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1. Introduction

Throughout this paper by a monoid we mean a commutative cancellative monoid. Let H be a
monoid. We denote by H∗ the group of all invertible elements of H.

Recall that an element a ∈ H is called square-free if it cannot be presented in the form a = b2c,
where b, c ∈ H and b /∈ H∗.

The general motivation is to learn the structure of the Lie monoid, following the book [12]. So
first of all, it is worth knowing what topological monoids are. The main motivation of this paper are
the results obtained so far on the spectrum of ring. Recall that for a given ring R, the set Spec(R)
composed of all prime ideals of R together with the Zariski topology, i.e. a topology in which the
family of closed sets is

F = {V(E) : E ⊆ R},

where for any subset E of the ring R the symbol V(E) denotes the set of all prime ideals containing E.
The basic properties of the spectrum of the ringare:

(a) A point in the space Spec(R) is closed if and only if it is a maximal ideal. The spectrum of the
ring is therefore usually not a T1–space, much less a Hausdorff space.

(b) If a point x of the space Spec(R) belongs to the closure of another point y of this space, then y as
a set is included in x (since x is an element of V(y), this must contain the set y).

(c) Spec(R) is the T0–space.
(d) The space Spec(R) is compact.
(e) An open set in Spec(R) is a compact subspace if and only if it can be expressed as a union of

finitely many sets of the form of the complement in Spec(R) of the set V({ f }), where f ∈ R.
(f) Spec(R) is an irreducible space if and only if the nilradical of the ring R is a prime ideal.

More information about the ring spectrum can be found in many sources, including in [2,3].
Another motivation is the article [10], where the properties of square-free ideals are described.

Recall that the ideal I of a ring R is called square-free if for every x ∈ R, if x2 ∈ I, then x ∈ I.
Square-free ideals are a consequence of research on the theory of square-free factorizations, the results
of which can be found in the papers [4–7,9,11] (in the case of radical factorizations) and in the author’s
doctoral thesis, which was highly appreciated by Professor Tadeusz Krasiński from the University of
Łódź in a review, motivating the author to further work on square-free factorizations.

Inspired by square-free factorizations and the spectrum of the ring, an idea was created to
generalize the spectrum of the ring by replacing prime ideals with square-free ones and to investigate
whether such a set of all square-free ideals will be a topological space for a certain topology, and to
examine whether there are relationships between given rings with certain algebraic properties and the
space of square-free ideals with certain topological properties.
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Definition 1.1. Recall that the monoid H we call

(1) factorial if any non-invertible element can be represented uniquely as a finite product of prime
elements.

(2) an ACCP-monoid if any increasing sequence of principal ideals in H stabilizes.
(3) atomic if any non-invertible element of H can be represented as a finite product of irreducible

elements (atoms).
(4) a GCD-monoid if for any two elements of H there is a GCD of them.
(5) a pre-Schreier monoid if any element a ∈ H is primal, i.e. for any b, c ∈ H such that a | bc there

exist a1, a2 ∈ H such that a = a1a2, a1 | b and a2 midc.
(6) an AP-monoid if every irreducible element is prime.
(7) an SR-monoid if every square-free element is radical.

The relationships between the above monoids are as follows:

ACCP ⇒ atomic
⇐

f actorial
⇐

GCD ⇒ pre − Schreier ⇒ AP
⇐

SR

and from GCD and AP we refer factorial monoid.
An SR property is a fresh concept from [10], where it was examined in detail. Pre-Schreier monoids

are less known. More information can be found in [1,13].
In the Section 2 we define a topological monoid and study its basic properties, motivated by the

book [12].
In the Section 3, in addition to square-free ideals, we use idempotent ideals. Recall that the ideal I

is called idempotent if I2 = I. Of course, every idempotent ideal is square-free. In Proposition 3.4 and
in Proposition 3.9 we define the Ł1/ Ł2–topologies as the family of all sums of idempotent/square-
free ideals in the monoid H. In Propositions 3.12 and 3.13 we will show that closed sets in Ł1 /
Ł2–topologies are the products of idempotent / square-free ideals. In this Section we also study many
other basic properties such as set closure (Theorems 3.14, 3.16), set interior (Theorems 3.17, 3.18 ) and
many others. Like a ring spectrum, topological monoids with Ł1, Ł2–topologies (Proposition 3.25) are
T0 but not T1 (Example 3.26).

In the Section 4 we introduce the concept of a square-free spectrum as the set of all square-free
ideals of the monoid H with Ł2–topology. In Theorems 4.1 – 4.7 we will show the relationship between
monoids with algebraic properties from Definition 1.1 and certain topological properties.

2. Topological monoids

In this Section, we will define and investigate the basic properties of topological monoids. At the
end of this section, we collect many examples of the properties being studied.

Definition 2.1. A topological monoid is a set H such that

(1) H is a monoid.
(2) H is a topological space.
(3) The monoid action is continuous.

Proposition 2.2. Let U be the neighborhood of e in the topological monoid H. Then there exists a neighborhood
V of element e in H such that:

(a) VV ⊆ U,
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(b) for the closure of V of the neighborhood U we have V ⊂ U.

Proof. Let us choose any open set W containing e such that W ⊆ U. Note that W is also a neighborhood
of e in H because it contains the open set {e}. Let’s define V = W ∩W−1, where W−1 = {x−1 : x ∈ W}.

We will show that V is an open subset of H and contains e. To show that V is an open subset of H,
it is enough to show that W and W−1 are open subsets of H. We know that W is open by definition. To
show that W−1 is open, let’s use the fact that the action of monoid is continuous. Let x ∈ W−1 and let
Ux ⊆ W−1 be any open set containing x. Then there exists an open set Vx ⊆ H such that xVx ⊆ Ux.
Since x ∈ W−1, we have x = y−1 for some y ∈ W. So yxVx ⊆ yUx ⊆ W. But yx = e, so Vx ⊆ W.
Therefore x ∈ Vx ⊆ W ∩ W−1 = V. This means that V is the neighborhood of x in H. Since x was any
element of W−1, we get that W−1 is open in H.

To show that V contains e, it is enough to note that e ∈ W and e ∈ W−1, since e is the neutral
element of the monoid.

We will show that VV ⊆ U and the closure of V′ of the neighborhood of V is contained in U. Let
x, y ∈ V and show that xy ∈ U. We know that x ∈ W and y ∈ W−1, so xy ∈ WW−1. But WW−1 ⊆ U,
since for any a ∈ W and b ∈ W−1 we have ab = c for some c ∈ W (because b = a−1 for some a ∈ W).
So xy ∈ U. To show that the closure of V′ of the neighborhood V is contained in U, it is enough to
show that every boundary point of the set V belongs to U. Let z ∈ H be the limit point of the set V and
let T ⊆ H be any open set containing z. We will show that T ∩ V ̸= ∅. Since z is the limit point of the
set V, then there exists a sequence (xn)∞

n=1 of the elements of the set V convergent to z. Since the action
of the monoid is continuous, the sequence (xnxn)∞

n=1 of the elements of the set VV also converges to
zz. But we know that VV ⊆ U, so zz ∈ U. So T ∩ U ̸= ∅. Since T was any open set containing z, we
obtain that z belongs to the interior of the set U. Therefore, the closure of V′ of the neighborhood V is
contained in U.

Remark 2.3. The set VV is the product of the sets V and V in a topological monoid, i.e. VV = {xy : x, y ∈ V}.
In the proof above, we can use V−1 as the inverse of the neighborhood in a monoid, provided we understand it
in the right sense. The point here is not that V−1 is a neighborhood of e−1, because e−1 does not have to exist
in a monoid. The point here is that V−1 is the set of all elements inverse to the elements of V. In other words,
V−1 = {x−1 : x ∈ V}, where x−1 is an element of the monoid H such that xx−1 = x−1x = e. Such a set
exists for any neighborhood V of element e in a monoid, because e has an inverse with respect to itself. Note that
V−1 does not have to be a neighborhood of the element e in H, unless V = V−1, which is the case, for example,
in the case of topological groups.

Proposition 2.4. Let H be a monoid and at the same time a topological space. For H to be a topological monoid,
it is necessary and sufficient that:

(1) {e} is closed in H,
(2) the actions x 7→ hx, x 7→ xh are continuous for every h ∈ H,
(3) the monoid action is continuous in (e, e).

Proof. The necessity of conditions (1), (2), (3) is obvious.
To prove that H is a topological monoid from conditions (1), (2), (3), it is enough to show that

the action of the monoid is continuous with respect to the topology on H. In other words, we need
to show that for any open sets U and V in H, the product U × V is an open subset of H × H and the
image of this product by the monoid action is an open subset of H.

Let U and V be any open sets in H. We will show that U × V is an open subset of H × H. Let
(x, y) ∈ U × V and let Wx ⊆ U and Wy ⊆ V be any open sets containing x and y, respectively. Then
Wx × Wy is an open subset of U × V containing (x, y), because the Cartesian product of open sets is an
open set. Since (x, y) was any element of U × V, we get that U × V is open in H × H.

