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Abstract: This paper examines the energy efficiency of three variations of the two-degree-of-freedom 

transverse galloping energy harvester. These variants differ in the number and placement of electromechanical 

transducers. By utilizing the harmonic balance method, limit cycles of mathematical models of devices were 

determined. Analytical expressions derived from models were then used to formulate the efficiency of the 

systems. It was demonstrated that efficiency depends on flow speed and can be comprehensively characterized 

by four criteria parameters: peak efficiency, denoting the maximum efficiency of the system, and high efficiency 

bandwidth, which describes the range of flow velocities within which the efficiency remains at no less than 

90% of peak efficiency. The values of these parameters are heavily reliant on the speed at which the system 

achieves peak efficiency—referred to as the nominal speed nominal speed, which in turn is related to the critical 

speed of the system. Comparative analysis revealed that only the two-degree-of-freedom device equipped with 

two electromechanical transducers can potentially outperform a simple one-degree-of-freedom system in terms 

of efficiency. 
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1. Introduction 

In the contemporary world, energy plays a pivotal role across all facets of human existence. 

Powering electronic gadgets, illuminating and heating homes, and propelling machinery all hinge on 

energy. However, as the population grow and technologies advance, we increasingly encounter 

challenges concerning energy production and distribution. 

The energy crisis has become a pervasive issue demanding attention. Concurrently, with 

technological advancements, the concept of the Internet of Things (IoT) is burgeoning [1]. IoT 

delineates a network of interconnected devices that communicate and share data to enhance the daily 

lives of users. Smart home gadgets, vehicles, environmental sensors, and myriad other devices can 

interconnect, analyze data, and autonomously make decisions. Yet, as IoT devices proliferate, 

challenges in providing them with sustainable energy sources emerge. Conventional power methods 

such as batteries or power cords may prove inconvenient, have limited durability, or be impractical 

for distributed IoT networks. 

Energy harvesting technologies, such as flow-induced vibration recovery, offer potential 

solutions. Notably, Bladeless Vortex power plants, activated by von Karman vortices, promise a cost 

reduction of up to 70% compared to traditional wind farms [3]. However, their dependence on 

specific flow conditions presents limitations. 

Galloping emerges as an alternative vibration excitation method. Early studies explore its 

potential for energy recovery [4], emphasizing the crucial role of aerodynamic coefficients and the 

device's quasi-stationary nature. Subsequent research [5] delves into analytical, numerical, and 

experimental analyses of galloping energy harvesters (GEH), examining structural damping's impact 

and developing electromechanical models. 

Due to the fundamental influence of flow body geometry [6], research focuses on optimizing 

shapes to enhance efficiency. While rhomboid geometries are prone to galloping instability, adding 
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a stream splitter on the opposite side favors power generation [7,8]. Additionally, devices with 

irregular shapes demonstrate benefits [9,10]. 

Nonlinear elasticity's influence on GEH performance is extensively studied [11,12]. It is found 

to enhance efficiency at low flow rates, albeit potentially reducing operating speeds [13,14]. Various 

types of nonlinearities are assessed for their impact on device power [15], with duffing-type non-

linear GEH variants analyzed for effectiveness [16]. 

Expanding GEH degrees of freedom shows promise [17], with series-connected mass systems 

and devices extended to multiple degrees explored [18,19]. Analytical solutions for mathematical 

models of such devices are developed [20], and experimental research on innovative designs, like 

magnetically coupled beams, shows increased power generation potential [21]. 

However, research on two-degree-of-freedom systems lacks exploration of utilizing two 

electromechanical transducers. Addressing this gap, this study aims to assess the efficiency of a GEH 

with two degrees of freedom. It considers transducer placement between the stationary base and 

lower mass and between masses, aiming to contribute to enhancing energy harvesting technologies. 

2. Efficiency of Reference Variant 

While the primary focus of this study lies in analyzing the efficiency of systems with two degrees 

of freedom (GEH2D), understanding the characteristics of this class of devices can be facilitated by 

comparing them with a system possessing well-established, as discussed in [3,4], properties - a linear 

device with one degree of freedom (GEH1D), hereafter referred to as the reference device. Therefore, 

it is justified to conduct an analysis of the efficiency of this system, particularly as we aim to highlight 

a certain intriguing feature of this variant, which has not been previously addressed in the literature. 

According the cited articles, the mathematical model of GEH1D takes the form (1) with parameters 

detailed in Table 1. 

𝑚̂ 𝑧̈ + 𝑐̂ 𝑧̇ + 𝑘̂ 𝑧 − 𝜃𝜉 = 𝐹𝐿 = −
1

2
𝜌̂𝑢̂2ℎ̂ (𝑎1 

𝑧̇

𝑢̂
+ 𝑎3 (

𝑧̇

𝑢̂
)

3
), (1a) 

𝐶𝑝̂𝜉̇ +
𝜉

𝑅̂
+ 𝜃̂𝑥̇ = 0. (1b) 

Table 1. List of GEH1D parameters. 

