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Abstract: This paper examines the energy efficiency of three variations of the two-degree-of-freedom
transverse galloping energy harvester. These variants differ in the number and placement of electromechanical
transducers. By utilizing the harmonic balance method, limit cycles of mathematical models of devices were
determined. Analytical expressions derived from models were then used to formulate the efficiency of the
systems. It was demonstrated that efficiency depends on flow speed and can be comprehensively characterized
by four criteria parameters: peak efficiency, denoting the maximum efficiency of the system, and high efficiency
bandwidth, which describes the range of flow velocities within which the efficiency remains at no less than
90% of peak efficiency. The values of these parameters are heavily reliant on the speed at which the system
achieves peak efficiency —referred to as the nominal speed nominal speed, which in turn is related to the critical
speed of the system. Comparative analysis revealed that only the two-degree-of-freedom device equipped with
two electromechanical transducers can potentially outperform a simple one-degree-of-freedom system in terms
of efficiency.

Keywords: energy harvesting; transverse galloping; harmonic balance method

1. Introduction

In the contemporary world, energy plays a pivotal role across all facets of human existence.
Powering electronic gadgets, illuminating and heating homes, and propelling machinery all hinge on
energy. However, as the population grow and technologies advance, we increasingly encounter
challenges concerning energy production and distribution.

The energy crisis has become a pervasive issue demanding attention. Concurrently, with
technological advancements, the concept of the Internet of Things (IoT) is burgeoning [1]. IoT
delineates a network of interconnected devices that communicate and share data to enhance the daily
lives of users. Smart home gadgets, vehicles, environmental sensors, and myriad other devices can
interconnect, analyze data, and autonomously make decisions. Yet, as IoT devices proliferate,
challenges in providing them with sustainable energy sources emerge. Conventional power methods
such as batteries or power cords may prove inconvenient, have limited durability, or be impractical
for distributed IoT networks.

Energy harvesting technologies, such as flow-induced vibration recovery, offer potential
solutions. Notably, Bladeless Vortex power plants, activated by von Karman vortices, promise a cost
reduction of up to 70% compared to traditional wind farms [3]. However, their dependence on
specific flow conditions presents limitations.

Galloping emerges as an alternative vibration excitation method. Early studies explore its
potential for energy recovery [4], emphasizing the crucial role of aerodynamic coefficients and the
device's quasi-stationary nature. Subsequent research [5] delves into analytical, numerical, and
experimental analyses of galloping energy harvesters (GEH), examining structural damping's impact
and developing electromechanical models.

Due to the fundamental influence of flow body geometry [6], research focuses on optimizing
shapes to enhance efficiency. While rhomboid geometries are prone to galloping instability, adding
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a stream splitter on the opposite side favors power generation [7,8]. Additionally, devices with
irregular shapes demonstrate benefits [9,10].

Nonlinear elasticity's influence on GEH performance is extensively studied [11,12]. It is found
to enhance efficiency at low flow rates, albeit potentially reducing operating speeds [13,14]. Various
types of nonlinearities are assessed for their impact on device power [15], with duffing-type non-
linear GEH variants analyzed for effectiveness [16].

Expanding GEH degrees of freedom shows promise [17], with series-connected mass systems
and devices extended to multiple degrees explored [18,19]. Analytical solutions for mathematical
models of such devices are developed [20], and experimental research on innovative designs, like
magnetically coupled beams, shows increased power generation potential [21].

However, research on two-degree-of-freedom systems lacks exploration of utilizing two
electromechanical transducers. Addressing this gap, this study aims to assess the efficiency of a GEH
with two degrees of freedom. It considers transducer placement between the stationary base and
lower mass and between masses, aiming to contribute to enhancing energy harvesting technologies.

2. Efficiency of Reference Variant

While the primary focus of this study lies in analyzing the efficiency of systems with two degrees
of freedom (GEH2D), understanding the characteristics of this class of devices can be facilitated by
comparing them with a system possessing well-established, as discussed in [3,4], properties - a linear
device with one degree of freedom (GEH1D), hereafter referred to as the reference device. Therefore,
it is justified to conduct an analysis of the efficiency of this system, particularly as we aim to highlight
a certain intriguing feature of this variant, which has not been previously addressed in the literature.
According the cited articles, the mathematical model of GEH1D takes the form (1) with parameters

detailed in Table 1.
AT I PPN 2z #\3
mz+cz+kz—9€—FL——5puh(a15+a3 (5) ), (1a)
I
Cpé + B +60x=0. (1b)
Table 1. List of GEH1D parameters.
Symbol Parameter Unit
m Mass kg
k Stiffness coefficient N/m
¢ Damping coefficient kg/s
u Flow speed m/s
p Planar fluid density kg/m*
h Characteristic dimension m
0 Piezoelectric coefficient N/V
(/T; Equivalent capacity F
R Circuit electrical resistance o)
T Time s
z = z(1) Vibration vs time function m
E=¢&(1) Voltage vs time function %4

