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Abstract: Epilepsy is one of the most prevalent and serious brain disorders, affects over 70 million people 

globally. Antiseizure medications (ASMs) though relieve symptoms and prevent the occurrence of future 

seizures in epileptic patients have limited effect on epileptogenesis. Addressing the multifaceted nature of 

epileptogenesis and its association with Nod-like receptor family pyrin domain containing 3 (NLRP3) 

inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying 

mechanisms for development of targeted therapeutic strategies beyond conventional antiseizure treatments. 

Several types of NLRP3 inhibitors have been developed and their effect has been validated both in vitro and in 

vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory 

mechanisms of NLRP3 activation as well as progress made and challenges facing in the development of NLRP3 

inhibitors for the treatment of epilepsy. 

Keywords: antiseizure medication; ASC; caspase-1; epilepsy; epileptogenesis; interleukin-1b; 
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1. Introduction 

Epilepsy is a serious chronic brain disorder characterized by spontaneous and recurrent seizures 

[1,2] that affects over 70 million people worldwide [3]. Approximately 3 million adults and 470,000 

children suffer from epilepsy with an incidence of about 150,000 new cases each year in the USA [4]. 

According to the World Health Organization, roughly half of epilepsy cases have no known cause 

whereas the other half may be due to imbalance of neurotransmitters, brain tumors, strokes, immune 

disorders, gene mutations, and traumatic brain injury.  The majority of epileptic patients also suffer 

from depression and memory loss resulting in poor quality of life and reduced life expectancy [5].  

Use of antiseizure medications (ASMs) remain the preferred treatment and seizures are being 

effectively controlled in 70% of the epileptic patients [6]. Although more than 30 FDA approved 

ASMs with diverse molecular targets are available for therapeutic purpose [7],the biggest challenge 

in the clinical treatment of epilepsy is that about 30% of epileptic patients develop resistance to ASMs. 

There is an urgent need to develop newer drugs with better efficacy, fewer side effects and less 

toxicity. This need is further augmented by the fact that available ASMs do not address 
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epileptogenesis, the disease process that leads to epilepsy [8,9]. Understanding of mechanisms 

involved in epileptogenesis will be crucial in the development of novel drugs that target the 

epileptogenic process. 

2. Epileptogenesis 

Epileptogenesis is poorly understood multifaceted chronic process that alters normal brain into 

an epileptic brain capable of generating spontaneous recurrent seizures (SRSs) [10]. Some of the 

common processes involved in epileptogenesis include, neuroinflammation, neuronal cell death in 

the temporal lobe andhippocampus , bioenergetic dysfunction, altered neuroplasticity, blood-brain 

barrier (BBB) disruption, astrogliosis, microglial activation, and infiltration of inflammatory cells into 

brain parenchyma. Injections of chemo-convulsant, such as pilocarpine andkainic acid , or repetitive 

electrical stimulation of the hippocampus or amygdala, can result in a chronic epileptic condition 

characterized by strong convulsive SRSs in animal models of acquired epilepsy and their use will 

help tremendously in better diagnosis, treatment, and prevention of human epilepsy. Anticonvulsant 

drugs mostly relieve symptoms and prevent future seizures in patient with epilepsy rather than 

inhibiting and or modulating the neuroinflammatory processes of epileptogenesis [9]. Development 

of targeted therapeutic strategies beyond conventional anticonvulsant/antiseizure treatments is 

needed to address epileptogenesis and epilepsy.   