Let U and V be any open sets in H. We will show that the image of the product U × V by the
monoid action is an open subset of H. Let z ∈ UV, where UV = {xy : x ∈ U, y ∈ V}. Then there
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exist x ∈ U and y ∈ V such that z = xy. Let’s take advantage of the fact that the shifts x 7→ hx and
x 7→ xh are continuous mappings for each h ∈ H. Then there exist open sets X ⊆ U and Y ⊆ V
such that xX ⊆ U and Yy ⊆ V. Note that Xy and xY are also open sets because they are images of
sets opened by continuous maps. Let’s define Z = Xy ∩ xY. Note that Z is an open subset of UV
containing z because it is the intersection of open sets and xy ∈ Xy ∩ xY. We will show that Z is also a
neighborhood of z in H. Let T ⊆ H be any open set containing z. We will show that T ∩ Z ̸= ∅. Let’s
take advantage of the fact that the action of the monoid is continuous at the point (e, e), where e is the
neutral element of the monoid. Then there exist open sets E1 and E2 in H such that e ∈ E1, e ∈ E2 and
E1 × E2 ⊆ T. Since x ∈ X ⊆ U and y ∈ Y ⊆ V, we have xE1 ⊆ U and E2y ⊆ V. But we know that
xE1y = xyE1y = xyE2y = xE2yy = xE2y = zE2y ⊆ T. Therefore xy ∈ T ∩ Xy ⊆ T ∩ Z. This means
that Z is the neighborhood of z in H. Since z was any element of UV, we get that UV is open in H.

Definition 2.5. The subset of the topological monoid H containing the neighborhood of neutral element
is called the kernel of H.

Proposition 2.6. Let Σ be the family of all kernels of the topological monoid H. Then Σ satisfies the following
conditions:

(a) if U1, U2 ∈ Σ, then U1 ∩ U2 ∈ Σ,
(b) if U1 ∈ Σ and U1 ⊂ V ⊂ H, then V ∈ Σ,
(c) for every U ∈ Σ there exists V ∈ Σ such that VV−1 ⊂ U,
(d) if U ∈ Σ and a ∈ H∗, then aUa−1 ∈ Σ,
(e)

⋂
U∈Σ = {e}.

Conversely, if a family Σ of subsets of the monoid H is given that satisfies the conditions (a)− (e), then there
exists a topology on H with respect to which H is a topological monoid such that Σ is the family of all kernels for
this topological monoid.

Proof. The proof of the first part is obvious. In the second part, we define the topology on H by saying
that U is an open set if for every x ∈ U there exists a V ∈ Σ such that xV ⊂ U. Checking all the
required properties of such a defined family of sets is an easy exercise.

Let H be a topological monoid, M a topological submonoid of the monoid H. Then the set
H/M := {hM : h ∈ H} will be called the quotient space.

Theorem 2.7. Let M be a topological submonoid of the topological monoid H and let π : H → H/M be a
natural projection. Then:

(a) On H/M there is a topology such that

(a1) π : H → H/M is a continuous mapping,
(a2) for any topological space P and the map f : H/M → P, the continuity of the map f ◦ π entails the

continuity of f .

The conditions (a1) and (a2) clearly determine the topology on H/M, we call it the quotient topology.
(b) Let a quotient topology be defined on H/M. Then π : H → H/M is an open mapping.

Proof. The conditions (a1) and (a2) determine the topology. Indeed, let be given topologies T1

and T2 on H/M satisfying (a1) and (a2). Let us denote by (H/M, Ti) the topological space H/M
with topology Ti (i = 1, 2) and let j : (H/M, T1) → (H/M, T2) will be an identity map. Then, since
j ◦ π : H → (H/M, T2) is a continuous mapping by condition (a1) (applied to topology T2), so by
condition (a2) (used for topology T1) j is a continuous map. By exchanging the roles of T1 and T2 we
get the continuity of j−1. Therefore j is a homeomorphism and the topologies T1 and T2 are identical.

We will now show that there exists a topology satisfying (a1) and (a2). We define it as follows:
Let U be a subset of H/M that is open if and only if its counterimage π−1(U) is open in H. It is easy
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to see that all the conditions that the topology should meet are met here, and the continuity of the π

mapping also follows directly from the definition. To show that the condition (a2) is satisfied, assume
that f ◦ π : H → P is a continuous mapping. Let V be an open set in P. Then U = ( f ◦ π)−1(V) is an
open set in H. So π(U) is an open set in H/M, but π(U) = f−1(V), so f is a continuous mapping.

Let’s move on to proof (b). Let U be an open set in H. Then Uh for h ∈ H is also an open set,
so UM =

⋃
m∈M Um is an open set. But UM = π−1(π(U)). Therefore, by the definition of quotient

topology, the set π(U) is open in H/M.

Corollary 2.8. (H/M, ·) is a topological monoid, π : H → H/M is a continuous open homomorphism.

Proof. It is enough to prove the continuity of the mapping H/M × H/M → H/M, (h1M, h2M) →
h1h2M. Let U be the neighborhood of element h1h2M in H/M. Then π−1(U) is the neighborhood of
h1h2 in H. There are Vi-neighborhoods hi, i = 1, 2 in H such that V1V2 ⊂ π−1(U). Therefore π(V1)

and π(V2) are the neighborhoods of h1M and h2M and π(V1)π(V2) = π(V1V2) ⊂ π(π−1(U)) = U,
which proves the continuity of our mapping.

Corollary 2.9. H/M is a discrete monoid (i.e. every set in H/M is an open set).

Proof. Since π is open, π(hM) = {hM} is an open set in H/M. Therefore, the points H/M are open
sets.

Proposition 2.10. Let H, M be topological monoids, and let α : H → M be a homomorphism. For the
homomorphism α to be continuous, it is necessary and sufficient for it to be continuous in e ∈ H.

Proof. Only the sufficiency of the continuity condition in e requires proof. Let V be the neighborhood
of e in M. Then for h ∈ H the set α(h)V is the neighborhood of the element α(h) in M. By assumption,
there exists a neighborhood U of e in H such that α(U) ⊂ V. Then hU is the neighborhood of h in H
and we have α(hU) = α(h)α(U) ⊂ α(h)V. This means that the homomorphism α is continuous at the
point h ∈ H.

Proposition 2.11. Let f : H → M be a continuous homomorphism of the topological monoids H and M. Let
P = {h ∈ H : f (h) = e} be the kernel of f . Then

(a) P is a closed submonoid in H,
(b) there is a continuous monomorphism F : H/P → M such that f = F ◦ π, where π : H → H/P is a

natural homomorphism.

Proof. The proof of this Proposition is an obvious modification (using Theorem 2.7 and its conclusions)
of an analogous purely algebraic theorem.

We provide formal definitions of a compact and connected topological monoid. Research has
shown that such concepts obviously exist in topological monoids, but there is no need to investigate
these properties further due to the lower attractiveness of topological monoids.

Definition 2.12. A topological monoid H is called compact if H is a compact topological space. H is
called a locally compact monoid if there is a neighborhood of e whose closure is compact.

Definition 2.13. A topological monoid H is called connected if H is a connected topological space.

At the end of this Section, we will show some examples showing that monoids are or are not
topological monoids, and monoids that are compact or not, and that are connected or not.

Example 2.14. (1) Of course, every topological group is a topological monoid.
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(2) The set of natural numbers with zero N0 = {0, 1, 2, . . . } with addition is a topological monoid if
we assume a discrete topology on it, i.e. each subset is open. Then each function of this monoid
is continuous because it maps open sets to open sets. Similarly, the set of natural numbers
N = {1, 2, . . . } with multiplication with discrete topology.

They are also not compact in a discrete topology. Then every single-element subset is an open
set, and the family of all such subsets is a cover of such monoids from which it is impossible to
choose a finite subcover.

The set of natural numbers with zero with the addition action N0 or the set of natural numbers N
with multiplication are compact topological monoids if we assume a finite topology for them, i.e.
such that each subset is open and closed. Then every cover of such monoids is finite, and every
sequence of natural numbers converges to the largest number in this sequence.

The set of natural numbers with zero with the addition action N0 or the set of natural numbers N
with multiplication are not topologically connected monoids if we assume a discrete topology
on them. Then we can divide these monoids into two non-empty open and disjoint subsets, for
example into the set of even and odd numbers. The operations of addition and multiplication
are continuous because it maps open sets to open sets.

(3) The set of all mappings of any topological space M to itself with the action of combining the
mappings is a topological monoid if we assume a point-convergent topology on it, i.e. the subset
is open if for each point x of M there is a neighborhood U such , that every mapping from this
subset is continuous on U. Then the action of combining maps is continuous because it preserves
the convergence of sequences of functions.

It is not compact in the same topology. If for every point x in M there exists a neighborhood
U such that every mapping from this subset is continuous on U. Then every single-element
subset is an open set, and the family of all such subsets is a cover of this monoid, from which it is
impossible to choose a finite subcover.

Also in the same topology it is not connected if M is not a topologically connected space. If for
every point x in M there exists a neighborhood U such that every mapping from this subset
is continuous on U. Then this monoid can be divided into two non-empty open and disjoint
subsets, for example into a set of mappings preserving the coherence of the space M and a set
of mappings destroying the coherence of the space M. The operation of mapping mappings is
continuous because it preserves the convergence of sequences of functions.

(4) The set of all homeomorphisms of any topological space X to itself with the action of combining
the mappings is a topological monoid if we assume a compact-open topology on it, i.e. a subset
is open if it is a family of open subsets of the functional space C(X, X), where C(X, X) denotes
the set of all continuous functions of X to X. Then the mapping action is continuous because it is
continuous over the space C(X, X). This example is, of course, also a topological group.

In the same topology, the set of all homeomorphisms of any topological space X on itself with
the action of combining maps is a compact topological monoid, if X is a compact space. If is
a family of open subsets of the functional space C(X, X), where C(X, X) denotes the set of all
continuous functions of X to X. Then every covering of this monoid has a finite subsequence,
and every sequence of homeomorphisms has a convergent subsequence in the sense of points.

The set of all homeomorphisms of any topological space X on itself with mapping action is a
connected topological monoid in the same topology if X is a connected space. If is a family of
open subsets of the functional space C(X, X), where C(X, X) denotes the set of all continuous
functions of X to X. Then this monoid cannot be divided into two nonempty open and disjoint
subsets, because each homeomorphism preserves the consistency of the space X. The mapping
action is continuous because it is continuous over C(X, X).