The efficiency 1 of such a system is defined as the ratio of the average power generated by the
device 15; over a time period equal to the period 7 of the voltage function £(t) to the surface flow

power density 15}:
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K = m, t= TWy,
the device dimensionless mathematical model can be written as:
.3
j}+cjl+y—v=p(a1u}'/+a3y—), (4a)
u
. v .
v+—+xky=0. (4b)
r

Assuming that T, is the period of the function v(t), efficiency in terms of dimensionless
parameters can be expressed as:

. fTCU (t)dt

pu?

)

b =
To characterize the efficiency n* of the system, it is essential to derive the voltage function v(t)

generated by it, which can be accomplished using the harmonic balance method. Consequently, it

was assumed that the limit cycle of the system would be described by a set of solutions in the form:

y = A, cos(wt), (6a)

v = A, cos(wt + @), (6b)

where, the four unknown quantities Ay, A, w= @i, ¢ represent the dimensionless vibration
n

amplitude, dimensionless voltage amplitude, dimensionless vibration frequency, and the phase shift
between the oscillator vibrations and voltage oscillations, respectively. The parameter @ denotes the
unknown dimensional frequency of the system's vibrations. Substituting solutions of the form (6)
into the model (1) leads to the transformation of the system of differential equations into a system of
algebraic equations:

A, (1 — w*)cos(wt) + A3 £ sind (wt) + A, w(upa, — c)sin(wt) — A, cos(wt +
¢) =0,

(7a)

cos(wt + (p)
A, | —m

— wsin(wt + (p)) —Ajkw sin(wt) = 0. (7b)
T

This condition will be satisfied for every moment of time t if and only if the sum of the
coefficients with corresponding time functions equals zero. From equation (7b), the following was
deduced:

A, (cos((p) —Tw sin((p))
=0
, (8a)

4, (ro cos(p) +sin(p)) +4yre _ (8b)

r

Equation (8a) shows that:
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1 1
tg((p) = a’ Sm((ﬂ) = \/ﬁ, COS((p) = \/ﬁ (9)

Based on equations (8b) and (9), the expression describing the relationship between the vibration
amplitude and the voltage amplitude can be derived:

TK®

A = —-A —]—. 10

VT e i

By balancing harmonics of equation (7a), the remaining two algebraic equations, necessary to

determine an approximate solution of the device model are obtained. After taking into account the
previously derived relations (9) and (10), they take the form:

Ay klw—A,(w*-1) =0, (11a)
3 3pcu3a3 L
Ayupwa1 + Ay ™ — Aycw — Aye w=0, (11b)
2 2
where k. = k - (;) ~and &' =k rz > are the piezoelectric stiffness and electrical damping of the
1+r‘w 1+r“w

linear system. Based on the above system of equations, it can be shown that:

wr rP(l+K)-1% \/41”2 + (1 + k) — 1)?
wi 2r2 (12a)

A% qu(c + el — upal)

) (12b)

3pwlas
Equation (12a) shows that w? < 0, regardless of the system parameters. Therefore, in the
following part of the work notation w; = w has been adopted. Returning now to the general
definition of efficiency (5) and substituting the expressions (6b), (10), (12) into it, we obtain:
2e(c+e" - upa,)

nL

(13)
3u?pla,

Figure 1 illustrates the efficiency characteristics of the system under discussion. The efficiency
is depicted as the ratio n"/ n; and such representation maintained throughout the study. The figure

also includes the analogous characteristic obtained numerically for initial conditions y(0) = 0.1,
¥(0) = 0, n(0) = 0, utilizing the fourth-order Runge-Kutta method. In this figure it can be observed
that the system undergoes Hopf bifurcation at certain speed, from now on referred to as the critical
flow speed u,,,. Its value results directly from (13):

2et(c + e — upa,) c+et
= ! = 0 > u= u’CT = ) (14)
3u%p’a, pa,

nL
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Figure 1. Efficiency characteristics of GEH1D for: k = 1.3, r =3, ¢ =0.1, p =0.02, a; = 2.3, a3 =
—18.