Symbol 𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝐔𝐧𝐢𝐭 

 𝑚̂ Mass 𝑘𝑔 

𝑘̂ Stiffness coefficient 𝑁/𝑚 

𝑐̂ Damping coefficient 𝑘𝑔/𝑠 

𝑢̂ Flow speed 𝑚/𝑠 

𝜌̂ Planar fluid density 𝑘𝑔/𝑚2 

ℎ̂ Characteristic dimension 𝑚 

𝜃̂ Piezoelectric coefficient 𝑁/𝑉 

𝐶𝑝̂ Equivalent capacity 𝐹 

𝑅̂ Circuit electrical resistance 𝛺 

𝜏 Time 𝑠 

𝑧 = 𝑧(𝜏) Vibration vs time function 𝑚 

𝜉 = 𝜉(𝜏) Voltage vs time function 𝑉 

The efficiency 𝜂 of such a system is defined as the ratio of the average power generated by the 

device 𝑃𝑔̂ over a time period equal to the period 𝑇̂ of the voltage function ξ(τ) to the surface flow 

power density 𝑃𝑓̂: 
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𝜂𝐿 =
𝑃𝑔̂

𝑃𝑓̂

=

1

𝑇̂
∫

ξ2(𝜏)

𝑅̂
𝑑𝜏

𝑇̂

0

1
2

𝜌̂ℎ̂𝑢̂3
, (2) 

By introducing dimensionless quantities: 

𝑦 =
𝑧

ℎ̂
, 𝑣 = 𝜉

𝜃̂

𝑚̂ ℎ̂ 𝜔̂𝑛
2, 𝜔̂𝑛 = √

𝑘̂

𝑚̂
, 𝑐 =

𝑐̂

𝑚̂𝜔̂𝑛
, 𝑢 =

𝑢̂

ℎ̂𝜔̂𝑛
, 𝜌 = 𝜌̂

ℎ̂2

2𝑚̂
, 𝑟 = 𝐶𝑝̂𝑅̂𝜔̂𝑛,  

𝜅 =
𝜃̂2

𝐶𝑝̂ 𝑚̂  𝜔̂𝑛
2,  𝑡 = 𝜏𝜔̂𝑛, 

(3) 

the device dimensionless mathematical model can be written as: 

𝑦̈ + 𝑐𝑦̇ + 𝑦 − 𝑣 = 𝜌 (𝑎1𝑢𝑦̇ + 𝑎3

𝑦̇
3

𝑢
), (4a) 

𝑣̇ +
𝑣

𝑟
+ 𝜅𝑦̇ = 0. (4b) 

Assuming that 𝑇𝑐  is the period of the function 𝑣(𝑡) , efficiency in terms of dimensionless 

parameters can be expressed as: 

𝜂𝐿 =

1
𝑇𝑐

∫
𝑣2(𝑡)

𝜅 𝑟
𝑑𝑡

𝑇𝑐

0

𝜌𝑢3
. (5) 

To characterize the efficiency 𝜂𝐿 of the system, it is essential to derive the voltage function 𝑣(𝑡) 

generated by it, which can be accomplished using the harmonic balance method. Consequently, it 

was assumed that the limit cycle of the system would be described by a set of solutions in the form: 

𝑦 = 𝐴𝑦 cos(𝜔𝑡), (6a) 

𝑣 = 𝐴𝑣 cos(𝜔𝑡 + 𝜑), (6b) 

where, the four unknown quantities 𝐴𝑦 , 𝐴𝑣 , 𝜔 =
𝜔̂

𝜔̂𝑛
, 𝜑  represent the dimensionless vibration 

amplitude, dimensionless voltage amplitude, dimensionless vibration frequency, and the phase shift 

between the oscillator vibrations and voltage oscillations, respectively. The parameter 𝜔̂ denotes the 

unknown dimensional frequency of the system's vibrations. Substituting solutions of the form (6) 

into the model (1) leads to the transformation of the system of differential equations into a system of 

algebraic equations: 

𝐴𝑦 (1 − 𝜔2)cos(𝜔𝑡)  + 𝐴𝑦
3 𝜌𝜔3𝑎3

𝑢
sin3(𝜔𝑡) + 𝐴𝑦 𝜔(𝑢𝜌𝑎1 − 𝑐)sin(𝜔𝑡) − 𝐴𝑣 cos(𝜔𝑡 +

𝜑) = 0, 
(7a) 

𝐴𝑣 (
cos(𝜔𝑡 + 𝜑)

𝑟
− 𝜔 sin(𝜔𝑡 + 𝜑)) − 𝐴𝑦𝜅 𝜔 sin(𝜔𝑡) = 0. (7b) 

This condition will be satisfied for every moment of time 𝑡  if and only if the sum of the 

coefficients with corresponding time functions equals zero. From equation (7b), the following was 

deduced: 

𝐴𝑣 (cos(𝜑) − 𝑟𝜔 sin(𝜑))

𝑟
= 0 

, 
(8a) 

𝐴𝑣 (𝑟𝜔 cos(𝜑) + sin(𝜑)) + 𝐴𝑦𝜅𝑟𝜔

𝑟
= 0. (8b) 

Equation (8a) shows that: 
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tg(𝜑) =
1

𝜔𝑟
, sin(𝜑) =

1

√(𝜔𝑟)2 + 1
, cos(𝜑) =

𝜔𝑟

√(𝜔𝑟)2 + 1
. (9) 

Based on equations (8b) and (9), the expression describing the relationship between the vibration 

amplitude and the voltage amplitude can be derived: 

𝐴𝑣 = −𝐴𝑦  
𝑟𝜅𝜔

√1 + 𝑟2𝜔2
. (10) 

By balancing harmonics of equation (7a), the remaining two algebraic equations, necessary to 

determine an approximate solution of the device model are obtained. After taking into account the 

previously derived relations (9) and (10), they take the form: 

𝐴𝑦 𝑘𝑒
𝐿 𝜔 − 𝐴𝑦(𝜔2 − 1) = 0, (11a) 

