solution of
system (7)

u(t, x) = p1
2λ∗ x2 + u1x + u0,

ρ(t, x) = ρ0(x),
p∗(t, x) = p1x + p0,
θF(t, x) = θ0(x),
c(t, x) = g(x)eβ2t,

where ρ0(x) and θ0(x) are arbitrary smooth functions, while g(x) is an arbitrary solution of the linear
ODE

g′′ +
kp1S

D
g′ − β2

D
θ0(x) g = 0.

If β2 ̸= 0 then the solutions of the above ODE can be written down in an explicit form provided the
function θ0(x) is correctly-specified (typical examples are (x + x0)

k and ekx).
If β2 = 0 then

c(t, x) =

 C0 + C1 exp
(
− kp1S

D x
)

, if S ̸= 0,

C0 + C1x, if S = 0

(here C0 and C1 are arbitrary constants).
Let us construct solutions using restrictions (35). In this case, the function F from (37) can be used

to specify the functions fi, i = 1, ..., 4 in (31). Setting C5 = −1 for simplicity and using the restriction
λ∗

α2ρ0
F
= 1, we arrive at the formulae

f1(ω) = ω

(
ω

αkρ0
F
− 1
)

,

f2(ω) = ρ0
F,

f3(ω) = C2 +
(
αβ1ρ0

F +
2α
k
)
ω − 2

k2ρ0
F

ω2,

f4(ω) =
C4α2k2(ρ0

F)
2

4ω2 + 1,

while the equation for finding the function f5 takes the form

D f ′′5 +

(
A0 + A1ω +

A2

ω

)
f ′5 +

(
B0 + B1ω +

B2

ω
+

B3

ω2

)
f5 = 0. (58)

In (58), coefficients Ai and Bi are defined by the formulae

A0 = 2Dβ2
α + αS

(
2 + β1kρ0

F
)
, A1 = 2(1−2S)

kρ0
F

, A2 =
C4α2kρ0

F
2 ,

B0 = 4(1−S)
kρ0

F
+

Dβ2
2

α2 + β2
(
2S − 1 + β1kSρ0

F
)
,

B1 = 2β2(1−2S)
αkρ0

F
, B2 =

C4αβ2kρ0
F

2 , B3 = −C4α2β2k2(ρ0
F)

2

4 .

(59)

The general solution of equation (58) can be constructed via the Heun functions. To avoid cumbersome
formulae, we consider only some cases in which equation (58) can be reduced to known equations, in
particular, the Whittaker equation and the Bessel equation.

In the case of the the additional restrictions

B1 =
A0 A1

2D
, B2 =

A0 A2

2D
, (60)
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equation (58) is transformed into the Whittaker equation (40) with the parameters

µ = −
A2

0 − 4B0D + 2A1(A2 + D)

8A1D
, ν =

√
(A2 − D)2 − 4B3D

4D

by the substitution

g(τ) = exp
(

A1

4D
ω2 +

A0

2D
ω

)
ω

A2+D
2D f5, τ =

A1

2D
ω2.

Taking into account (59), restrictions (60) lead to the condition β1 = − 2
kρ0

F
. Thus, using formula

(41) and the above substitution, one obtains the function f5 in an explicit form. Finally, applying ansatz
(20) with the above specified beta-s and renaming C4 → − 2C4

α2kρ0
F

, the following solution of the nonlinear

system (7) was constructed:

u(t, x) = 1
αkρ0

F
(x − αt)2 − (x − αt)− 1

αkρ0
F

x2 + β0
α x,

ρ(t, x) = ρ0
F,

p∗(t, x) = p0 − 2(x−αt)2

k2ρ0
F

,

θF(t, x) = 1 − C4kρ0
F

2(x−αt)2 ,

c(t, x) = exp
(

β2t + 2S−1
2Dkρ0

F
(x − αt)2

)
(x − αt)−

1
2+

C4
2D ×(

C5Mµ,ν

[
1−2S
Dkρ0

F
(x − αt)2

]
+ C6Wµ,ν

[
1−2S
Dkρ0

F
(x − αt)2

])
,

µ =
C4(1−2S)−D(2S+β2kρ0

F−3)
4D(1−2S) , ν =

√
(C4+D)2−2β2C4Dkρ0

F
4D ,

(61)

where α ̸= 0, β0, β2, p0, C4 and C5 are arbitrary constants
To construct exact solutions of equation (58) in terms of elementary functions, we consider the

special case µ = 1
2 + ν, which leads to the conditions

β2 =
2

kρ0
F
or β2 =

4S(C4(1 − 2S) + D)

Dkρ0
F

.

Thus, the general solution of equation (58) with β1 = − 2
kρ0

F
has the forms

f5(ω) = exp

(
2S − 1
Dkρ0

F
ω2 − 2

αkρ0
F

ω

)
ω

C4
D

C5 + C6

∫
e
(1−2S)ω2

Dkρ0
F ω− C4

D dω

 (62)

in the case β2 = 2
kρ0

F
, and

f5(ω) = exp

(
2S − 1
Dkρ0

F
ω2 − β2

α
ω

)
ω

β2kρ0
F

4S

C5 + C6

∫
e
(1−2S)ω2

Dkρ0
F ω−2+ C4(4S−1)

D dω

 (63)

in the case β2 = 4S(C4(1−2S)+D)

Dkρ0
F

.
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Thus, the component c(t, x) of the solution (61) of the PDE system (7), corresponding to solution
(62) with C6 = 0, has the form

c(t, x) = C5 exp
[

2
kρ0

F
t + 2S−1

Dkρ0
F
(x − αt)2

]
(x − αt)

C4
D .