Another noteworthy observation from the same set of graphs is that irrespective of the
parameter set, there exists a specific nominal flow speed u = u} for which the efficiency 1" attains
a maximum value, denoted as the peak efficiency n; . These quantities are given by the expressions:

67]1“ c+er

— =0 = u= uzL, =2 = 2u,,, (15)
ou paq
2 L
—a1€
L L(, L
T =1 ( p) 6a;(c + e*)

The aforementioned identities were previously derived in [3,4]. However, the remainder of the
article discusses entirely original content. An unexplored property of GEH1D, which can be inferred

from Figure 1 or deduced from the identity uzL, = 2u,, , is noteworthy. A system with a low critical

cr 7
speed u,, will experience a more pronounced decline in efficiency due to the deviation of the flow
speed u at which it operates from the nominal speed uzL, . Let the measure of this phenomenon be
the flow speed bandwidth in which the system efficiency 1" does not fall below 90% of the

maximum efficiency n; , hereafter referred to as the high efficiency band B". According to the
definition, B is given as:
V0.4

a,(c+e) + a,(c+ et
nL _ OgnL N U.z _ p 1( ) 09 ,0 1( )’ (17)
P

" 22 (pa,)?

,160 (c+eb)
B = Uy — U = 8_1— ~ 1l4u, =~ 0.7u§. (18)

pa,

The quantities: critical speed u

«r» Nominal speed uf,, peak efficiency U,L, and high efficiency

bandwidth B" will be further referred to as the criterion parameters. They have been labeled on Fig.
1.

3. Efficiency of Two Degree of Freedom System

Based on the information provided in section 1, the presence of additional mass in systems with
two degrees of freedom implies the necessity to consider the placement of the electromechanical
transducer. It may be positioned between the main mass and the stationary base (Fig. 2a), between
the masses (Fig. 2b), or in both of these locations (Fig. 2c).
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Figure 2. Subvariants of two degree of freedom system.

To evaluate the influence of piezoelectric placement on efficiency, the efficiency characteristics
of the variant with both transducers will be derived. Subsequently, the ramifications of removing one
of them will be examined.

The dynamics of devices within the discussed category can be elucidated by a general
dimensionless mathematical model of the form (20), where, in addition to the identities (3), the
following also holds:

Zj _ 6, __¢Ci _ A_2 _ 6,
Yi f/ Ui_fz\lﬁAnZI Cl_mla’n’ kz—kl. K_Cplﬁl\lwn
- (19)
g=22 m="2 (=12
92 mq
.3
hty—kO,—y)tay—c(,—y1) —vi+tv,=p (a1u5’1 +as y:l), (20a)
. v .
K1v1 + I + yl' (Zob)
N
My, + k(v —y1) + (2 —y1) —v, =0, (20¢)
. Uy . .
KU + 7 +y2—=y1=0. (20d)

To derive the solutions of the GEH2D mathematical model, the procedure outlined in [20] was
adapted. It was assumed that the approximate solution of the model (20) will have the following

form:
vy, = A, cos(w,t) + B; sin(w;t) + G, cos(w,t) + Hy sin(w,t), (21a)
v; = ny cos(w;t) + n, sin(w,t) + nz cos(w,t) + n, sin(w,t), (21b)
y, = A, cos(w,t) + B, sin(w,t) + G, cos(w,t) + H, sin(w,t), (21a)
v, = 9; cos(w,t) + 9, sin(w,t) + Y95 cos(w,t) + I, sin(w,t), (21d)

Substituting the above identities into equations (20b) and (20d), and then balancing the
harmonics cos(w;t), sin(wit), cos(w,t), sin(w,t), allows for the derivation of the relationships
between the amplitudes of voltage and the amplitudes of vibration.

ny = Biwi€p1y — A16p11, Ny = —A;w1€p11 — B16p1y,

(22a)
n3 = Hiwz€p12 — G16p12, N, = —Gyw3&p12 — Hi8p12,

Y, = 9(5021(932 — By)w; + 8pp1 (4 — 9142))1 (22b)
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9, = 9(51)21(141 —043)w; + 6py(By — 932)).
U3 = 9(5D22(9H2 — Hpw; + 6pa2(Gy — er)).
0 = 0(ep22(G1 — 0Gy)w, + 8pya (Hy — 6H,)).