In general neuroinflammation is beneficial because it promotes homeostatic neurogenesis 

[11,12], provides protection against loss of axons and neurons [13], and promotes  axonal 

regeneration [14,15], but the chronic neuroinflammation has been shown to be detrimental in 

numerous neurological disorders including Alzheimer’s disease, meningitis, Parkinson’s disease, 

multiple sclerosis, encephalitis [16] and epilepsy [17–19]. Despite the absence of pathogens, 

neuroinflammation in epilepsy is triggered by an abnormal increase in proinflammatory mediators 

[20] or by endogenous inducers (damage-associated molecular patterns [DAMPs]) produced and 

secteretd by brain cells undergoing stressful events termed as sterile inflammation [21]. Damage-

associated molecular patterns such as, adenosine triphosphate (ATP), high mobility group box1 

(HMGB1), reactive oxygen species (ROS), K+ efflux, advance glycation end products (AGEs), S1100b 

(a Ca2+ binding protein), or migration inhibitory factor-related protein 8 (MRP8) are known to induce 

formation of inflammasome, a multi-molecular protein complex [22–24].  

3. Inflammasomes 

In 2002, Tschopp and colleagues coined the term “inflammasome” to describe  a high molecular 

weight protein complex that mediates the activation of inflammatory caspases [25]. An 

inflammasome is comprised of a sensor protein (a cytoplasmic pattern-recognition receptors (PRRs) 

classified by its protein domain structures), an adapter protein (apoptosis-associated speck-like 

protein containing a CARD [ASC]), and pro-caspase-1 as an effector protein [26]. Typically, 

inflammasomes are named after their cytoplasmic pattern-recognition receptors (PRRs) sensor 

proteins that are either of a NLR family (a nucleotide binding domain (NBD) combined with a 

leucine-rich-repeat-containing receptor (LRR-CR) protein) or an ALR family (an absent in melanoma 

2 (AIM2)-like receptor (ALR) protein). Most pertinent inflammasomes belong to the NLR family 

subgroups containing pyrene domain (NLRP) or CARD domain (NLRC) proteins.  The best known 

inflammasomes are NLRP1; NLRP2; NLRP3; NLRP6, NLRP7; NLRP12; NLR-family apoptosis 

inhibitory protein (NAIP); NLR-family, CARD-containing 4 (NLRC4); AIM2; and Pyrin 

inflammasomes. Numerous studies have demonstrated that the central nervous system (CNS) is 

equipped with different inflammasome subtypes, however, their expression profiles vary among 

CNS cell types [27–31]. NLRP1 is mostly expressed in  neurons and oligodendrocytes [32–35], 

NLRP2 in astrocytes [36,37], NLRP3 in microglia [38–41], NLRC4 in astrocytes [42,43] and the AIM2 

in neurons [44,45]. The NLRP3 also known as cryopyrin, or NALP3 is the most widely studied and 

best characterized inflammasome. The NLRP3 protein has an N-terminal Pyrin domain (PYD), a 

central ATPase domain known as NACHT that comprises the NBD, a helical domain 1 (HD1), a 

winged helix domain (WHD), a helical domain 2 (HD2), and a C-terminal LRR domain [46].  
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NIMA (never in mitosis A)-related kinase 7 (NEK7), is a serine/threonine kinase that modulates 

microtubule stability, mitotic spindle formation and cytokinesis and has now been recognized as a 

crucial component of the NLRP3 inflammasome [47,48]. NEK7 senses reactive oxygen species (ROS), 

K+ efflux, lysosomal destabilization, and nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) signaling mediated activation of NLRP3 [49,50]. A cryo-EM structure of NLRP3-NEK7 

protein complex suggests that the first half of the NEK7 C-terminal interacts with the LRR domain of 

NLRP3 and the second half with the NBD and HD 2 domains of NACHT [46]. The binding of NEK7 

alone is not sufficient to activate NLRP3. In addition, ATP needs to bind to the NBD domain and 

used to phosphorylate S195 in NEK7 prompting NLRP3 to adopt a modified conformation that drives 

oligomerization and activation of the NLRP3 complex [51]. Thus, NEK7 plays a licensing role in 

NLRP3 activation rather than serving as the sole activator [46].  

3. Activation of the NLRP3 Inflammasome 

Physiological activation of NLRP3 is tightly regulated to avoid uncontrolled inflammatory 

responses and is beneficial against invading pathogens and tissue damage whereas abnormal or 

chronic activation plays a detrimental role in cellular and body health. As depicted in Fig. 1, NLRP3 

inflammasome activation can occur via canonical, non-canonical and alternative pathways [52]. 