(5) The set of all subsets of any set X with the action of the union of sets is a monoid, but it is not a
topological monoid. There is no sensible topology on the power set X that would be consistent
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with the operation of the sum. For example, if X = {a, b, c}, then there is no way to define the
neighborhoods of {a, b} such that they are closed to the sum.

(6) The set of all strings over any alphabet with the operation of concatenation is a monoid, but is
not a topological monoid. There is no natural metric or norm on the set of strings that would be
consistent with concatenation. For example, there is no way to measure the distance between the
strings "abc" and "def" so that it is related to the distance between "abc" and "abcdef".

(7) The set of all functions from any set X into the set of real numbers with the function addition
operation is a monoid, but it is not a topological monoid. There is no natural topology on the set
of functions that would be consistent with the operation of addition. For example, if X = {a, b},
then there is no way to define the neighborhoods of the functions f (a) = 1, f (b) = 2 such that
they are closed to addition .

If X is a compact space, is the set of all continuous functions from any topological space X into
the set of real numbers R with the function addition operation is not compact, if we adopt a
compact-open topology on it, that is, a subset is open if it is a family of open subsets of the
functional space C(X,R), where C(X,R) denotes the set of all continuous functions of X to R.
Then every single-element subset is an open set, and the family of all such subsets is a cover of
this monoid, from which it is impossible to choose a finite subcover.

Similarly, if X is a compact space, then the set of all continuous functions from any compact
topological space X into the set of real numbers R with the function addition operation is non-
connected, if we adopt a compact-open topology on it again. If is a family of open subsets of
the functional space C(X,R), where C(X,R) denotes the set of all continuous functions of X in
R. Then we can divide this monoid into two non-empty open and disjoint subsets, for example
into a set of positive functions and a set of negative functions. The function addition action is
continuous because it is continuous over C(X,R).

(8) The set of all square matrices of degree n with determinant equal to 1 with the action of matrix
multiplication is a compact topological monoid if we assume on it the topology induced by the
Euclidean metric on R2

n. Then every cover of this monoid has a finite subcover, and every matrix
sequence has a convergent subsequence in the sense of the Euclidean metric.

It is also a connected monoid. If we assume on it the topology induced by the Euclidean metric
on R2

n. Then this monoid cannot be divided into two nonempty open and disjoint subsets,
because each open ball contains matrices with different determinants. The matrix multiplication
operation is continuous because it is continuous over R2

n.
(9) The set of real numbers R with the action of addition or the set of real numbers without zero

R\ {0} with multiplication are topologically connected monoids if we adopt a Euclidean topology
on them, i.e. that a set is open if it contains an open ball with any center and radius. Then it is
impossible to divide such monoids into two non-empty open and disjoint subsets, because each
open ball contains points from both subsets. The operations of addition and multiplication are
continuous because it preserves the convergence of sequences.

3. Topologies on idempotent and square-free ideals

In this Section, we define the topology on families on sums of idempotent and square-free ideals.
We will examine some topological properties.

Let’s start with the auxiliary lemmas first.

Lemma 3.1. Let H be a monoid. Then every idempotent ideal is the sum of idempotent ideals.

Proof. Let I be an idempotent ideal in R. Then I2 = I. Let x ∈ I. Then x = x2 + x − x2 ∈
I2 + (x − x2)H.
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Note that I2 is an idempotent ideal because (I2)2 = I4 = I2. Furthermore, x − x2 is idempotent
because (x − x2)2 = x2 − 2x3 + x4 = x2 − x2 + x4 = x − x2. Therefore I is the sum of the idempotent
ideals I2 and (x − x2)H for each x ∈ I.

Lemma 3.2. Let H be a monoid and let A1, . . . , An be sums of idempotent ideals in H. Then the intersection of
the sums of idempotent ideals is equal to the product of all idempotent ideals appearing in A1, . . . , An.

Proof. Let A1, . . . , An be sums of idempotent ideals in H. Let B = A1 ∩ · · · ∩ An. Let C = I1 . . . In,
where Ij is the product of all idempotent ideals appearing in Aj. We will show that B = C.

We have B ⊆ C, because if x ∈ B, then x belongs to every Aj, therefore to every Ij, and therefore
to I1 . . . In = C.

We have C ⊆ B. If x ∈ C, then x is the sum of a finite number of elements of the form i1i2 . . . in,
where ij ∈ Ij. Each such element belongs to every Aj, because Aj is the sum of the ideals of idempotent
ideals, so it is closed to multiplication by the elements of these ideals. Therefore, x belongs to each Aj,
and therefore to the intersection A1 ∩ · · · ∩ An. So B = C.

Lemma 3.3. Every product of idempotent ideals is an idempotent ideal.

Proof. Let I1, . . . , In be idempotent ideals in H. Let J = I1 . . . In. We will show that J is an idempotent
ideal.

It is easy to check that J is an ideal, because it is a product of ideals. To show that J is idempotent,
it is enough to show that J2 ⊆ J.

Let x ∈ J2. Then x is the sum of a finite number of elements of the form j1 j2, where j1, j2 ∈ J.
Each such element j1 j2 is the product of a finite number of elements of the form i1i2 . . . in, where ij ∈ Ij.
Since each Ij is idempotent, then ij = i2j . Therefore x is the product of a finite number of elements of

the form i21i22 . . . i2n, where ij ∈ Ij. But this means that x ∈ J, because J is closed to multiplication by
elements of Ij. So J2 ⊆ J.

In Proposition 3.4 we define a topology on sums of idempotent ideals and we will denote such a
topology by Ł1.

Proposition 3.4. Let H be a monoid. Let Ł1 be the family of all sums of idempotent ideals in the monoid H.
Then Ł1 is the topology defined on the monoid H.

Proof. The empty set is the sum of the empty family of idempotent ideals, so it is an open set. The
entire monoid H is an idempotent ideal, because H2 = H, so it is also an open set.

Let Ai for i ∈ I (I as a set of indices) be a family of open sets, i.e. sums of idempotent ideals. Then
the sum of Ai for i ∈ I is equal to the sum of all idempotent ideals appearing in Ai. Every idempotent
ideal is the sum of idempotent ideals (from Lemma 3.1), so the sum Ai, ß ∈ I, is an open set.

Let A1, . . . , An be open sets, i.e. sums of idempotent ideals. Then the intersection A1 ∩ · · · ∩ An

is equal to the product of all idempotent ideals appearing in A1, . . . , An (from Lemma 3.2). Every
product of idempotent ideals is an idempotent ideal (from Lemma 3.3), so A1 ∩ · · · ∩ An is an open
set.

Let us move on to the next auxiliary Lemmas.

Lemma 3.5. Let H be a monoid and I be an ideal in H. Then there exists a prime ideal P in H such that P
is contained in I and P is minimal with this property, i.e. there is no other prime ideal Q in H such that Q is
contained in I and Q is proper contained in P.

Proof. Let S denote the set of all ideals in H that are contained in I and do not contain any prime ideal.
Note that S is nonempty because (0) belongs to S. Note also that S is partially ordered with respect
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to inclusion. Let us now apply the Zorn’s Lemma to S. Therefore there is a maximal element M in S,
i.e. there is no other element N in S such that M is proper contained in N. We will show that M is a
prime ideal. Suppose that M is not prime. Then there are elements a and b in H such that ab belongs
to M, but neither a nor b belongs to M. Consider the ideals M + (a) and M + (b). It is easy to check
that these are ideals in H that are contained in I and contain M. Moreover, neither of them contains
the prime ideal, otherwise M would also contain this ideal, which contradicts the assumption that M
belongs to S. Therefore, M + (a) and M + (b) belong to S. But this means that M is not maximal in S,
which is contrary to the definition of M. Therefore M is a prime ideal, which completes the proof of
the Lemma.

Lemma 3.6. Let H be a monoid. Then every square-free ideal is the sum of square-free ideals.

Proof. Let H be a monoid and I be a square-free ideal in H. Suppose that I is not the sum of square-free
ideals. Then there exists a prime ideal P in H such that P is contained in I and P is minimal with this
property. From Lemma 3.5 we know that such an ideal P exists. Moreover, P is square-free because it is
prime. Therefore I = P + J for some ideal J in H. But then J is also square-free, because if x2 belongs to
J, then x2 belongs to I, so x belongs to I, an x belongs to P + J, that is, x = p + j for some p belonging
to P and j belonging to J. Squaring both sides, we get x2 = p2 + 2pj + j2. Since x2 belongs to J, then
p2 + 2pj + j2 belongs to J. But p2 belongs to P, so p2 belongs to P + J, so p2 belongs to J. Similarly, 2pj
belongs to P + J, so 2pj belongs to J. Therefore j2 belongs to J. But J is square-free, so j belongs to J.
Therefore, x belongs to J. But this means that I is the sum of square-free ideals, which contradicts the
assumption. Therefore I is the sum of square-free ideals, which completes the proof of the Lemma.

Lemma 3.7. Let H be a monoid and let A1, . . . , An be sums of square-free ideals in H. Then the intersection of
the sums of square-free ideals is equal to the product of all square-free ideals appearing in A1, . . . , An.

Proof. Let A1, . . . , An be sums of square-free ideals in H. Let B = A1 ∩ · · · ∩ An. Let C = I1 . . . In,
where Ij is the product of all square-free ideals appearing in Aj. We will show that B = C.

We have B ⊆ C, because if x ∈ B, then x belongs to every Aj, so to every Ij, and therefore to
I1 . . . In = C.