TZ(A)Z

. s I =g — i ic sti ;
where: 8p;; = k; 70 and &p;; = K; 70 represent the piezoelectric stiffness and electric
damping of the i-th piezoelectric for vibration with the j-th frequency. Harmonic balancing of
cos(wqt) and sin(w;t) of the algebraic equation obtained by substituting the solutions (21) into
equation (20c) and using the identities (22) leads to the system of equations:

Ay = Bipy + A1qq, (23a)
B, = B1q, — A1py, (23b)
where:
_ (kz + 66pa1)(c2 + 9251)21)0’1 — (€2 + Oeppy) (ky + 925D21 - Mw%)(‘)l (23¢)
P (c; + 6’25021)20012 + (ky + 626py; — M‘U12)2 '
_ (cz + Oepar)(ca + 0%epyy)wi + (ky + 08p21) (ky + 028121 — Mw?) (23d)

n (e + 02%epy1)2wi + (ky + 028py — Mwi)?

By substituting the above identities into the harmonic balance equations for cos(w;t) and
sin(w,t) of expression (20a), the following identities can be formulated:

3paswi (43 + BYwi +2(G; + H)w3) _

A B.f; — A , 24a
101 + B1fy 1 au (24a)
3pasw;((4% + B3 w? + 2(G2 + H?) w3
Alﬁl_Blal‘l‘Bl ,0 3 1(( 2 2) 1 ( 2 2) 2)=0' (24b)
4u
where:
a; = (p1(ky + 0%8pa1) + (c1 + €711 + (c2 + €p21) (1 — 0q1)) w1 — upwyay), (25a)
B =1+ 8r11 + (8p210 + k2)(1 = 60q1) — w1 (p1(c, + 0%epp1) + wy). (25b)

Adapting the above procedure to balance the harmonics cos(w,t) and sin(w,t) of equations
(20c) and (20a) allows for the derivation of the following identities:

G, = Hyp, + G143, (26a)
H, = Hiq; — G1p2, (26b)
3pa;w,(2(A% + B> w? + (G? + H»)w?
Gya, + HiBy — Gy pazw,(2(A1 Dwi + (G1 1) 2):0 (260)
4u
3 2(A2 + BH w2 + (G? + H)w?
G,B, — Hyay + H, pazw,(2(Az 14)-1(:’2 (G1 w3) -0 (26d)
where:
_ (kz + 66pz2)(c, + 925022)(1)2 — (¢ + Oepyp)(ky + 925022 - Mw%)wz (27a)
2 (c2 + 02%epy2)2ws + (ky + 0285, — Mw3)? '
_ (cz + Oerp)(c, + 925022)“’% + (ky + 08p32) (k, + 925022 - Ma)%) (27b)

& (c2 + 02%epy2)2ws + (ky + 0285, — Mw3)? '

a; = (pa(ky + 0%8p3;) + (1 + €712 + (€ + £722) (1 = 0q2))w, — upw,ay), (27¢)
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Bz =1+ 8p1z + (8p220 + k) (1 = 0q,) — w,(p2(cy + 0%epy2) + w)). (27d)

By adding equation (24a) multiplied by B; to equation (24b) multiplied by A;, an expression
was obtained that allows the frequency w; to be explicitly formulated:

1+ ky + 6p11 — kaqy + 8pp10(1 — 0qy) — p1(c; + 0%epy1)w; — wi = 0. (28)

Similarly, by adding equation (26c) multiplied by H; to equation (26d) multiplied by G;, an
equation was obtained from which the frequency w, can be derived:

1+ ky + 8p1z — kaqz + 6p2260(1 — 0qz) — pa(c; + 925022)0’2 - w% =0. (29)

Note that in each pair of parameters ((p1, P2), (91, q2), (€21, €p22), (8p11,6p12), (8p21,Op22), the
only difference is the frequency in their definition — w; or w,. Considering the similarity between
equations (28) and (29), one can conclude that the frequencies w; and w, must be equal, thereby
excluding the possibility of polymodal vibrations in the system. The expression describing the
vibration frequency w, = w; can therefore be derived by solving only one of the above equations.