Optimal activation of NLRP3 via canonical pathway requires priming step/Signal 1, initiated by the 

detection of extracellular PAMPs and endogenous cytokines by the PRRs, which then upregulates 

the NF-κB-mediated transcription of NLRP3, pro-IL-1β and pro-IL-18 [53]. In addition, priming also 

regulates NLRP3 at post-transcriptional level through DNA methylation, protein acetylation, and the 

use of microRNAs. For example, Wei et al. reported that the NLRP3 expression was increased 

through NLRP3 promoter demethylation in response to Mycobacterium tuberculosis infection [54]. It 

has been revealed that the NLRP3 induction by lipopolysaccharide (LPS) priming is decreased by 

binding of RNA-binding protein Tristetraprolin [55] and miRNA-223 [56] to 3’UTR of NLRP3. 

Moreover, priming also involves various post-translational modifications (PTMs) of the NLRP3 

protein, such as ubiquitination and phosphorylation, that silence NLRP3 for subsequent activation 

by second signal.  

The second activation step or Signal 2, is the assembly of the inflammasome proteins triggered 

by sensing intracellular PAMPs/DAMPs through a combination of important and related events such 

as, activation of the purinergic receptor P2X7 by ATP, cathepsin release following lysozyme rupture, 

opening of Ca2+ channels to allow ion flux, mitochondrial dysfunction, ROS formation, Golgi 

apparatus disassembly and endoplasmic reticulum stress (ERS) [57]. Once activated, oligomerization 

of the NLRP3 inflammasome involves two homotypic protein-protein interactions. First, the PYD 

domain of NLRP3 protein interacts with the adaptor protein ASC via PYD-PYD interactions and the 

CARD domain of ASC interacts with the CARD domain of pro-caspase 1 to recruit it to the NLRP3 

inflammasome [58]. The activated NLRP3 inflammasome is thought to induce conformational 

changes that generate active caspase-1 (Casp1), which converts pro-interleukin-1β (pro-IL-1β) and 

pro-interleukin-18 (pro-IL-18) to mature bioactive IL-1β and IL-18 [53]. Additionally, Casp1 cleaves 

the protein gasdermin D (GSDMD) to generate N-terminal GSDMD (N-GSDMD) [59]. After cleavage, 

N-GSDMD oligomerizes in the cell membrane to form pores, allowing IL-1β and IL-18 to leave the 

cell and effectively execute a highly inflammatory form of cell death that is termed pyroptosis [25,60].  

In the non-canonical pathway for NLRP3 inflammasome activation where intracellular LPS that 

have been generated by Gram-negative bacteria  are directly recognized by the CARD domain of 

caspase-11 in mice and caspase-4/5 in humans, ultimately leading to IL-1β and IL-18 release through 

the activation of the NLRP3-ASC-Casp1 pathway [61–64].   

The third or the alternate pathway of NLRP3 inflammasome activation exists in both human and 

porcine monocytes, but not in murine cells [65]. In this alternate pathway, NLRP3 assembly occurs 

upon activation of toll-like receptor 4 (TLR4) in response to LPS and requires the TIR-domain-

containing adapter-inducing interferon-β (TRIF)-receptor-interacting serine/threonine-protein 

kinase 1 (RIPK1)-Fas-associated protein with death domain (FADD)-caspase-8 signaling cascade, to 

activate the NLRP3 inflammasome leading again to cleavage of pro-IL-1β to produce mature and 
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active IL-1β [66]. In contrast to classical, the alternative pathway lacks ASC speck formation, 

pyroptosis induction, or K+ efflux [67].  