We have C ⊆ B. If x ∈ C, then x is the sum of a finite number of elements of the form i1i2 . . . in,
where ij ∈ Ij. Each such element belongs to every Aj, because Aj is the sum of the ideals of square-free
ideals, so it is closed to multiplication by elements of these ideals. Therefore, x belongs to each Aj, and
therefore to the common part A1 ∩ · · · ∩ An. So B = C.

Lemma 3.8. Every product of square-free ideals is a square-free ideal.

Proof. Let I1, . . . , In be square-free ideals in H. Let J = I1 . . . In. We will show that J is a square-free
ideal.

It is easy to check that J is an ideal, because it is a product of ideals. To show that J is idempotent,
it is enough to show that J2 ⊆ J.

Let x ∈ J2. Then x is the sum of a finite number of elements of the form j1 j2, where j1, j2 ∈ J.
Each such element j1 j2 is the product of a finite number of elements of the form i1i2 . . . in, where ij ∈ Ij.
Since each Ij is idempotent, then ij = i2j . Therefore x is the product of a finite number of elements of

the form i21i22 . . . i2n, where ij ∈ Ij. But this means that x ∈ J, because J is closed to multiplication by
elements of Ij. So J2 ⊆ J.

In Proposition 3.9 we define a topology on sums of square-free ideals and denote such a topology
by Ł2.
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Proposition 3.9. Let H be a monoid. Let Ł2 be the family of all sums of square-free ideals in the monoid H.
Then Ł2 is the topology defined on the monoid H.

Proof. The empty set is the sum of the empty family of square-free ideals, so it is an open set. The
entire monoid H is a square-free ideal, because if x2 ∈ H, then x ∈ H, so H is also an open set.

Let Ai for i ∈ I (I as a set of indices) be a family of open sets, i.e. sums of square-free ideals. Then
the sum of Ai for i ∈ I is equal to the sum of all square-free ideals appearing in Ai. Every square-free
ideal is the sum of square-free ideals (Lemma 3.6), so the sum Ai, ß ∈ I, is an open set.

Let A1, . . . , An be open sets, i.e. sums of square-free ideals. Then the intersection A1 ∩ · · · ∩ An is
equal to the product of all square-free ideals appearing in A1, . . . , An (Lemma 3.7). Every product of
square-free ideals is a square-free ideal (Lemma 3.8), so A1 ∩ · · · ∩ An is an open set.

For the next result we need the following Lemma.

Lemma 3.10. Let A1, . . . , An be the sums of idempotent ideals in the monoid H. Let B = A1 + · · ·+ An.
Then the complement of B is the product of idempotent ideals.

Proof. It is enough to show that each element of the complement of B is the product of a finite number
of elements from the idempotent ideals forming A1, . . . , An. Let x belongs to the complement of B.
Then x /∈ B, i.e. is not the sum of a finite number of elements from A1, . . . , An. Therefore, for every
i = 1, . . . , n, there exists an idempotent ideal Ji such that x /∈ Ji, and every element of Ji belongs to
Ai. Then J1 . . . Jn is the product of idempotent ideals, and x ∈ J1 . . . Jn. Moreover, J1 . . . Jn is included
in the complement of B, because if y ∈ J1 . . . Jn, then y /∈ B. Therefore, the complement of B is the
product of idempotent ideals.

Remark 3.11. Lemma 3.10 also holds for square-free ideals. The proof proceeds analogously.

Proposition 3.12. Let H be a monoid with Ł1–topology. Then the closed sets in H are the products of idempotent
ideals.

Proof. Let I be the product of idempotent ideals in the monoid H. We will show that I is a closed set
in Ł1. It is enough to show that the complement of I is an open set in Ł1.

Let x ∈ H \ I. Then x /∈ I, i.e. is not the product of a finite number of elements from the
idempotent ideals that creating I. Therefore, there exists an idempotent ideal J such that x /∈ J, and
every element of J belongs to I. Then J is an open set in Ł1, because it is the sum of idempotent ideals,
and x ∈ J. Furthermore, J is included in the complement of I. Therefore J is the neighborhood of x in
the complement of I. Since x was any element of the complement of I, it means that the complement
of I is an open set in Ł1.

Proposition 3.13. Let H be a monoid with Ł2–topology. Then the closed sets in H are the products of square-free
ideals.

Proof. Let I be the product of square-free ideals in the monoid H. We will show that I is a closed set
in Ł2. It is enough to show that the complement of I is an open set in Ł2.

Let x ∈ H \ I. Then x /∈ I, i.e. is not the product of a finite number of elements from the square-free
ideals that creating I. Therefore, for every i = 1, . . . , n, there exists a square-free ideal Ji such that
x /∈ Ji, and every element of Ji belongs to I. Then J1 + · · ·+ Jn is an open set in Ł2 because it is the
sum of square-free ideals, and x ∈ J1 + · · ·+ Jn. Moreover, J1 + · · ·+ Jn is included in the complement
of I, because if y ∈ J1 + · · ·+ Jn, then y /∈ I. Therefore J1 + · · ·+ Jn is the neighborhood of x in the
complement of I. Since x was any element of the complement of I, it means that the complement of I
is an open set in Ł2.
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Now we will discuss the characterization of the closures of the set, the interior of the set and the
boundary of the set in the considered topologies.

Theorem 3.14. Let H be a monoid with Ł1–topology and let A be a subset of monoid H. Then the following
conditions are equivalent:

(a) x belongs to the closure of the set A, denoted by x ∈ A,
(b) for every idempotent ideal J, x ∈ J + A,
(c) x belongs to any idempotent ideal that contains A.

Proof. (a) ⇒ (b)
Assume x ∈ A in Ł1. Let J be any idempotent ideal containing A. Then J is an open set in Ł1 because it
is the sum of idempotent ideals. Since x ∈ A, then x belongs to every neighborhood of A, and therefore
x ∈ J. So x ∈ J + A.
(b) ⇒ (a)
Assume that for any idempotent ideal J containing A, x ∈ J + A. We want to show that x ∈ A. Let
U be any neighborhood of x in Ł1. Then U is the sum of idempotent ideals, i.e. U = I1 + · · ·+ In for
some idempotent ideals I1, . . . , In. Let J = I1 + · · ·+ In + A, i.e. x ∈ U + A. But U + A = H, because
U is open and A is non-empty. So x ∈ H, or x ∈ A.
(a) ⇔ (c)
The closure of the set A in the Ł1–topology is the smallest closed set containing A, i.e. the intersection
of all closed sets containing A. A closed set in the Ł1–topology is the sum of idempotent ideals that are
maximal in the sense of inclusion. Such a closed set can also be written as the product of all idempotent
ideals (as we gave earlier) that contain it, but this is not necessary for the proof. Therefore x ∈ A if and
only if x belongs to every idempotent ideal that contains A.

Corollary 3.15. The closure of the set A is the intersection of all idempotent ideals I, where A ⊆ I.

Theorem 3.16. Let H be a monoid with Ł2–topology, A a subset of H. Then the following conditions are
equivalent:

(a) x ∈ A,
(b) for each square-free ideal J in H, if x2 ∈ J, then A ∩ J ̸= ∅.

Proof. (a) ⇒ (b)
Let J be a square-free ideal in H and let x2 ∈ J. Then x ∈ J, because J is square-free. So x ∈ A + J,
which is an open set containing A. Since x ∈ A, then A + J must intersect A, i.e. A ∩ J ̸= ∅.
(b)⇒ (a)
Let U be any open set containing x. Then U is the sum of some square-free ideals, i.e. U = I1 + · · ·+ In.
Since x ∈ U, then x ∈ Ik for some k. Then x2 ∈ Ik, so A ∩ Ik ̸= ∅. Therefore, from the condition
U ∩ A ̸= ∅ we have x ∈ A.

Theorem 3.17. Let H be a monoid with Ł1–topology and let A ⊂ H. Then the following conditions are
equivalent:

(a) x belongs to the interior of the set A, denoted by x ∈ Int A,
(b) there is an idempotent ideal I in H such that x ∈ I ⊆ A.

Proof. (a)⇒(b)
Assume x ∈ Int A. Then there exists an open set U such that x ∈ U and U ⊆ A. Since U is an open set
in Ł1, then U is an idempotent ideal, i.e. U2 = U. Therefore x ∈ U2 and U2 ⊆ A. Let I = U2. Then I is
an idempotent ideal such that x ∈ I and I ⊆ A.
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(b)⇒ (a)
Assume there is an idempotent ideal I in H such that x ∈ I and I ⊆ A. Then I is an open set in Ł1

because I2 = I. Therefore x ∈ I and I ⊆ A. Let us denote U := I. Then U is an open set such that
x ∈ U and U ⊆ A.

Theorem 3.18. Let H be a monoid with Ł2–topology and let A ⊂ H. Then the following conditions are
equivalent:

(a) x belongs to the interior of the set A, denoted by x ∈ Int A,
(b) there exists a square-free ideal I in H such that x ∈ I ⊆ A.

Proof. (a)⇒(b)
Assume x ∈ Int A. Then there exists an open set U such that x ∈ U and U ⊆ A. Since U is an open
set in Ł2, then U is the sum of some square-free ideals, i.e. U = I1 + · · ·+ In, where I1, . . . , In are
square-free ideals in H. Since x ∈ U, then x ∈ Ik, for some k. Then x ∈ Ik and Ik ⊆ A. Let us denote
I := Ik. Then I is a square-free ideal such that x ∈ I and x ∈ I, I ⊆ A.
(b)⇒(a)
Assume there is a square-free ideal I in H such that x ∈ I, I ⊆ A. Then I is an open set in Ł2, because I
is the sum of some square-free ideals, i.e. I = J1 + · · ·+ Jn, where J1, . . . , Jn are ideals square-free in H.
Therefore x ∈ I, I ⊆ A. Let us denote U := I. Then U is an open set such that x ∈ U and U ⊆ A.