𝐴𝑦𝑢𝜌𝜔𝑎1 + 𝐴𝑦
3

3𝜌𝜔3𝑎3

4𝑢
− 𝐴𝑦𝑐𝜔 − 𝐴𝑦𝑒𝐿𝜔 = 0, (11b) 

where 𝑘𝑒
𝐿 = 𝜅

𝑟2𝜔2

1+𝑟2𝜔2
 and 𝑒𝐿 = 𝜅

𝑟

1+𝑟2𝜔2
 are the piezoelectric stiffness and electrical damping of the 

linear system. Based on the above system of equations, it can be shown that: 

𝜔1
2

𝜔2
2 =

𝑟2(1 + 𝜅) − 1 ± √4𝑟2 + (𝑟2(1 + 𝜅) − 1)2

2𝑟2
 

, 

(12a) 

𝐴𝑦
2 =

4𝑢(𝑐 + 𝑒𝐿 − 𝑢𝜌𝑎1)

3𝜌𝜔2𝑎3

. (12b) 

Equation (12a) shows that 𝜔2
2 < 0 , regardless of the system parameters. Therefore, in the 

following part of the work notation 𝜔1 = 𝜔  has been adopted. Returning now to the general 

definition of efficiency (5) and substituting the expressions (6b), (10), (12) into it, we obtain: 

𝜂𝐿 =
2𝑒𝐿(𝑐 + 𝑒𝐿 − 𝑢𝜌𝑎1)

3𝑢2𝜌2𝑎3

. (13) 

Figure 1 illustrates the efficiency characteristics of the system under discussion. The efficiency 

is depicted as the ratio 𝜂𝐿/𝜂
𝑝
𝐿 and such representation maintained throughout the study. The figure 

also includes the analogous characteristic obtained numerically for initial conditions 𝑦(0) = 0.1, 

𝑦̇(0) = 0, 𝑛(0) = 0, utilizing the fourth-order Runge-Kutta method. In this figure it can be observed 

that the system undergoes Hopf bifurcation at certain speed, from now on referred to as the critical 

flow speed 𝑢𝑐𝑟,. Its value results directly from (13): 

𝜂𝐿 =
2𝑒𝐿(𝑐 + 𝑒𝐿 − 𝑢𝜌𝑎1)

3𝑢2𝜌2𝑎3

= 0  ⇒   𝑢 = 𝑢𝑐𝑟 =
𝑐 + 𝑒𝐿

𝜌𝑎1

, (14) 
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Figure 1. Efficiency characteristics of GEH1D for: 𝜅 = 1.3, 𝑟 = 3, 𝑐 = 0.1, 𝜌 = 0.02, 𝑎1 = 2.3, 𝑎3 =

−18. 

Another noteworthy observation from the same set of graphs is that irrespective of the 

parameter set, there exists a specific nominal flow speed 𝑢 = 𝑢𝑝
𝐿   for which the efficiency 𝜂𝐿 attains 

a maximum value, denoted as the peak efficiency 𝜂
𝑝
𝐿 . These quantities are given by the expressions: 

𝛿𝜂𝐿

𝛿𝑢
= 0  ⇒   𝑢 = 𝑢𝑝

𝐿 = 2
𝑐+𝑒𝐿

𝜌𝑎1

= 2𝑢𝑐𝑟, (15) 

𝜂
𝑝
𝐿 = 𝜂𝐿(𝑢𝑝

𝐿) =
−𝑎1

2𝑒𝐿

6𝑎3(𝑐 + 𝑒𝐿)
. (16) 

The aforementioned identities were previously derived in [3,4]. However, the remainder of the 

article discusses entirely original content. An unexplored property of GEH1D, which can be inferred 

from Figure 1 or deduced from the identity 𝑢𝑝
𝐿 = 2𝑢𝑐𝑟 , is noteworthy. A system with a low critical 

speed 𝑢𝑐𝑟  will experience a more pronounced decline in efficiency due to the deviation of the flow 

speed 𝑢 at which it operates from the nominal speed 𝑢𝑝
𝐿 . Let the measure of this phenomenon be 

the flow speed bandwidth in which the system efficiency 𝜂𝐿  does not fall below 90% of the 

maximum efficiency 𝜂
𝑝
𝐿 ,  hereafter referred to as the high efficiency band 𝐵𝐿 . According to the 

definition, 𝐵𝐿 is given as: 

𝜂𝐿 = 0.9𝜂
𝑝
𝐿  ⇒  

𝑢2

𝑢1
=

𝜌𝑎1(𝑐 + 𝑒𝐿) ±
√0.4

0.9
𝜌𝑎1(𝑐 + 𝑒𝐿)

0,9

2
(𝜌𝑎1)2

, (17) 

𝐵𝐿 = 𝑢2 − 𝑢1 = √
160

81

(𝑐 + 𝑒𝐿)

𝜌𝑎1

≈ 1.4𝑢𝑐𝑟 ≈ 0.7𝑢𝑝
𝐿. (18) 

The quantities: critical speed 𝒖𝒄𝒓, nominal speed 𝒖𝒑
𝑳 , peak efficiency 𝜼

𝒑
𝑳  and high efficiency 

bandwidth 𝑩𝑳 will be further referred to as the criterion parameters. They have been labeled on Fig. 

1.  