  

Figure 1. Schematic illustration of the mechanism regulating NLRP3 inflammasome activation in 

canonical, non-canonical and alternate pathway. Optimal activation of NLRP3 requires two steps. The 

first step is priming which is initiated by extracellular PAMPs and endogenous cytokines by the PRRs, 

which then upregulates the NF-κB-mediated transcription of NLRP3, pro-IL-1β and pro-IL-18. The 

second step is activation which includes canonical and non-canonical pathways. The canonical 

pathway is triggered by multiple pathogens and inflammatory agents through a combination of 

important and related events such as, activation of the purinergic receptor P2X7 by ATP, cathepsin 

release following lysozyme rupture, opening of Ca2+ channels to allow ion flux, mitochondrial 

dysfunction, ROS formation, Golgi apparatus disassembly and endoplasmic reticulum stress. Once 

activated, oligomerization of the NLRP3 inflammasome is thought to induce conformational changes 

that generate active caspase-1, which converts pro- pro-IL-1β and pro-IL-18 to mature bioactive IL-1β 
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and IL-18. Additionally, Casp1 cleaves the protein gasdermin D to generate N-terminal gasdermin D 

to form pores, allowing IL-1β and IL-18 to leave the cell and effectively execute a highly inflammatory 

form of cell death that is termed pyroptosis. In the non-canonical pathway where intracellular LPS 

are directly recognized by the CARD domain of caspase-11 in mice and caspase-4/5 in humans, 

ultimately leading to IL-1β and IL-18 release through the activation of the NLRP3-ASC-Casp1 

pathway. The alternative pathway of activation is caused by TLR4 agonists like LPS, which activates 

the TLR4-TRIF-RIPK1-FADD-Casp8 signaling. Casp8 activates the NLRP3 inflammasome but lacks 

ASC speck formation, pyroptosis induction, or K+ efflux. 

4. NLRP3 Inflammasome Involvement in Epilepsy 

An increase in the NLRP3 activity has been shown in the brain of individuals with epilepsy and 

in animal models of epilepsy [68–75]. Meng et al. first documented a significant increase in NLRP3 

inflammasome in the amygdala kindling-induced murine model of seizures [70]. NLRP3 

inflammasome activation in kainic acid (KA)-induced epileptic rats became evident when significant 

neuronal loss was noticed along with elevated levels of mature IL-1β, active caspase 1 and expression 

of the NLRP3 protein [68]. Magalhães et al. documented enhanced expression and activation of the 

NLRP3 inflammasome in organotypic slices as an ex vivo model of epilepsy [76]. In another in vivo 

study NLRP3 inflammasome activation was significantly correlated with epileptic neuronal 

apoptosis [72]. Jiang and colleagues revealed that an increase in NLRP3 gene transcription is due to 

binding of Stat3 acetylation of the histone H3K9 site of the NLRP3 promoter resulting in increased 

NLRP3/caspase-1-mediated hippocampal neuronal cell death in epileptic mice [77]. NLRP3 

inflammasome activation has also been reported in the hippocampus of pentylenetetrazole (PTZ)-

induced epileptic mice and LPS-induced BV2 microglial cells [78]. Yue and colleagues reveal that the 

NLRP3 inflammasome components are highly expressed in neurons, microglia, and astrocytes in the 

epileptogenic zone of patients with temporal lobe epilepsy (TLE), a form of epilepsy associated with 

hippocampal neuronal atrophy and in the hippocampi of a mouse model of status epilepticus (SE)-

induced by pilocarpine [73].  Furthermore, they also demonstrated a positive correlation between 

increased levels of NLRP3 inflammasome proteins (NLRP3, ASC and Caspase1) and ERS-related 

protein markers (GRP78, PERK, p-PERK, eIF2a, p-eIF2a, ATF4 and CHOP) in patients with TLE. 

Additional evidence suggests that persistent ERS may induce inflammatory processes leading to 

seizures [79].. In another study, they showed that levels of RevErba, a putative down regulator of the 

NLRP3 inflammasome, are diminished in the leptogenic area of patients with mesial TLE (mTLE) 

[80].  Wu and colleagues reported that the number of NLRP3+ cells in the temporal lobe cortical 

tissues of refractory epilepsy patients was significantly higher than the control group [81]. They also 

demonstrated increased levels of NRLP3 and IL-1b in the blood of patients with refractory TLE. 