The relationship between the vibration amplitude and the system frequency remains unknown.
The first of the equations necessary to determine this relationship was obtained by subtracting
equation (24b) multiplied by B; from equation (24a) multiplied by A;. The second one is the
difference of equation (26c) multiplied by G; and equation (26d) multiplied by H;:

p1(ky + 028p,1) + (C1 +c(1—q1) + ep11 + epp10(1 — 9‘11))001
3pw, (A2w? + 2G2w3)a; (30a)
—Uupwia, — 4 o 4 =0,

p2(ky +6028p,,) + (C1 + (1= qq) + €p1z + pa260(1 — 9%))@2
3pw; (24202 + G2w3)as “o (30b)
4u o

- upw2a1 -

where A% = A + Bf and Gj = G{ + H{. Set of equations (30) has three non-trivial solutions in terms
of A% and G}, which after recalling the w, = w, identity, take the form:

A2 = 4u(p1(k2 +60%8pp1) + (C1 + ¢(1—q1) + ep11 + €p210(1 — 9‘11)) - upal)

Y 3pws3as (31a)
GZ=0
A% =0,

G2 = 4u(p1(k2 +60%8pp)wy + (51 + ¢(1—qq1) + ep11 + €p210(1 — 9‘11)) - upal) (31b)
2=

’

3pw,3as

2 4“(3P1(k2 +60%8pa)wy + ¢y + (1 —qq) + epyqg + €pp0(1 — 9‘71)) —upa,
y- 9pw,2a ’

res (31c)
_ 4u(=3p; (ky + 6%6pp1)wq + ¢ + (1 — q1) + e715 + £p2:0(1 — 0q4)) — upay

GZ
9pw.2as

y

These expressions, along with the previously derived identities, enable the explicit formulation
of solutions for the system (20) in the form (21). It should be noted that the identities given by
equations (31a) and (31b) correspond to the same solution in the form (21); thus, only one of them,
namely (31a), will be further analyzed. Moreover, no set of system parameters and initial conditions
has been found that would lead to the excitation of vibrations with amplitude (31c). Therefore, this
solution was considered unstable, and the efficiency has been derived based only on (31a):

1 .1 (v2(t) | v,2(t
(a2 + ) ar _ 201~ upay) (32)

fIp = pud ~ 3u2p2a,

where:
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9
A= (ep11 + €p120°(1 = 20q1 + 6%(p1® + 41%))), (33a)
k, + 676
w= (e + (e + 0511 - 0gp) + 12 = o), (33b)
1
Critical speed u2, and nominal speed uj of GEH2D are given by the expressions:
_ ., 2A—upay) _ _op __H
b =VY1 3u2p2a3 =0 = u= Uer = pal' (34)
Snp _ _ . D_o MK
5u =0 = u=u, —2pa1—2ucr. (35)
Now it is possible to derive peak efficiency of the system:
—Aai
D=pP(ul)=—. (36)
np =n"(up) 6Y,ds

To fully determine the features of the analyzed variant, it is necessary to define its high efficiency
bandwidth BP.Itis:

2 u+\/0'4pa ;
u; _0.9F"F -9 F™ 37
n?=09n = 0 =02 02— 57)
1 (pay)
160 u
B =u, —u, = 81 pa. ~ 1.4uf, ~ 0.7up. (38)

Figure 3 depicts the relationship between efficiency n° and flow speed u, represented by the
function (32), compared with an analogous relationship obtained through numerical integration of
the model (20) for initial conditions: y;(0) =0.1, y,(0) =0, n,(0) =0, y,(0)=0, y,(0)=0,
n,(0) = 0. Moreover, the figure shows the values characterizing the efficiency of the variant - u2,,

up, 1y and B'.
— Analitycal o Numerical
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Figure 3. Efficiency characteristic of GEH2D for parameters values presented in Table 2.

Table 2. GEH2D system parameters values.

ParameterValue
M 0.5
k, 0.3
c1 0.1
cy 0.25

Ky 0.9
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Ky 1.8

£ 3

Ty 2

0 1.3

a, 2.3

as -18

p 0.02

4. Comparison of Systems

As suggested by equations (34), (35), and (38), critical speeds, nominal speed, and high-efficiency
bandwidths are interrelated in the same manner in both analyzed GEH variants. Consequently,
comparing the efficiency of these systems can only be achieved by comparing their peak efficiencies.
Since the efficiency of both devices depends on their nominal speeds, it is necessary to compare
systems with the same nominal speeds. The electrical damping of the linear system e’ will therefore
be selected in such a way that this condition is satisfied. In the following derivation, it is assumed
that the structural damping of the linear system cis equal to the structural damping c; of the damper
connecting the lower mass of the GEH2D with the base, i.e.: ¢ = ¢;. The shape of the flowing body,
represented by the coefficients a; and az, and the density of the fluid remain the same for all
variants.