Proposition 3.19. Let H be a monoid with Ł1–topology (Ł2 resp.) and let A ⊂ H. Then the following
conditions are equivalent:

(a) x belongs to the boundary of the set A, denoted by x ∈ Fr A;
(b) x belongs to every idempotent ideal (square-free resp.) that contains A, but there is no idempotent ideal

(square-free, resp.) such that x belongs to that idempotent (square-free resp.) ideal contained in A.

Proof. We will perform the proof for idempotent ideals in the Ł1–topology. The proof for square-free
ideals in the Ł2–topology will be analogous.
(a) ⇒ (b)
Assume x ∈ Fr A. Then x ∈ A but x /∈ Int A. Then by Theorem 3.16 x belongs to every idempotent
ideal that contains A. From Theorem 3.17 it follows that there is no idempotent ideal such that x
belongs to the idempotent ideal contained in A.
(b)⇒ (a)
Assume that x belongs to every idempotent ideal that contains A, but there is no idempotent ideal
such that x belongs to that idempotent ideal that contains A. From Theorem 3.16 it follows that x
belongs to the closure of the set A. From Theorem 3.17 it follows that x does not belong to the interior
of the set A. Therefore x belongs to the boundary of the set A.

Next we will discuss other properties such as: Borel sets, dense sets, topology equivalence Ł1 and
Ł2.

Remark 3.20. From the definition of Borel sets it follows that every open or closed set in the topological space X
belongs to the σ-field of Borel sets on X, denoted B(X). This means that in the monoid H the sums and products
of idempotent ideals and the sums and products of square-free ideals are Borel sets in the Ł1–, Ł2–topologies,
respectively.

Example 3.21. Let S = R[x]/(x2) be the set of all polynomials of degree at most 1. Then S is a Borel
set in Ł1, because it is the complement of the open set (x2) in Ł1.

The set S is not Borelian in Ł2 because it is not the sum of square-free ideals. Indeed, suppose that
S is the sum of square-free ideals I1, . . . , In, where Ik ⊂ R[x]. Then for each k we have Ik = {p(x) ∈
R[x] : p(x)2 ∈ Ik}. Therefore, if p(x) ∈ Ik, then p(x)2 ∈ Ik. But then p(x)4, p(x)8, p(x)16, · · · ∈ Ik.
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Therefore, if p(x) ̸= 0, then Ik contains infinitely many powers of p(x), which contradicts Ik being an
ideal. Therefore, any square-free ideal containing S must be trivial, i.e. equal to {0} or R[x]. Recall that
if S is dense in R[x], this means that the closure of S in the topology Ł2 is equal to R[x]. This means
that S has a nonempty intersection with all open sets in the topology Ł2. On the other hand, if I1, . . . ,
In are square-free ideals in R[x], then the sum I1 + · · ·+ In is closed in the topology Ł2 because it is the
product of square-free ideals. But if I1, . . . , In are different from R[x], it means they are equal to {0}.
Then the sum of I1 + · · ·+ In is also equal to {0}. Therefore, the sum of square-free ideals containing S
cannot yield S because S is dense in R[x] and {0} is not.

Corollary 3.22. Dense sets in Ł1/ Ł2 are sets that have a nonempty intersection with all sums of idempotent/square-
free ideals. Equivalently, dense sets in Ł1/Ł2 are sets whose closure in Ł1/Ł2 is equal to the entire monoid
H.

Example 3.23. Ł1– and Ł2–topologies are not equivalent. For example, let H = Z8 and let I = {0, 2, 4, 6}
be its ideal.

The ideal I is square-free, which is easy to show. But I is not idempotent because I2 = {0, 4} ̸= I.
The topology Ł2 is stronger than Ł1, because every set open in Ł1 is open in Ł2, but vice versa

generally not.

Corollary 3.24. Ł1 = Ł2 if and only if every square-free ideal is idempotent.

Proof. This follows from the example 3.23 and from the property that every idempotent ideal is
square-free.

At the end of this section, we will show the properties of the separation axioms in the considered
topologies.

Proposition 3.25. Let H be a monoid. Then (H, Ł1) and (H, Ł2) are T0–spaces.

Proof. It is enough to show that if x, y ∈ H, where x ̸= y, then there exists an idempotent/square-free
ideal I such that x ∈ I, y /∈ I or vice versa.

Let J be the ideal generated by x − y. Then J2 = J, so J is an idempotent ideal. The ideal J is also
square-free (because it is an idempotent ideal). Moreover, x ∈ J, y /∈ J, because if it belonged, then
x − y ∈ J, i.e. x = y, which is contrary to the assumption. Therefore J is the ideal sought.

Example 3.26. Let H be a monoid. Then (H, Ł1) and (H, Ł2) are not T1–spaces.

Proof. It is enough to show that there are two distinct elements x, y ∈ H for which there are no disjoint
idempotent ideals I, J such that x ∈ I, y ∈ J. Let x, y ∈ H, x, y ̸= 0. Then the ideals generated by x and
y, i.e. (x) and (y), are idempotent ideals. Also, x ∈ (x), y ∈ (y). However, (x) and (y) are not disjoint,
because (x) + (y) is an idempotent ideal containing both x and y. So we cannot separate x and y by
idempotent ideals.

The argument for square-free ideals is analogous.

4. The space of all square-free ideals in a monoid

In this section we consider the relationship between a given monoid and its subset consisting of
all square-free ideals. Such a subset together with the Ł2–topology is a topological space and we will
call it the square-free spectrum of monoid. We will focus on factorial monoids, ACCP-monoids, atomic
monoids, GCD-monoids, pre-Schreier monoids, AP-monoids and SR-monoids.

Theorem 4.1. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:
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(a) Monoid H is factorial.
(b) The space S is a compact, metrizable space and satisfies the second axiom of countability.

Proof. (a) ⇒ (b)
Let H be a factorial monoid. We will show that the topological space S is a compact, metrizable space
and satisfies the second countability axiom.

To show that S is a compact space, we need to show that every open cover has a finite subcover.
In a factorial monoid, each non-zero element can be represented as a product of prime elements. Since
square-free ideals are generated by the products of different primes, there are only a finite number
of different square-free ideals. Therefore, if we have an open cover of S, we can choose a finite set of
square-free ideals that cover S. This shows that S is a compact space.

A space S is metrizable if there is a metric d such that the topology induced by d is equivalent
to the Ł2–topology. We can define the metric d on S as follows: for two square-free ideals I and J,
let d(I, J) be equal to the number of primes that must be added or removed to transform I in J. This
metric is well defined because in a factorial monoid every element is uniquely represented as a product
of prime elements, and therefore every square-free ideal is uniquely generated by the products of
different prime elements.

To show that S satisfies the second countability axiom, we need to find a countable basis for the
Ł2–topology. In a factorial monoid, each square-free ideal is generated by a finite set of square-free
elements. We can therefore take all possible finite combinations of square-free elements to generate a
countable family of square-free ideals. This family will be the basis of the Ł2–topology because any
square-free ideal can be expressed as the sum of a finite number of ideals in this family.
(b)⇒(a)
We will show that each element h ∈ H can be represented as a product of square-free elements. Since S
is a compact topological space, every sequence of square-free ideals has a subsequence convergent to
some square-free ideal. This means that each element h can be represented as a limit of a sequence of
square-free elements, i.e. as a product of square-free elements.

Using the metrizability of S, we will show that prime elements in H correspond to isolated points
in S. If p is a prime element in H, then pH is a square-free ideal and is an isolated point in S. Thanks
to metrizability, each such point is separate from the others, which means that the prime elements are
uniquely defined.

Using the second countability axiom, we will show that there is a countable basis of primes in H.
Each element h ∈ H can be represented as a product of elements from this base, which means that this
representation is unambiguous.

Finally, since each element h ∈ H can be represented as a product of prime elements uniquely,
then H is a factorial monoid.

Theorem 4.2. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:

(a) Monoid R satisfies the ACCP condition.
(b) The space S is a metrizable and compact space.

Proof. (a) ⇒ (b)
Assume that the monoid H satisfies the ACCP condition, i.e. each infinite chain of increasing ideals
I1 ⊂ I2 ⊂ . . . stabilizes, i.e. there exists n such that In = In+1 = dots. We will show that S is metrizable
and compact.

A space S will be metrizable if there is a metric consistent with the Ł2–topology. We can define a
metric on S taking advantage of the fact that in an ACCP-monoid there are only a finite number of
principal ideals that can generate square-free ideals. This metric can be defined, for example, as the
minimum number of steps needed to go from one square-free ideal to another by adding or removing
generators.
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To show the compactness of S, we must show that every open cover S has a finite subcover. In
an ACCP-monoid, where infinitely long chains of increasing principal ideals cannot be created, each
square-free ideal is generated by a finite set of elements. This means that there are only a finite number
of different square-free ideals, so every open cover S must have a finite subcover.
(b)⇒ (a)
We start with the assumption that S is a compact and metrizable space. From the properties of a
compact space it follows that every sequence of elements from S has a convergent subsequence. In the
context of the monoid H, this means that for every sequence of square-free ideals there is a subsequence
that converges to some ideal in S.

The metricizability of S implies that there is a metric that defines the Ł2–topology. From the
definition of a metrizable space it follows that every Cauchy sequence converges, which in the context
of the monoid H means that every sequence of square-free ideals that is "close" to being constant (in
the sense of the metric) must stabilize.