Furthermore, NLRP3 has been reported to be upregulated and expressed by both neuronal and glial 

cells in the sclerotic hippocampi of mTLE patients which may contribute to the overexpression of 

hippocampal caspase -1 and IL-1b [82]. A study form Wu et al. provided the first evidence that 

autophagy plays a crucial role in NLRP3 inflammasome activation in the development of epilepsy 

[83]. NLRP3 expression was also found to be increased in the children with febrile seizures [84]. A 

recent report by Zhang et al confirmed that activation of NLRP3 inflammasome enhances the 

expression of adenosine kinase to accelerate epilepsy in mice through CREB/REST/Spa signaling 

pathway [85]. Pohlentz et al demonstrated that NLRP3 and its associated signaling molecules are 

activated in brain tissue samples of patients with TLE and in the pilocarpine and KA-induced SE 

mouse models [86]. 

Tan et al. demonstrated for the first time the elevated expression of NLRP1 and active caspase-

1 in surgically resected hippocampi of patients with mTLE compared to a healthy group [33]. 

Furthermore, NLRP1-mediated caspase-1-dependent neuronal pyroptosis within the hippocampus 

was impeded in NLRP1/capase-1 -deficient rats.  Decreased frequency and severity of seizures were 

also observed in these rats. Differential gene expression analysis of the RNAseq data demonstrated 

the upregulation of NLRP1 mRNA in hippocampal tissues resected from patients with mTLE-

hippocampal sclerosis [87]. Increased expression of NLRP1 inflammasome was observed in the 
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sclerotic hippocampi of mTLE patients [82]. Gao et al. reported an elevated expression of the NLRP1 

inflammasome in hippocampi from the pentylenetetrazol (PTZ) kindling model of epilepsy in rats 

[88]. Recently, the expression of NLRP1 and NLRP3 mRNAs were significantly increased in the 

animal model of epilepsy induced by intrahippocampal injection of KA compared to controls [89]. 

5. Current Antiseizure Medications for the Treatment of Epilepsy 

Since epilepsy is a complex multifaceted disease, no single ASM has emerged over time as the 

primary treatment. Instead, individualized treatment is given to a patient with the choice of ASM 

dependent upon the specific epileptic syndrome (6,87). The majority of the 30 currently existing 

ASMs are effective and better tolerated by patients (6) and are known to target either the GABAergic 

system or voltage-gated channels to curb the abnormal neuronal activity in the brain during seizures 

[90–92]. Some of these drugs are illustrated in Fig. 2, emphasizing the diversity in their chemical 

structures. It is important to note that even with the use of new ASMs as many as 30% of epileptic 

patients still fail to benefit from ASM treatments (5,6, 132-135).  

 

Figure 2. Chemical structures of clinically approved antiseizure medications discussed in this review. 

5.1. Currently Preferred ASM Used to Treat Epilepsy 

Valproic acid, an 8-carbon 2-chain fatty acid is the drug of choice for both adults and children 

suffering from epilepsy [93]. At a therapeutic range (50-100 mg/ml), it attenuates the high frequency 

firing of cortical and spinal cord neurons via the blockade of Na+, K+, and Ca2+channels [94]. Because 

of valproate-induced hepatotoxicity, ethosuximide (3-ethyl-3-methyl pyrrolidine-2,5-dione) is 

considered a safer alternative  [95]. This drug acts to disrupt the abnormal electrical activity of the 

thalamocortical circuitry by blocking T-type Ca2+channels [91]. Clonazepam (1,3-Dihydro-2H-1,4-

benzodiazepin-2-one) a long-acting benzodiazepine can reduce the number of epileptic seizures [96] 

by increasing neurotransmitter γ-aminobutyric acid (GABA) to decrease any abnormal electrical 

nerve activity in the CNS that might be contributing to seizures [97]. Clonazepam may lose its 
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effectiveness over time due to the development of tolerance. One of the original ASMs, phenobarbital, 