p = Up, (39a)

+ Lt
QhTY2_o,e Ta (39b)
pa, pay

el =y, +u—c. (390)

According to equations (16) and (39c¢), the efficiency of a system with one degree of freedom
with a nominal speed equal to the nominal speed of the GEH2D is equal to:

(u—cad
L(;,D) — _ 40
n"(up) ba (40)
The ratio of peak efficiencies of compared systems with the same nominal speed is therefore
given by:
Lwh) s;+s
Ui ( p) =hTs: 41)
nP(ul) s1+s;
where:
s1 = er11((ky + 8%8pa1) (ky + 028721 — 2Mw;?) + (5 + 0%epp1)?wi? + M2w, ), (42a)
Sz = Mw;?((kzepa1 — €20p21)(0 — 1)8 + Mw,?(c; + 8ep21)), (42b)
3= 0%epy1 (Mw, 22k (8 — 1) + Mw;?) + (c2w,% + k,*) (0 — 1)?). (42c)

Clearly, according to (41), discussed system with two degree of freedom, will have greater
efficiency than reference system if and only if s; > s,. For variant with only one, lower transducer
(Fig. 2a), where ep,1 = 8pp; = 0, this inequality takes the form:

0% c;M?w,*, (43)

what implies that such a device cannot be more efficient than the reference system, regardless of its
parameters. This conclusion contradicts the results presented in [17]. The reason for this discrepancy
lies in the fact that in the cited work, the operating conditions of the compared systems were not
standardized - the devices had different critical speeds and, consequently, different nominal speeds.
Despite the unquestionable value of this article, the conclusion stated therein can be subject to
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questioning. In the case of the variant with only the upper transducer (Fig. 2b), where er4; = 8741 =
0, the condition for efficiency improvement takes the following form:

€p21 # €p21 T Ca, (44)

what indicates that this variant does not offer efficiency enhancement. Similarly, an identical and
impossible-to-satisfy requirement is associated with the special case of the third variant, where there
are two identical transducers, meaning: ep;; = €721, Op11 = 0pz; and 6 = 1. However, the
inequality s3 > s, can be satisfied for the most general variant — the one equipped with two different
transducers. In this case, it can be reduced to the condition:

(9 - 1)9 (€D21k22(0 - 1)0 + C26D21Mw12 + C22£D210)12(9 - 1)9 + €D21k2MO)12(29 -

(45)
1)) > M?w,*(c; — £p21(6 — 1)6),

which, after substituting the solution of (27), can be solved numerically for a chosen parameter. For
the parameters presented in Table 2, solving the above inequality for 6 results in obtaining a
threshold value of approximately 6 =~ 1.13. An example of the efficiency characteristics of the
GEHI1D with e’ given by (39c) and GEH2D is shown in Figure 4, where condition (45) has been met
by adopting parameters according to Table 2, with 6 = 1.3 > 1.13.

11r
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01F

qnmf;, r]Lh]{;

5 10 15 20 25 30

dimensionless flow speed u

Figure 4. Comparison of GEH1D and GEH2D having equal nominal speeds.

5. Conclusions

The aim of the study was to investigate the efficiency of a galloping energy harvester with two
degrees of freedom, considering its three variants, which differ in the number and location of
electromechanical transducers. The realization of this objective commenced with the analysis of the
reference variant with one degree of freedom. Utilizing the harmonic balance method, an
approximate solution of the mathematical model of the system was derived, followed by the
formulation of an expression describing the efficiency of the variant. Based on this, key criteria
parameters were defined, providing comprehensive information about the variant's efficiency: peak
efficiency, high efficiency bandwidth, critical speed, and nominal speed.

Subsequent sections of the study delineate the multitude of configurations that a system with
two degrees of freedom can adopt: three different sub-variants of the device were characterized,
differing from each other by the location and number of the electromechanical transducers.
Parameters characterizing the efficiency of all subvariants were derived, demonstrating that the
critical speed, nominal speed, and high efficiency bandwidth are related to each other in the same
manner as in the case of the reference system. It was then demonstrated that among the three
indicated subvariants of the two-degree-of-freedom system, only the one with two transducers can
be more efficient than the reference system.
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