These properties suggest that there cannot be an infinite sequence of properly increasing square-
free ideals in the monoid H, because any such sequence would have to have a convergent subsequence,
which is only possible if the sequence stabilizes. This means that H must have the ACCP property, i.e.
any increasing sequence of ideals in H stabilizes.

Theorem 4.3. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:

(a) Monoid H is atomic.
(b) The space S is a normal space.

Proof. (a) ⇒ (b)
Let us assume that H is atomic, i.e. every non-zero and non-invertible element is the product of a finite
number of irreducible elements. We will show that S is a normal space, i.e. for any closed sets F and G
such that F ∩ G = ∅, there exist open sets U and V such that F ⊆ U, G ⊆ V and U ∩ V = ∅.

Assume that H is an atomic monoid. Then for any two square-free ideals A and B in H that are
disjoint, there exist square-free ideals U and V such that A ⊆ U, B ⊆ V and U ∩ V = ∅. Since H is an
atomic monoid, there are irreducible elements u ∈ U and v ∈ V. Note that uH and vH are square-free
ideals. Since u /∈ V and v /∈ U, we have uH ∩ V = ∅ and U ∩ vH = ∅. Therefore S is a normal space.
(b)⇒ (a)
Now assume that S is a normal space. Let h be any non-zero element in H. We want to show that h can
be represented as a finite product of irreducible elements. Since S is a normal space, for any square-free
ideal I in H there exists a square-free ideal J such that I ⊆ J and J is closed. In particular, for h ∈ H,
there exists an irreducible element j ∈ J such that h = jk for some k ∈ H. Continuing this process for k,
we obtain that h is a finite product of irreducible elements. Therefore H is an atomic monoid.

Theorem 4.4. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:

(a) H is GCD-monoid.
(b) The space S is a metric, complete space and satisfies the second axiom of countability.

Proof. (a)⇒(b)
Let H be a GCD-monoid. Let S denote the set of all square-free ideals of the monoid H.

To prove that the topological space S is a metrizable, complete space and satisfies the second
axiom of countability, we must first define a metric for this space and then show that it satisfies the
required conditions.
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Let us define the metric d on S as follows: for any two square-free ideals I and J in H, let d(I, J) be
the distance between the smallest elements of I and J in natural order on H. Since H is a GCD-monoid,
the natural order is well defined and therefore d is a metric.

A space S is complete if every Cauchy sequence in S has a limit in S. Given our metric d, the
sequence of square-free ideals (In) is a Cauchy sequence if for every ϵ > 0 there exists N such that for
all m, n > N, we have d(Im, In) < ϵ. Since every element in H is finite, every Cauchy sequence must
converge to a square-free ideal in H, which shows that S is a complete metric space.

A topological space satisfies the second axiom of countability if there is a countable basis for the
neighborhoods of each point. In our case, for any square-free ideal I in H, the set of all square-free
ideals containing I as a subset is a countable basis of neighborhoods of I. Since H is a GCD-monoid,
there are only countably many square-free ideals, and therefore S satisfies the second countability
axiom.
(b)⇒(a)
Now we will prove that if the set S is a metrizable, complete space and satisfies the second axiom of
countability, then H is a GCD-monoid.

Assume a, b ∈ H. We want to find their GCD in the monoid H. Let’s define I = (a) ∩ (b). Since S
is a metrizable and complete space, there is a sequence of ideals In (where n ∈ N) which converges
to I. Let’s choose any element x ∈ I. Then x ∈ In for some n. Since x ∈ In, then x2 ∈ In (since In is a
square-free ideal). From the definition of I = (a) ∩ (b) it follows that x2 ∈ (a) and x2 ∈ (b). Hence
x ∈ (a) and x ∈ (b), which means that x is a common divisor of a and b. Therefore I ⊆ (a) ∩ (b), and
therefore I = (a) ∩ (b). This means that I is the greatest common divisor of a and b in the monoid H.

We have shown that for any a, b ∈ H there exists their GCD in the monoid H. This means that H
is a GCD-monoid.

Theorem 4.5. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:

(a) The monoid H is pre-Schreier.
(b) The space S is a metrizable space, completely regular, and satisfies the second axiom of countability.

Proof. (a)⇒(b)
Let H be a pre-Schreier monoid and S the set of all square-free ideals in H.

We define the metric d on S as follows:

d(I, J) = inf{ 1
n + 1

: In ̸= Jn},

where In and Jn are sequences of square-free ideals converging to I and J, respectively. Since H is
pre-Schreier, these sequences are well defined.

We will now prove complete regularity. Complete regularity means that for every point p and a
closed set C not containing that point, there exists a continuous function f : S → [0, 1] which takes the
value 0 at point p and 1 on the closed set C. Let I be any square-free ideal in H (a point in S), and J be
a square-free ideal that does not contain I (an element of the closed set C in S). We need to construct a
function f such that f (I) = 0 and f (J) = 1. Since H is pre-Schreier monoid, for any elements a ∈ I and
b /∈ I, there is an element c ∈ H such that a divides bc and c divides b . We can define the f function as
follows:

f (K) =

{
0 if c ∈ K

1 if c /∈ K

where K is any square-free ideal in S. The function f is continuous because for any neighborhood U
of point I in S, there is a neighborhood V of point J in S such that f (U) ⊆ f (V). This follows from
the fact that if c ∈ K for some K ∈ U, then c must also belong to every ideal in V, because c divides
the elements in J. We have thus shown that for every ideal I and every ideal J that does not contain I,
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there is a continuous function f separating these two points in the space S, which proves the complete
regularity of S.

The second axiom of countability says that every point in space has a countable basis of neigh-
borhood. In the context of the set S, this means that for every square-free ideal I ∈ S, there exists a
countable set {In} such that for every neighborhood U of the ideal I, there exists n such that In ⊆ U.
Since H is pre-Schreier monoid, every square-free ideal is generated by a countable set of square-free
elements. We can therefore construct a countable basis of neighborhoods for each ideal I in S using
these generating elements. Let G(I) denote the set of all elements generating the ideal I. For each
g ∈ G(I), we define Ig as the ideal generated by g. The set {Ig : g ∈ G(I)} is countable because G(I)
is countable. Now, for every neighborhood U of an ideal I, there is an element g ∈ G(I) such that
Ig ⊆ U. This is because the elements of G(I) are "close" to I in the sense of Ł2–topology, and the ideals
generated by single elements are "smaller" than the ideals generated by larger sets. In this way, for
each ideal I ∈ S, the set {Ig : g ∈ G(I)} constitutes a countable basis of neighborhoods, which proves
that S satisfies the second axiom of countability.
(b)⇒(a)
Assume that a divides bc, which means that there is an element d ∈ H such that ad = bc. Our goal is to
find a1 and a2 such that a = a1a2, a1 divides b and a2 divides c.

Since S is metrizable and satisfies the second countability axiom, there is a countable basis of
neighborhoods for every point in S. We can therefore find a sequence of square-free ideals {In}, which
is the basis of neighborhoods for the ideal generated by bc. Each ideal In contains a bc and therefore
also ad.

Complete regularity S means that for every ideal In and every element x /∈ In, there is a continuous
function f : S → [0, 1] that separates x from In. We can use this property to find a function that separates
b from ideals that do not contain a. Similarly, we can find a function that separates c from ideals that
do not contain a.

Using these functions, we can define a1 as an element that divides b and is at the intersection of
ideals containing b but not containing a (i.e. a1 divides b and belongs to each of the ideals containing b
in this intersection family). Similarly, a2 is an element that divides c and is at the intersection of ideals
containing c but not containing a (i.e. a2 divides c and belongs to each of the ideals containing c but
not containing a in this intersection family). Since ad = bc, and a1 and a2 are at the intersection of their
respective ideals, then a1a2 divides ad and therefore a = a1a2.

To sum up, metrizability, complete regularity and the second axiom of countability allow the
construction of elements a1 and a2 that satisfy the conditions of a pre-Schreier monoid. This ends the
proof.

Theorem 4.6. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:

(a) Monoid H satisfies AP.
(b) The space S is a metrizable and separable space.

Proof. (a)⇒(b)
Assume that the monoid H is AP. We will show that S is a metrizable and separable space.

We define the metric d on S as follows:

d(I, J) = inf
{

1
n + 1

: pn ∈ I△J
}

,

where I△J denotes the symmetric difference of the ideals I and J, and pn are prime elements in H.
Since in an AP-monoid every irreducible element is prime, this metric is well defined.
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Let {pn} be the countable set of all prime elements in H. Consider the set {I(pn)}, where I(pn)

is the ideal generated by the prime element pn. This set is countable and dense in S, because for any
square-free ideal I and any ϵ > 0, there exists n such that d(I, I(pn)) < ϵ.

In this way, using the properties of the AP-monoid H, we proved that S is a metrizable and
separable space.
(b)⇒(a)
To prove that the monoid H is an AP-monoid provided that the space S of all square-free ideals in H
with Ł2–topology is metrizable and separable, we need to show that every irreducible element in H is
the prime element.

Assume that S is metrizable and separable. This means that there is a continuous distance function
d : S × S → R and a dense countable set in S. In the context of monoids, an AP-monoid is one in which
every irreducible element is prime, which means that for every irreducible element p ∈ H, if p divides
the product ab, then p divides a or b.

Since S is metrizable, we can use the metric to define multiplication continuity in H. Continuity of
multiplication in the context of the Ł2–topology means that for any open set U in H, its counterimage
under multiplication is also open in H × H. This implies that multiplication is an open operation,
which is crucial for AP-monoids because it allows properties of elements to be transferred to their
products.