is still used to prevent all types of seizures, but is not used to treat absence seizures. It exhibits its 

antiepileptic effect by increasing the inhibitory drive of GABA [98], and despite its sedative side 

effects, it is still widely used due to its low cost, particularly in developing countries [99]. A recent 

report suggests that levetiracetam (LEV), a novel ASM exerts neuroprotective by inhibiting the 

expression of proinflammatory molecules, such as IL-6, TNF- α, and IL-1β [100,101]. Lamotrigine, a 

synthetic phenyl triazine, is used alone or with other medications to treat epileptic seizures in 

children and adults [102]. Though its mechanism of action is not entirely understood, it appears to 

inhibit the release of excitatory neurotransmitters such as glutamate and aspartate triggered by 

voltage-sensitive Na+ channels and voltage-gated Ca2+channels in neurons [103]. Results from Marson 

et al. support the continued use of lamotrigine as the best first-line treatment option for patients 

newly diagnosed with focal epilepsy [104]. Topiramate, a sulfamate-substituted monosaccharide, 

reduces the frequency and duration of seizures and is used in the treatment of certain types of 

epilepsy. Topiramate’s antiepileptic effect mediated through several mechanisms, including (i) 

blockade of voltage-sensitive Na+ channels and/or Ca2+-channels, (ii) enhancement of GABA-

mediated Cl- fluxes into neurons, (iii) increases in K+ conductance and (iv) inhibition of glutamate-

mediated neurotransmission [105]. Gabapentin, designed as a lipophilic analogue of GABA can easily 

cross the BBB to increase brain synaptic GABA [106] and to suppress influx of Ca2+ ions into neurons 

via voltage-dependent Ca2+channels. Phenytoin has been used for several decades in the treatment of 

children with partial and generalized tonic-clonic seizures via a membrane potential-dependent 

blockade of Na+ channels. In addition to working through some of the mechanisms described above, 

zonisamide also reduces the concentration of free radicals which may make effective against certain 

primarily generalized seizures, such as absence, tonic-clonic, and tonic seizures. [107]. 

Oxcarbazepine, a keto analog of carbamazepine is a safer and more efficacious drug for treating 

partial onset seizures in both adults and children epileptic patients and  its antiepileptic activity is 

mediated by blocking of neuronal ion channels [108]. Eslicarbazepine acetate, a third generation ASM 

has been proven effective when used in combination with other drugs to reduce the number of 

seizures in drug resistant focal epilepsy [109].  

There are several other drugs available for the treatment of epilepsy, which include lacosamide, 

brivaracetam, and perampanel [110]. Additionally, new treatments have been developed such as 

vagal nerve stimulation and ketogenic diets [111–113]. These new therapies and drugs have the 

potential to revolutionize epilepsy treatment, but much research is needed before they can be 

approved for wider use. 

5.2. The Limitations of Current Clinical ASMs and Potential New Avenue for Drug Development in 

Epilepsy 

Despite their effectiveness, ASMs have serious and life-threatening side effects and higher 

percentage of epileptic patients develop resistance over time. Some of the generalized side effects of 

ASMs include depression, suicidal thoughts, mood change or hostility, nausea, vomiting, 

coordination problems, sleepiness, and dizziness and hepatotoxicity. Certain epilepsy medications 

can also interact with other drugs, such as pain killers or antibiotics, leading to serious consequences. 

Pharmacodynamic reaction of lamotrigine with carbamazepine can lead to carbamazepine 

intoxication [114].  Other ASMs such as phenobarbital, carbamazepine, primidone, and phenytoin 

can cause an imbalance in the patient’s calcium and vitamin D levels, leading to osteoporosis [115]. 

Due to restrictive permeability and active efflux of some ASMs including phenobarbital and 

phenytoin, the BBB limits the delivery and/or the transport of ASMs to the brain [116]. As the 

underlying cause(s) of epilepsy are not fully understood, the drugs developed for treating epilepsy 

are primarily aiming at controlling seizures and not at addressing the underlying cause of the disease. 