3. Efficiency of Two Degree of Freedom System 

Based on the information provided in section 1, the presence of additional mass in systems with 

two degrees of freedom implies the necessity to consider the placement of the electromechanical 

transducer. It may be positioned between the main mass and the stationary base (Fig. 2a), between 

the masses (Fig. 2b), or in both of these locations (Fig. 2c). 
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(a) (b) (c) 

Figure 2. Subvariants of two degree of freedom system. 

To evaluate the influence of piezoelectric placement on efficiency, the efficiency characteristics 

of the variant with both transducers will be derived. Subsequently, the ramifications of removing one 

of them will be examined. 

The dynamics of devices within the discussed category can be elucidated by a general 

dimensionless mathematical model of the form (20), where, in addition to the identities (3), the 

following also holds: 

𝑦𝑖 =
𝑧𝑖

ℎ̂
, 𝑣𝑖 = 𝜉

𝜃𝑖̂

𝑚𝑖̂ ℎ̂ 𝜔̂𝑛
2, 𝑐𝑖 =

𝑐𝑖̂

𝑚̂1𝜔̂𝑛
, 𝑘2 =

𝑘̂2

𝑘̂1
, 𝜅 =

𝜃𝑖̂
2

𝐶𝑝 𝑖̂  𝑚1̂  𝜔̂𝑛
2, 

𝜃 =
𝜃̂1

𝜃̂2
, 𝑀 =

𝑚̂2

𝑚̂1
,  𝑖 = 1,2 

(19) 

𝑦̈1 + 𝑦 − 𝑘2(𝑦2 − 𝑦1) + 𝑐1𝑦̇1 − 𝑐2(𝑦̇2 − 𝑦̇1) − 𝑣1 + 𝑣2 =  𝜌 (𝑎1𝑢𝑦̇1 + 𝑎3
𝑦̇1

3

𝑢
), (20a) 

𝜅1𝑣̇1 +
𝑣1

𝑟1
+ 𝑦̇1, (20b) 

𝑀𝑦̈2 + 𝑘2(𝑦2 − 𝑦1) + 𝑐2(𝑦̇2 − 𝑦̇1) − 𝑣2 = 0, (20c) 

𝜅2𝑣̇2 +
𝑣2

𝑟2
+ 𝑦̇2 − 𝑦̇1 = 0. (20d) 

To derive the solutions of the GEH2D mathematical model, the procedure outlined in [20] was 

adapted. It was assumed that the approximate solution of the model (20) will have the following 

form: 

𝑦1 = 𝐴1 cos(𝜔1𝑡) + 𝐵1 sin(𝜔1𝑡) + 𝐺1 cos(𝜔2𝑡) + 𝐻1 sin(𝜔2𝑡), (21a) 

𝑣1 = 𝑛1 cos(𝜔1𝑡) + 𝑛2 sin(𝜔1𝑡) + 𝑛3 cos(𝜔2𝑡) + 𝑛4 sin(𝜔2𝑡), (21b) 

𝑦2 = 𝐴2 cos(𝜔1𝑡) + 𝐵2 sin(𝜔1𝑡) + 𝐺2 cos(𝜔2𝑡) + 𝐻2 sin(𝜔2𝑡), (21a) 

𝑣2 = 𝜗1 cos(𝜔1𝑡) + 𝜗2 sin(𝜔1𝑡) + 𝜗3 cos(𝜔2𝑡) + 𝜗4 sin(𝜔2𝑡), (21d) 

Substituting the above identities into equations (20b) and (20d), and then balancing the 

harmonics cos(𝜔1𝑡), sin(𝜔1𝑡), cos(𝜔2𝑡), sin(𝜔2𝑡), allows for the derivation of the relationships 

between the amplitudes of voltage and the amplitudes of vibration. 

𝑛1 = 𝐵1𝜔1𝜀𝐷11 − 𝐴1𝛿𝐷11,    𝑛2 = −𝐴1𝜔1𝜀𝐷11 − 𝐵1𝛿𝐷11, 

𝑛3 = 𝐻1𝜔2𝜀𝐷12 − 𝐺1𝛿𝐷12,   𝑛4 = −𝐺1𝜔2𝜀𝐷12 − 𝐻1𝛿𝐷12, 
(22a) 

𝜗1 = 𝜃(𝜀𝐷21(𝜃𝐵2 − 𝐵1)𝜔1 + 𝛿𝐷21(𝐴1 − 𝜃𝐴2)), (22b) 

𝐶𝑝1, 𝑅1, 𝜃1   

𝑚2   

𝑚1   

𝑐2̅   

𝑘2
̅̅ ̅   

𝑘1
̅̅ ̅   𝑐1̅   

𝑧2̅   

𝑧1̅   𝑢̅   

𝐶𝑝2, 𝑅2, 𝜃2   

𝑚2   

𝑚1   

𝑐2̅   

𝑘2
̅̅ ̅   

𝑘1
̅̅ ̅   𝑐1̅   

𝑧2̅   

𝑧1̅   𝑢̅   

𝐶𝑝2, 𝑅2, 𝜃2   

𝐶𝑝1, 𝑅1, 𝜃1   

𝑚2   

𝑚1   

𝑐2̅   

𝑘2
̅̅ ̅   

𝑘1
̅̅ ̅   𝑐1̅   

𝑧2̅   

𝑧1̅   𝑢̅   
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𝜗2 = 𝜃(𝜀𝐷21(𝐴1 − 𝜃𝐴2)𝜔1 + 𝛿𝐷21(𝐵1 − 𝜃𝐵2)), 