The separability of S means that there is a countable set of square-free ideals that is dense in S.
Each element of H can be approximated by elements from this set. In the context of AP-monoids,
separability can help to show that every irreducible element is prime, because this allows us to analyze
the action of irreducible elements on a dense set in S.

To prove that every irreducible element is prime, consider the irreducible element p ∈ H. If p
divides the product ab but does not divide a, then we must show that it divides b. Since S is separable,
there is a sequence of square-free ideals (In) approaching the ideal generated by a. Since p divides ab
and the multiplication is continuous, p must divide the elements of (Inb), which ultimately leads to
the conclusion that p divides b.

Theorem 4.7. Let H be a monoid. Let S be the square-free spectrum of the monoid H with Ł2–topology. Then
the following conditions are equivalent:

(a) Monoid H satisfies SR.
(b) The space S is the T1–space.

Proof. (a)⇒(b)
Assume that H is an SR-monoid. Take any two different square-free ideals I and J of S. Because
they are different, there is an element s ∈ I that does not belong to J. Since s is square-free and H is
SR-monoid, s is also radical. This means that any ideal containing s must also contain every element
that s divides. In particular, any ideal containing s cannot be a subset of J. Hence, the set of all ideals
containing s is a neighborhood of I not containing J, which shows that S is a T1–space.
(b)⇒(a)
Now assume that S is the T1–space. Let us take any square-free element s ∈ H. The ideal generated by
s, denoted by (s), is a square-free ideal. Since S is the T1–space, the set {(s)} is closed. This means that
there is no other square-free ideal that contains s and is different from (s). This implies that s must be
radical, because every element that s divides must belong to (s). Otherwise, we would have another
square-free ideal containing s, which is impossible in the T1–space. Hence H is an SR-monoid.

In the examples below, we present selected examples to confirm that the above theorems are
sufficient for there to be a relationship between a given monoid and its square-free spectrum of a given
monoid with the Ł2–topology.
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Example 4.8. 1. We will show an example of a monoid H, which is ACCP, is not a factorial monoid,
and its square-free spectrum S is metrizable, compact, but does not satisfy the second countability
axiom.

Let H = Z[
√
−5] \ {0} with multiplication be a monoid.

(a) To show that H is ACCP, it is enough to note that each principal ideal in H is of the form
(a + b

√
−5), where a and b are integers. The norm of such an ideal is N(a + b

√
−5) = a2 + 5b2,

which is a positive integer. Therefore, each prime ideal in H is finite because it contains at most
N(a + b

√
−5) elements. Since every prime ideal is finite, then every ideal in H is finite, because

every ideal is the sum of prime ideals. It follows that every increasing sequence of ideals in H
stabilizes, i.e. H is ACCP-monoid.

(b) To show that H is not factorial, we just need to find an element that has more than one irreducible
factorization. For example, we can show that 6 has two different factorizations: 6 = 2 · 3 and
6 = (1 +

√
−5)(1 −

√
−5). One can check that 2, 3, 1 +

√
−5 and 1 −

√
−5 are irreducible in H,

but they are not primes because they do not divide by themselves.
(c) To show that S is metrizable, we just need to find a metric on S that induces the Ł2–topology. Just

use the metric from the proof of Theorem 4.2.
(d) To show that S is compact, it is enough to show that every open cover of S has a finite subcover.

For example, let U be any open cover of S. Let I be a square-free ideal in S, e.g. (2). Then there is
an open set V ∈ U that contains I. Since V is the sum of square-free ideals, there is a finite family
of square-free ideals {J1, . . . , Jn} such that V = J1 + · · ·+ Jn. Let J be the largest square-free ideal
in this family. Then J ⊆ V. Since J is maximal in S, J is a prime ideal. So J "divides" every other
square-free ideal in S. It follows that for every K ∈ A, there is an open set W ∈ U that contains K
and such that W ⊆ V. Therefore {V} is a finite subcover of S, so S is compact.

(e) To show that S does not satisfy the second countability axiom, it is enough to find an uncountable
family of closed and disjoint subsets in S. For example, let F denote the set of all prime ideals in
S. It can be shown that F is uncountable because every prime ideal in S is of the form (p), where
p is a prime of Z that is not a sum two squares. Moreover, each element of F is a closed subset of
S because it is a product of square-free ideals (only itself). Also, any two different elements of F
are disjoint because they have no common divisors. Therefore F is an uncountable family of
closed and disjoint subsets in S, so S does not satisfy the second countability axiom.

2. We will show an example of a monoid H that is atomic, not ACCP, but its square-free spectrum
S is a normal space, not metrizable and not compact.

Let H = (Q \ {0}) + XR[X] with multiplication be a monoid.

(a) To show that H is atomic, simply apply the Theorem in Theorem 2.1 of [8].
(b) To show that H is not ACCP-monoid, it is enough to find an increasing sequence of ideals in

H that does not stabilize. Note that the sequence (x) ⊂ (x/2) ⊂ (x/4) ⊂ . . . is an increasing
sequence of principal ideals in H, but does not stabilize.

(c) To show that the set S with Ł2–topology is normal, one can use the fact that there are square-free
ideals in the monoid (Q \ {0}) + XR[X] which are generated by an element of the form q + Xr,
where q ∈ Q \ {0} and r ∈ R. It can be shown that for any two such elements a = q1 + Xr1

and b = q2 + Xr2, there exists a continuous function f : S → [0, 1] such that f ((a)) = 0 and
f ((b)) = 1. This can be done by taking f ((c)) = 1

1+|r1−r2|
, where c = q + Xr is any ideal

generator of (c). It can be checked that f is well-defined, continuous and satisfies the conditions
of Urysohn’s lemma. Intuitively, the function f "measures" the distance between the ideals (a)
and (b) using the coefficient r with the variable X. The greater this distance, the smaller the
value of f . So f takes the value 0 on (a) and the value 1 on (b), and takes intermediate values
on the remaining ideals. The function f thus separates the ideals (a) and (b) using open sets
f−1([0, 1/2)) and f−1((1/2.1]).
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(d) To show that the set S is not metrizable, we can use the fact that a metrizable space satisfies the
first axiom of countability, i.e. it has a countable subfamily of the family of all open sets. It can
be shown that S does not satisfy this condition by considering a family of all sets of the form
(q + Xr), where q ∈ Q \ {0} and r ∈ R. This family is uncountable and consists of open sets
that are pairwise disjoint. Therefore, any subfamily of the family of all open sets must contain a
subset of every element of that family, and therefore cannot be countable. Intuitively, the sets
(q + Xr) are so small that they cannot be covered by a finite number of metric balls. Moreover,
these sets are so different that they cannot be immersed in Euclidean space by a continuous
function.

(e) To show that the set S is not compact, we can use the fact that a compact space has a finite subcover
for every open cover. It can be shown that S does not satisfy this condition by considering S to
be covered by sets of the form (q + Xr), where q ∈ Q \ {0} and r inR. It can be proven that such
sets are open and non-empty, and that they do not have a non-empty intersection if r is different.
Therefore, any subcover of this cover must contain all its elements, and therefore cannot be finite.
Intuitively, the sets (q + Xr) are so numerous that they cannot be covered by a finite number
of open sets. Moreover, these sets are so scattered that they cannot be glued together using a
continuous function.

3. We will give an example of the monoid H, which is GCD-monoid but is not a factorial monoid.
And its square-free spectrum S is metrizable, satisfies the second countability axiom, is complete, but
not compact.

Let H = Z[i] \ {0} with multiplication be a monoid.

(a) The monoid H is a GCD-monoid. To show this, we need to show that for any two elements a,
b ∈ Z[i] \ {0} there exists an element d ∈ Z[i] \ {0} such that d divides both a and b and if some
other element of d′ divides both a and b, then d′ divides d. In Z[i], the norm of each element
z = a + bi is defined as N(z) = a2 + b2. The norm has an important property: if z divides w
in Z[i], then N(z) divides N(w) in Z. Moreover, the norm is multiplicative, which means that
N(zw) = N(z)N(w). For any a, b ∈ Z[i] \ {0}, we can find their GCD as follows: We calculate
N(a) and N(b). We find the GCD for N(a) and N(b) in Z, which is well defined because Z is
a Euclidean ring. Using Euclid’s algorithm in Z[i], we find d ∈ Z[i] \ {0} which is a common
divisor of a and b and whose norm is equal to the GCD of N(a) and N(b). We show that any
other common divisor d′ of elements a and b divides d. Since Z[i] is a Euclidean ring with respect
to the norm, the Euclidean algorithm can be used to find the GCD, which makes GCD-monoid
Z[i] without zero.

(b) H is not a factorial monoid because not every non-invertible element in it is a unique product
of prime elements. An example of such an element is the number 6, which has two different
ambiguous prime factors: 5 = 1 · 5 = (1 + 2i)(1 − 2i).

(c) To show that the space S is metrizable, it is enough to find a metric on S that induces the
Ł2–topology. We can take from Theorem 4.4.

(d) The space S of all square-free ideals satisfies the second axiom of countability, because every
point in this space has a countable basis of neighborhoods. This is a result of the fact that Z[i] is a
Euclidean ring, so each ideal is principal and generated by a single element. For each element
z ∈ Z[i], neighborhoods can be defined using an element norm. The norm in Z[i] is a function
of N : Z[i] → N, where N(a + bi) = a2 + b2. Since norm values are integers, for each element z
there are only a finite number of elements with a smaller norm. This means that we can create a
countable basis of neighborhoods for each point in S, taking advantage of the fact that the ideals
generated by the lower norm elements form the neighborhoods of the point generated by z. Due
to the fact that each ideal in Z[i] is principal and each element has a countable number of divisors
(due to the countability of Z[i]), the space S satisfies the second axiom countability.
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(e) To show that the set S is complete, i.e. every convergent sequence in S has a limit in S, one
can use the fact that S is homeomorphic to the space R2 using function φ : S → R2 given by
φ((a + bi)) = (a, b), where (a + bi) is the generator of the square-free ideal. We can use this
homeomorphism to show that if (an + ibn) is a sequence of square-free ideals convergent to
(a + bi) ∈ R2, then a + bi is a square-free element, i.e. (a + bi) ∈ A. This can be done by taking
advantage of the fact that x ∈ H is square-free if and only if for every t ∈ R, if t2 divides x, then t
is invertible. Then, if t ∈ H is such that t2 divides a + bi, then t2 also divides an + bni for every
n ∈ N , because an + bni → a + bi. Therefore t is invertible because H is monoid. Therefore a + bi
is a square-free element, i.e. (a + bi) ∈ H.