Setting C6 = 0 in (63), another solution of the PDE system (7) can be derived in the form

c(t, x) = C5 exp

[
4S(C4(1 − 2S) + D)

Dkρ0
F

t +
(2S − 1)

Dkρ0
F

(x − αt)2

]
(x − αt)

C4(1−2S)+D
D ,

while other components have the same form as in (61).
In the case when the additional restrictions

A0 = A1 = B0 = B1 = 0

take place, i.e. (see (59))

S =
1
2

, β1 = ± 2
αkρ0

F

√
α2 +

8D
kρ0

F
, β2 = − α

2D

(
α ±

√
α2 +

8D
kρ0

F

)
, (64)

equation (58) is transformed into the Bessel equation

τ2g′′(τ) + τg′(τ) +

(
τ2 − (A2 − D)2 − 4B3D

D2

)
g(τ) = 0,

if B2 > 0, and to the modified Bessel equation

τ2g′′(τ) + τg′(τ)−
(

τ2 +
(A2 − D)2 − 4B3D

D2

)
g(τ) = 0

if B2 < 0, by the substitution

g(τ) = ω
A2−D

2D f5, τ = 2

√
|B2|
D

ω .

Thus, the general solution of equation (58) under restrictions (64) takes the form

f5(ω) = ω
1
2−

C4α2kρ0
F

4D

C5 Jν

√2αβ2C4kρ0
F

D
√

ω

+ C6Yν

√2αβ2C4kρ0
F

D
√

ω

,

if αβ2C4 > 0, and

f5(ω) = ω
1
2−

C4α2kρ0
F

4D

C5 Iν

√−
2αβ2C4kρ0

F
D

√
ω

+ C6Kν

√−
2αβ2C4kρ0

F
D

√
ω

,

if αβ2C4 < 0. Here ν = 1
2D

√(
α2C4kρ0

F − 2D
)2

+ 4α2β2C4Dk2
(
ρ0

F
)2, Jν and Yν are the Bessel functions,

Iν and Kν are the modified Bessel functions.
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Taking into account the above formulae and renaming C4 → − 2C4
α2kρ0

F
, the exact solution of the

PDE system (7) with S = 1
2 takes the form

u(t, x) = 1
αkρ0

F
(x − αt)2 − (x − αt) +

(
β

λ∗k −
1

αkρ0
F

)
x2 + β0

α x,

ρ(t, x) = ρ0
F,

p∗(t, x) = p0 − 1
2k2ρ0

F

(
2(x − αt)− βkρ0

F

)2
,

θF(t, x) = 1 − C4kρ0
F

2(x−αt)2 ,

c(t, x) =


(x − αt)

C4+D
2D e−

β
2D x
(

C5 Jν

[√
βC4
D

√
x − αt

]
+ C6Yν

[√
βC4
D

√
x − αt

])
, βC4 > 0,

(x − αt)
C4+D

2D e−
β

2D x
(

C5 Iν

[√
−βC4
D

√
x − αt

]
+ C6Kν

[√
−βC4
D

√
x − αt

])
, βC4 < 0,

where β0, p0, C4, C5 and C6 are arbitrary constants, while

α = ±
√

λ∗

ρ0
F

, β = α ±
√

α2 +
8D
kρ0

F
, ν =

√
(C4 + D)2 + αβC4kρ0

F

D
.

Finally, using ansatz (52) and making similar calculations to those in the end of Section 3, one
obtains the following exact solution of the PDE system (7):

u(t, x) = λ∗β1
2ρ0

t2 − G(t) + β1
2 x2 + β0x,

ρ(t, x) = ρ0,
p∗(t, x) = p∗(t) + ρ0G′′(t)x,
θF(t, x) = θ0,

c(t, x) = C3 exp
(

β2x +
β2

2D
θ0

t − λ∗β1β2
2ρ0

t2 + β2G(t) + kβ2ρ0S
θ0

G′(t)
)

.

6. Conclusions

Here the one-dimensional model for fluid and solute transport in PEM based on the nonlinear PDE
system (7) is studied. Although the model was recently derived and some exact solutions, in particular
steady-state solutions and their applications, were studied in [10] and [11], special cases occurring when
some parameters vanish were not analysed therein. Since the governing equations are nonintegrable in
nonstationary case, the Lie symmetry method and modern tools for solving ODE systems are applied in
order to construct time-dependent exact solutions. Depending on parameters arising in the governing
equations, several special cases with new Lie symmetries are identified. Some of them have a highly
nontrivial structure, see Cases 2 and 4 in Table 2, that cannot be predicted from a physical point of view
or using Lie symmetries of other real-world models. Applying the symmetries obtained for reduction
of the governing PDEs, multiparameter families of exact solutions are constructed, including those in
terms of elementary and special functions (hypergeometric, Whittaker, Bessel and modified Bessel
functions). A possible application of the solutions obtained is demonstrated in Section 4. It is shown
that the exact solution obtained in Section 3 can describe (at least qualitatively) the solute transport in
PEM provided relevant parameters are specified correctly. The obtained exact solutions can also be
used as test problems for estimating the accuracy of approximate analytical and numerical methods
for solving relevant boundary value problems for the nonlinear PDE system (7).

In Section 5, new exact solutions are constructed for the nonlinear PDE system (7) with arbitrary
parameters. These solutions essentially generalize the results derived earlier in [10].
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This work can be continued in different directions. For example, a natural generalisation of the
model has been developed in [26] by taking into account internal sources/sinks. One may expect that
the generalised model also admits new Lie symmetries provided some parameters vanish. Another
work could be done in order to generalize the model on higher-dimensional cases and study properties
of the model derived, in particular, applying the Lie symmetry method.
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