𝜗3 = 𝜃(𝜀𝐷22(𝜃𝐻2 − 𝐻1)𝜔2 + 𝛿𝐷22(𝐺1 − 𝜃𝐺2)), 

𝜗4 = 𝜃(𝜀𝐷22(𝐺1 − 𝜃𝐺2)𝜔2 + 𝛿𝐷22(𝐻1 − 𝜃𝐻2)). 

where: 𝛿𝐷𝑖𝑗 = 𝜅𝑖

𝑟2𝜔j
2

1+𝑟2𝜔j
2  and 𝜀𝐷𝑖𝑗 = 𝜅𝑖

𝑟

1+𝑟2𝜔j
2  represent the piezoelectric stiffness and electric 

damping of the 𝑖 -th piezoelectric for vibration with the 𝑗 -th frequency. Harmonic balancing of 

cos(𝜔1𝑡) and sin(𝜔1𝑡)  of the algebraic equation obtained by substituting the solutions (21) into 

equation (20c) and using the identities (22) leads to the system of equations: 

𝐴2 = 𝐵1𝑝1 + 𝐴1𝑞1, (23a) 

𝐵2 = 𝐵1𝑞1 − 𝐴1𝑝1, (23b) 

where:  

𝑝1 =
(𝑘2 + 𝜃𝛿𝐷21)(𝑐2 + 𝜃2𝜀𝐷21)𝜔1 − (𝑐2 + 𝜃𝜀𝐷21)(𝑘2 + 𝜃2𝛿𝐷21 − 𝑀𝜔1

2)𝜔1

(𝑐2 + 𝜃2𝜀𝐷21)2𝜔1
2 + (𝑘2 + 𝜃2𝛿𝐷21 − 𝑀𝜔1

2)2
, (23c) 

𝑞1 =
(𝑐2 + 𝜃𝜀𝐷21)(𝑐2 + 𝜃2𝜀𝐷21)𝜔1

2 + (𝑘2 + 𝜃𝛿𝐷21)(𝑘2 + 𝜃2𝛿𝑇21 − 𝑀𝜔1
2)

(𝑐2 + 𝜃2𝜀𝐷21)2𝜔1
2 + (𝑘2 + 𝜃2𝛿𝐷21 − 𝑀𝜔1

2)2
. (23d) 

By substituting the above identities into the harmonic balance equations for cos(𝜔1𝑡)  and 

sin(𝜔1𝑡) of expression (20a), the following identities can be formulated: 

𝐴1𝛼1 + 𝐵1𝛽1 − 𝐴1

3𝜌𝑎3𝜔1((𝐴2
2 + 𝐵2

2)𝜔1
2 + 2(𝐺2

2 + 𝐻2
2)𝜔2

2)

4𝑢
= 0, (24a) 

𝐴1𝛽1 − 𝐵1𝛼1 + 𝐵1

3𝜌𝑎3𝜔1((𝐴2
2 + 𝐵2

2)𝜔1
2 + 2(𝐺2

2 + 𝐻2
2)𝜔2

2)

4𝑢
= 0, (24b) 

where: 

𝛼1 = (𝑝1(𝑘2 + 𝜃2𝛿𝐷21) + (𝑐1 + 𝜀𝑇11 + (𝑐2 + 𝜀𝐷21)(1 − 𝜃𝑞1))𝜔1 − 𝑢𝜌𝜔1𝑎1), (25a) 

𝛽1 = 1 + 𝛿𝑇11 + (𝛿𝐷21𝜃 + 𝑘2)(1 − 𝜃𝑞1) − 𝜔1(𝑝1(𝑐2 + 𝜃2𝜀𝐷21) + 𝜔1). (25b) 

Adapting the above procedure to balance the harmonics cos(𝜔2𝑡) and sin(𝜔2𝑡) of equations 

(20c) and (20a) allows for the derivation of the following identities: 

𝐺2 = 𝐻1𝑝2 + 𝐺1𝑞2, (26a) 

𝐻2 = 𝐻1𝑞2 − 𝐺1𝑝2, (26b) 

𝐺1𝛼2 + 𝐻1𝛽2 − 𝐺1

3𝜌𝑎3𝜔2(2(𝐴1
2 + 𝐵1

2)𝜔1
2 + (𝐺1

2 + 𝐻1
2)𝜔2

2)

4𝑢
= 0  (26c) 

𝐺1𝛽2 − 𝐻1𝛼2 + 𝐻1

3𝜌𝑎3𝜔2(2(𝐴1
2 + 𝐵1

2)𝜔2
2 + (𝐺1

2 + 𝐻1
2)𝜔2

2)

4𝑢
= 0 (26d) 

where: 

𝑝2 =
(𝑘2 + 𝜃𝛿𝐷22)(𝑐2 + 𝜃2𝜀𝐷22)𝜔2 − (𝑐2 + 𝜃𝜀𝐷22)(𝑘2 + 𝜃2𝛿𝐷22 − 𝑀𝜔2

2)𝜔2

(𝑐2 + 𝜃2𝜀𝐷22)2𝜔2
2 + (𝑘2 + 𝜃2𝛿𝐷22 − 𝑀𝜔2

2)2
, (27a) 

𝑞2 =
(𝑐2 + 𝜃𝜀𝑇22)(𝑐2 + 𝜃2𝜀𝐷22)𝜔2

2 + (𝑘2 + 𝜃𝛿𝐷22)(𝑘2 + 𝜃2𝛿𝐷22 − 𝑀𝜔2
2)