(f) To show that the set S is not compact, i.e. not every open cover S has a finite subcover, we can
use the fact that S is homeomorphic to the space R2 using the function φ : S → R2 given by
φ((a + bi)) = (a, b), where (a + bi) is the generator of the square-free ideal. We can use this
homeomorphism to show that there is an open cover S that has no finite subcover. For example,
we can take the coverage of S by sets of the form (n, n + 1)× (m, m + 1), where n, m ∈ Z. It
can be proven that such sets are open and non-empty, and that they do not have a non-empty
intersection, if n or m are different. Therefore, any subcover of this cover must contain all its
elements, and therefore cannot be finite.

4. We will now show an example where H is a pre-Schreier monoid, it is not GCD-monoid, but its
square-free spectrum S is metrizable, satisfies the second countability axiom, is completely regular, but
not complete.

From [1] Example 2.10, let A be an integer closure of C[X] in C[X], let M be a maximal ideal in A
and let H = Q+ MAM. Then H is a pre-Schreier monoid, but not GCD-monoid.

(a) The proof that R is pre-Schreier but not GCD is provided in [1] Example 2.10.
(b) To show that S is metrizable, we can use the proof of Theorem 4.5, where the metric is proposed.
(c) The space S satisfies the second countability axiom, it is enough to also use Theorem 4.5.
(d) The space S is completely regular. Just use the function from the proof of Theorem 4.5. Namely,

the characteristic function of ideals: f : S → [0, 1], which takes the value 0 at p and 1 on the
closed set C. Let I be any square-free ideal in H (a point in S), and J be a square-free ideal that
does not contain I (an element of the closed set C in S). Since H is pre-Schreier, for any elements
a ∈ I and b /∈ I, there is an element c ∈ H such that a divides bc and c divides b . We can define
the f function as follows:

f (K) =

{
0 if c ∈ K

1 if c /∈ K

where K is any square-free ideal in S.
(e) The space S is not complete. Let us suppose that the topological space S is a complete space. Then

for any continuous function f : S → S there is a fixed point, i.e. there is x ∈ S for which f (x) = x.
This is a consequence of Brouwer’s fixed point theorem for complete spaces. Now consider the
function f : S → S given by f (I) = I2 for any ideal I ∈ S. This function is continuous because
for any ideals I, J ∈ S we have I ⊆ J entails I2 ⊆ J2. Note that for any square-free ideal I ∈ S
we have f (I) = I2 ̸= I because I is square-free. Therefore, the function f has no fixed point.
We obtained a contradiction with the assumption that S is a complete space. Therefore, the
topological space S of all square-free ideals in H is not a complete space.

5. We will now show an example of the monoid H, which is an AP-monoid and is not pre-Schreier.
However, its square-free spectrum S is metrizable, separable, but not completely regular.

Let R be a Dedekind ring that is not a field. Let’s define H := R \ {0} with the multiplication
operation. Then H is a monoid.
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(a) The H monoid satisfies the AP condition directly from the definition of a Dedekind ring.
(b) A Dedekind ring that is not a field is not pre-Schreier. A Dedekind ring is defined as an integral

domain in which every non-zero proper ideal decomposes into a product of prime ideals. This
distribution is unambiguous up to the order of the factors. An important feature of Dedekind
rings is that each ideal can be expressed as a product of prime ideals, which is crucial for their
structure. In pre-Schreier rings, if an element a divides the product bc, then there must be
elements a1 and a2 in R such that a = a1a2, where a1 divides b and a2 divides c. However,
in a Dedekind ring, the fact that the ideal generated by a divides the ideal generated by bc
does not imply that there are such elements a1 and a2. This is because ideals in Dedekind
rings can have complex structures and it is not always possible to find such specific divisors
of elements. Furthermore, a Dedekind ring may contain ideals that are non-principal (i.e., not
generated by a single element), which is contrary to the requirements for pre-Schreier rings. In
pre-Schreier rings, any ideal generated by an element dividing a product must also be generated
by elements dividing the components of that product, which is not always the case in Dedekind
rings. Therefore, in the above considerations, there is nothing to prevent removing zero from the
Dedekind ring and giving it only a multiplication operation, in order to similarly conclude that
H is not a pre-Schreier monoid.

(c) We will show that S is a metrizable space. We define the metric d on S as follows:

d(I, J) = inf
{

1
n + 1

: pn ∈ I△J
}

,

where I△J denotes the symmetric difference of the ideals I and J, and pn are prime elements in
H. Since every irreducible element in H is prime, this metric is well-defined.

(d) Since the space S is countable, it is also separable. The center can be formed from the minimal
prime ideals that generate all other square-free ideals.

(e) Complete regularity requires that for every closed set F and a point x not in F there exists a
continuous function f : S → [0, 1] such that f (x) = 1 and f (y) = 0 for all y ∈ F. In a Dedekind
ring, which is not a field, the maximal ideals are also prime ideals, which means that every
square-free ideal is the intersection of maximal ideals (also in the H monoid). However, such a
continuous function f cannot be found because there is no "distance" between maximal ideals in
the topological sense.

6. We will show an example of the monoid H, which is an SR-monoid, not an AP-monoid.
However, its square-free spectrum S is T1, it is not separable.

Let H = Z[
√
−5] \ {0} with multiplication be a monoid.

(a) The monoid H satisfies SR: If x ∈ H is square-free, it means that there is no t ∈ H such that t2

divides x and t is not invertible. Let us suppose that x is not radical, i.e. there exists r ∈ H and
n ∈ N such that x divides rn but does not divide r . Then rn = xs for some s ∈ H, but r is not of
the form r = xt for any t ∈ H. Note that N : H → N defined as N(a + b

√
−5) = a2 + 5b2 is a

norm on H that behaves like absolute value function, i.e. N(xy) = N(x)N(y) for any x, y ∈ H.
Therefore we have N(rn) = N(x)N(s), i.e. N(r)n = N(x)N(s). Since N(r) is not divisible by
N(x), it must be divisible by N(s). Let N(s) = N(r)k for some k ∈ N. Then N(r)n−k = N(x),
i.e. N(x) is a power of a certain natural number. But then x is the square of some element of H,
which contradicts the assumption that x is square-free. So x must be radical.

(b) The monoid H is not AP: Note that 2 · 3 = (1 +
√
−5)(1 −

√
−5) is a factorization irreducible in

H. None of these factors is prime because they are not divisible by either 2 or 3.
(c) The space S is T1: To show that the topological space S of the monoid H is a T1–space, we need

to show that for every pair of distinct points in S, each of them has a neighborhood that does not
contains the second point. In the T1–space, each singleton, i.e. a one-point set, is a closed set. It
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is a Dedekind monoid (a Dedekind ring without zero with multiplication), which means that
any non-zero prime ideal is maximal. In the Dedekind monoid, each maximal ideal corresponds
to a point in the space S. In topological spaces associated with Dedekind monoids, closed sets
are associated with ideals of the monoid. In particular, the points in the space S correspond to
the maximal ideals in Z[

√
−5] \ {0}, and closed sets correspond to the monoid ideals. Since

maximal ideals are closed and every prime ideal is maximal, every point in S is closed. To show
this formally, consider two different points in S that correspond to two different maximum ideals
M1 and M2 in Z[

√
−5] \ {0} . Since M1 ̸= M2, there is an element a ∈ M1 that does not belong

to M2. The set {a} is closed in S because it corresponds to the ideal generated by a, which is
a subset of M1. Similarly, for every element b ∈ M2 that does not belong to M1, the set {b} is
closed in S. Since every point in S is closed, the space S satisfies the definition of the T1–space.
This means that for every pair of distinct points in S, there are neighborhoods (in this case the
points themselves) that are disjoint, which is required in the T1–space.

(d) The space S is not separable because there is no countable dense subspace in it. In the context
of a Ł2–topology, where open sets are sums of square-free ideals and closed sets are products
of square-free ideals, separability would require that there exists a countable family of square-
free ideals that is dense throughout the space S. The monoid H consists of elements of the
form a + b

√
−5, where a and b are integers, excluding zero. Square-free ideals in this monoid

are generated by elements that are not squares of other elements in H. However, due to the
infinite number of primes in Z, there are an infinite number of different square-free ideals in
H, which makes it impossible to "cover" them with a countable family of ideals. This further
complicates the possibility of finding a countable basis of neighborhoods for each point in A,
which is required for the separability of metric spaces.
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12. W. Wojtyński, Lie Groups and algebras, PWN, 1986, polish.
13. M. Zafrullah, On a property of pre-Schreier domains, Communications in Algebra, v. 15, 9 (1987), 1895–1920.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2024                   doi:10.20944/preprints202405.0792.v1

https://doi.org/10.20944/preprints202405.0792.v1

	Introduction
	Topological monoids
	Topologies on idempotent and square-free ideals
	The space of all square-free ideals in a monoid
	References