(𝑐2 + 𝜃2𝜀𝐷22)2𝜔2
2 + (𝑘2 + 𝜃2𝛿𝐷22 − 𝑀𝜔2

2)2
, (27b) 

𝛼2 = (𝑝2(𝑘2 + 𝜃2𝛿𝐷22) + (𝑐1 + 𝜀𝑇12 + (𝑐2 + 𝜀𝑇22)(1 − 𝜃𝑞2))𝜔2 − 𝑢𝜌𝜔2𝑎1), (27c) 
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𝛽2 = 1 + 𝛿𝐷12 + (𝛿𝐷22𝜃 + 𝑘2)(1 − 𝜃𝑞2) − 𝜔2(𝑝2(𝑐2 + 𝜃2𝜀𝐷22) + 𝜔2). (27d) 

By adding equation (24a) multiplied by 𝐵1 to equation (24b) multiplied by 𝐴1, an expression 

was obtained that allows the frequency 𝜔1 to be explicitly formulated: 

1 + 𝑘2 + 𝛿𝐷11 − 𝑘2𝑞1 + 𝛿𝐷21𝜃(1 − 𝜃𝑞1) − 𝑝1(𝑐2 + 𝜃2𝜀𝐷21)𝜔1 − 𝜔1
2 = 0. (28) 

Similarly, by adding equation (26c) multiplied by 𝐻1 to equation (26d) multiplied by 𝐺1, an 

equation was obtained from which the frequency 𝜔2 can be derived: 

1 + 𝑘2 + 𝛿𝐷12 − 𝑘2𝑞2 + 𝛿𝐷22𝜃(1 − 𝜃𝑞2) − 𝑝2(𝑐2 + 𝜃2𝜀𝐷22)𝜔2 − 𝜔2
2 = 0.  (29) 

Note that in each pair of parameters ((𝑝1, 𝑝2), (𝑞1, 𝑞2), (𝜀𝐷21, 𝜀𝐷22), (𝛿𝐷11, 𝛿𝐷12), (𝛿𝐷21, 𝛿𝐷22), the 

only difference is the frequency in their definition – 𝜔1 or 𝜔2. Considering the similarity between 

equations (28) and (29), one can conclude that the frequencies 𝜔1 and 𝜔2  must be equal, thereby 

excluding the possibility of polymodal vibrations in the system. The expression describing the 

vibration frequency 𝜔2 = 𝜔1  can therefore be derived by solving only one of the above equations. 

The relationship between the vibration amplitude and the system frequency remains unknown. 

The first of the equations necessary to determine this relationship was obtained by subtracting 

equation (24b) multiplied by 𝐵1  from equation (24a) multiplied by 𝐴1 . The second one is the 

difference of equation (26c) multiplied by 𝐺1 and equation (26d) multiplied by 𝐻1: 

𝑝1(𝑘2 + 𝜃2𝛿𝐷21) + (𝑐1 + 𝑐2(1 − 𝑞1) + 𝜀𝐷11 + 𝜀𝐷21𝜃(1 − 𝜃𝑞1))𝜔1

− 𝑢𝜌𝜔1𝑎1 −
3𝜌𝜔1(𝐴𝑦

2 𝜔1
2 + 2𝐺𝑦

2𝜔2
2)𝑎3

4𝑢
= 0, 

(30a) 

𝑝2(𝑘2 + 𝜃2𝛿𝐷22) + (𝑐1 + 𝑐2(1 − 𝑞1) + 𝜀𝐷12 + 𝜀𝐷22𝜃(1 − 𝜃𝑞2))𝜔2

− 𝑢𝜌𝜔2𝑎1 −
3𝜌𝜔2(2𝐴𝑦

2 𝜔1
2 + 𝐺𝑦

2𝜔2
2)𝑎3

4𝑢
= 0, 

(30b) 

where 𝐴𝑦
2 = 𝐴1

2 + 𝐵1
2 and 𝐺𝑦

2 = 𝐺1
2 + 𝐻1

2. Set of equations (30) has three non-trivial solutions in terms 

of 𝐴𝑦
2  and 𝐺𝑦

2, which after recalling the 𝜔2 = 𝜔1 identity, take the form:: 

𝐴𝑦
2 =

4𝑢(𝑝1(𝑘2 + 𝜃2𝛿𝐷21) + (𝑐1 + 𝑐2(1 − 𝑞1) + 𝜀𝐷11 + 𝜀𝐷21𝜃(1 − 𝜃𝑞1)) − 𝑢𝜌𝑎1)

3𝜌𝜔1
3𝑎3

, 

𝐺𝑦
2 = 0 

(31a) 

𝐴𝑦
2 = 0, 

𝐺𝑦
2 =

4𝑢(𝑝1(𝑘2 + 𝜃2𝛿𝐷21)𝜔1 + (𝑐1 + 𝑐2(1 − 𝑞1) + 𝜀𝐷11 + 𝜀𝐷21𝜃(1 − 𝜃𝑞1)) − 𝑢𝜌𝑎1)

3𝜌𝜔1
3𝑎3

, 
(31b) 

𝐴𝑦
2 =

4𝑢(3𝑝1(𝑘2 + 𝜃2𝛿𝐷21)𝜔1 + 𝑐1 + 𝑐2(1 − 𝑞1) + 𝜀𝐷11 + 𝜀𝐷21𝜃(1 − 𝜃𝑞1)) − 𝑢𝜌𝑎1

9𝜌𝜔1
2𝑎3

, 

𝐺𝑦
2 =

4𝑢(−3𝑝1(𝑘2 + 𝜃2𝛿𝐷21)𝜔1 + 𝑐1 + 𝑐2(1 − 𝑞1) + 𝜀𝑇11 + 𝜀𝐷21𝜃(1 − 𝜃𝑞1)) − 𝑢𝜌𝑎1

9𝜌𝜔1
2𝑎3

. 

(31c) 

These expressions, along with the previously derived identities, enable the explicit formulation 

of solutions for the system (20) in the form (21). It should be noted that the identities given by 

equations (31a) and (31b) correspond to the same solution in the form (21); thus, only one of them, 

namely (31a), will be further analyzed. Moreover, no set of system parameters and initial conditions 

has been found that would lead to the excitation of vibrations with amplitude (31c). Therefore, this 

solution was considered unstable, and the efficiency has been derived based only on (31a): 

𝜂𝐷 =

1
𝑇𝑐

∫ (
𝑣1

2(𝑡)
𝑟1𝜅1

+
𝑣2

2(𝑡)
𝑟2𝜅2

) 𝑑𝑡
𝑇𝑐

0

𝜌𝑢3
=

2𝜆(𝜇 − 𝑢𝜌𝑎1)

3𝑢2𝜌2𝑎3
, 

(32) 

where: 
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𝜆 = (𝜀𝐷11 + 𝜀𝐷12𝜃2(1 − 2𝜃𝑞1 + 𝜃2(𝑝1
2 + 𝑞1

2))), (33a) 

𝜇 = (𝑐1 + (𝑐2 + 𝜃𝜀𝐷11)(1 − 𝜃𝑞1)) +
𝑝1(𝑘2 + 𝜃2𝛿𝑇𝐷21)

ω1
. (33b) 

Critical speed 𝑢𝑐𝑟
𝐷  and nominal speed 𝑢𝑝

𝐷 of GEH2D are given by the expressions: 

𝜂𝐷 = γ1

2𝜆(𝜇 − 𝑢𝜌𝑎1)

3𝑢2𝜌2𝑎3
= 0  ⇒   𝑢 = 𝑢𝑐𝑟

𝐷 =
𝜇

𝜌𝑎1
, (34) 

𝛿𝜂𝐷

𝛿𝑢
= 0  ⇒   𝑢 = 𝑢𝑝

𝐷 = 2
𝜇

𝜌𝑎1
= 2𝑢𝑐𝑟

𝐷 . (35) 

Now it is possible to derive peak efficiency of the system: 

𝜂𝑝
𝐷 = 𝜂𝐷(𝑢𝑝

𝐷) =
−𝜆 𝑎1

2

6γ2𝑎3
. (36) 

To fully determine the features of the analyzed variant, it is necessary to define its high efficiency 

bandwidth 𝐵𝐷. It is: 

𝜂𝐷 = 0,9𝜂𝑝
𝐷   ⇒   

𝑢2

𝑢1
=

2
0.9

𝜌𝑎1𝜇 ±
√0.4
0.9

𝜌𝑎1𝜇

(𝜌𝑎1)2
, (37) 

 𝐵𝐷 = 𝑢2 − 𝑢1 = √
160

81

𝜇

𝜌𝑎1
≈ 1.4𝑢𝑐𝑟

𝐷 ≈ 0.7𝑢𝑝
𝐷. (38) 

Figure 3 depicts the relationship between efficiency 𝜂𝐷 and flow speed 𝑢, represented by the 

function (32), compared with an analogous relationship obtained through numerical integration of 

the model (20) for initial conditions: 𝑦1(0) = 0.1 , 𝑦̇1(0) = 0 , 𝑛1(0) = 0 , 𝑦2(0) = 0 , 𝑦̇2(0) = 0 , 

𝑛2(0) = 0. Moreover, the figure shows the values characterizing the efficiency of the variant - 𝑢𝑐𝑟
𝐷 , 

𝑢𝑝
𝐷, 𝜂𝑝

𝐷 and 𝐵𝐼.  

 

Figure 3. Efficiency characteristic of GEH2D for parameters values presented in Table 2. 

Table 2. GEH2D system parameters values. 

Parameter Value 

𝑀  0.5 

𝑘2  0.3 

𝑐1 0.1 

𝑐2 0.25 

𝜅1 0.9 
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𝜅2 1.8 

𝑟1 3 

𝑟2 2 

𝜃 1.3 

𝑎1 2.3 

𝑎3 -18 

𝜌 0.02 

4. Comparison of Systems 

As suggested by equations (34), (35), and (38), critical speeds, nominal speed, and high-efficiency 

bandwidths are interrelated in the same manner in both analyzed GEH variants. Consequently, 

comparing the efficiency of these systems can only be achieved by comparing their peak efficiencies. 

Since the efficiency of both devices depends on their nominal speeds, it is necessary to compare 

systems with the same nominal speeds. The electrical damping of the linear system 𝑒𝐿 will therefore 

be selected in such a way that this condition is satisfied. In the following derivation, it is assumed 

that the structural damping of the linear system c is equal to the structural damping 𝑐1 of the damper 

connecting the lower mass of the GEH2D with the base, i.e.: 𝑐 = 𝑐1. The shape of the flowing body, 

represented by the coefficients 𝑎1  and 𝑎3 , and the density of the fluid remain the same for all 

variants. 

𝑢𝑝
𝐼 = 𝑢𝑝

𝐿 , (39a) 

2
𝜇 + γ2

𝜌𝑎1
= 2

𝑒𝐿 + 𝑐1

𝜌𝑎1
, (39b) 

𝑒𝐿 = γ2 + 𝜇 − 𝑐1. (39c) 

According to equations (16) and (39c), the efficiency of a system with one degree of freedom 

with a nominal speed equal to the nominal speed of the GEH2D is equal to: 

𝜂𝐿(𝑢𝑝
𝐷) = −

(𝜇 − 𝑐1)𝑎1
2

6𝜇𝑎3
. (40) 

The ratio of peak efficiencies of compared systems with the same nominal speed is therefore 

given by: 

𝜂𝐿(𝑢𝑝
𝐷)

𝜂𝐷(𝑢𝑝
𝐷)

=
𝑠1 + 𝑠2

𝑠1 + 𝑠3
, (41) 

where: 

𝑠1 = 𝜀𝑇11((𝑘2 + 𝜃2𝛿𝐷21)(𝑘2 + 𝜃2𝛿𝑇21 − 2𝑀𝜔1
2) + (𝑐2 + 𝜃2𝜀𝐷21)2𝜔1

2 + 𝑀2𝜔1
4), (42a) 

𝑠2 = 𝑀𝜔1
2((𝑘2𝜀𝐷21 − 𝑐2𝛿𝐷21)(𝜃 − 1)𝜃 + 𝑀𝜔1

2(𝑐2 + 𝜃𝜀𝐷21)), (42b) 

𝑠3 = 𝜃2𝜀𝐷21(𝑀𝜔1
2(2𝑘2(𝜃 − 1) + 𝑀𝜔1

2) + (𝑐2
2𝜔1

2 + 𝑘2
2)(𝜃 − 1)2). (42c) 

Clearly, according to (41), discussed system with two degree of freedom, will have greater 

efficiency than reference system if and only if 𝑠3 > 𝑠2. For variant with only one, lower transducer 

(Fig. 2a), where 𝜀𝐷21 = 𝛿𝐷21 = 0, this inequality takes the form: 

0 ≯ 𝑐2𝑀2𝜔1
4, (43) 

what implies that such a device cannot be more efficient than the reference system, regardless of its 

parameters. This conclusion contradicts the results presented in [17]. The reason for this discrepancy 

lies in the fact that in the cited work, the operating conditions of the compared systems were not 

standardized - the devices had different critical speeds and, consequently, different nominal speeds. 

Despite the unquestionable value of this article, the conclusion stated therein can be subject to 
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questioning. In the case of the variant with only the upper transducer (Fig. 2b), where 𝜀𝑇11 = 𝛿𝑇11 =

0, the condition for efficiency improvement takes the following form: 

𝜀𝐷21 ≯ 𝜀𝐷21 + 𝑐2, (44) 

what indicates that this variant does not offer efficiency enhancement. Similarly, an identical and 

impossible-to-satisfy requirement is associated with the special case of the third variant, where there 

are two identical transducers, meaning: 𝜀𝐷11 = 𝜀𝑇21 , 𝛿𝐷11 = 𝛿𝐷21  and 𝜃 = 1 . However, the 

inequality 𝑠3 > 𝑠2 can be satisfied for the most general variant – the one equipped with two different 

transducers. In this case, it can be reduced to the condition: 

(𝜃 − 1)𝜃 (𝜀𝐷21𝑘2
2(𝜃 − 1)𝜃 + 𝑐2𝛿𝐷21𝑀𝜔1

2 + 𝑐2
2𝜀𝐷21𝜔1

2(𝜃 − 1)𝜃 + 𝜀𝐷21𝑘2𝑀𝜔1
2(2𝜃 −

1)) > 𝑀2𝜔1
4(𝑐2 − 𝜀𝐷21(𝜃 − 1)𝜃),  

(45) 

which, after substituting the solution of (27), can be solved numerically for a chosen parameter. For 

the parameters presented in Table 2, solving the above inequality for 𝜃  results in obtaining a 

threshold value of approximately 𝜃 ≈ 1.13 . An example of the efficiency characteristics of the 

GEH1D with 𝑒𝐿 given by (39c) and GEH2D is shown in Figure 4, where condition (45) has been met 

by adopting parameters according to Table 2, with 𝜃 = 1.3 > 1.13. 

 

Figure 4. Comparison of GEH1D and GEH2D having equal nominal speeds. 

5. Conclusions 

The aim of the study was to investigate the efficiency of a galloping energy harvester with two 

degrees of freedom, considering its three variants, which differ in the number and location of 

electromechanical transducers. The realization of this objective commenced with the analysis of the 

reference variant with one degree of freedom. Utilizing the harmonic balance method, an 

approximate solution of the mathematical model of the system was derived, followed by the 

formulation of an expression describing the efficiency of the variant. Based on this, key criteria 

parameters were defined, providing comprehensive information about the variant's efficiency: peak 

efficiency, high efficiency bandwidth, critical speed, and nominal speed. 

Subsequent sections of the study delineate the multitude of configurations that a system with 

two degrees of freedom can adopt: three different sub-variants of the device were characterized, 

differing from each other by the location and number of the electromechanical transducers. 

Parameters characterizing the efficiency of all subvariants were derived, demonstrating that the 

critical speed, nominal speed, and high efficiency bandwidth are related to each other in the same 

manner as in the case of the reference system. It was then demonstrated that among the three 

indicated subvariants of the two-degree-of-freedom system, only the one with two transducers can 

be more efficient than the reference system. 
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