Given the current situation, there is a need for a more effective therapy for epilepsy.  
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6. NLRP3 Inflammasome in Epilepsy 

Recent research suggest that increased activity of NLRP3 contribute to the development and 

progression of epilepsy [68,70,71,73–75,117], hence inhibiting the activity of NLRP3 activity may 

reduce inflammation-caused epileptic injuries and potentially may improve symptoms [89]. NLRP3 

inhibitors, a potential new class of drugs might have fewer side effects, be more effective in a larger 

number of patients and could target the underlying causes of epilepsy. Additionally, NLRP3 

inhibitors have the potential to be effective in treating other inflammatory and autoimmune disorders 

such as gout, Alzheimer's disease, and certain cancers, which makes the development of NLRP3 

inhibitors a promising area of research [118–121]. 

There are several approaches that can be taken to develop NLRP3 inhibitors, including: 

i). Small molecule inhibitors: These are drugs that can bind to specific sites on the NLRP3 protein 

and prevent it from activating. These can be identified through high-throughput screening of 

chemical libraries. ii) Peptide inhibitors: These are short chains of amino acids that can bind to the 

NLRP3 protein and inhibit NLRP3 inflammasome activation. These can be identified through phage 

display or other peptide-based screening methods. iii). Antibodies: These are proteins that can bind 

to specific regions of the NLRP3 protein and prevent it from activating. These can be generated 

through antibody-based screening methods. iv). RNA interference: This is a method for silencing 

specific genes by targeting their RNA. It can be used to target the NLRP3 gene and prevent it from 

being expressed. 

Once potential NLRP3 inhibitors have been identified, they can be further tested in cell-based 

assays and animal models to evaluate their efficacy and safety before moving on to clinical trials. 

6.1. NLRP3 Inhibitors in Preclinical and Clinical Trial Phase 

Since the role of NLRP3 inflammasome pathway in the pathogenesis and progression of epilepsy 

has been well documented, the development of NLRP3 inhibitors as a potential therapeutic target for 

the treatment of seizures and epilepsy is urgently needed. In epileptic animal models, knock-down 

of NLRP3 has been shown to reduce neuronal cell death and attenuated the chronic seizure 

phenotype [70,72,81]. Inhibition of the NLRP3 using the pump-mediated in vivo infusion of nonviral 

siRNA provides neuroprotection in rats following amygdala kindling-induced SE [70]. Recent studies 

have reported several inhibitors that directly or indirectly target NLRP3 inflammasome can reduce 

inflammation, promote neuroprotection and decrease seizures [122–124]. Some of the NLRP3 

inhibitors depicted in Fig. 3 could help in improving our understanding of the underlying biological 

mechanisms that contribute to epileptic seizures and thus could help in improving our ability to 

diagnose and treat the condition. Several clinical trials are underway, exploring the efficacy and 

safety of NLRP3 inhibitors in patients with chronic, drug-resistant epilepsy. 
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Figure 3. Chemical structure of different NLRP3 inflammasome inhibitors discussed in this review. 

MCC950 (N-[[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl) amino] carbonyl]-4-(1-hydroxy-1-

methylethyl)-2-furansulfonamide) also known as CP-456, 773 or cytokine release inhibitory drugs 3 

(CRID3) is best characterized and potent NLRP3 inhibitor. It blocks both canonical and non-canonical 

NLRP3 inflammasome activation, but no inhibitory effect has been reported on AIM2, NLRC4 or 

NLRP1inflammosome activation [125]. Mechanistically, MCC950 does not inhibit priming step of 

NLRP3 activation as well as K+ efflux, Ca2+ flux, NLRP3-NLRP3, NEK7-NLRP3 or NLRP3-ASC 

interactions [125], but it directly interacts with Walker B motif of the NACHT domain with a high 

affinity non-covalent interaction, blocking NLRP3 from hydrolyzing ATP to ADP and conformational 

changes critical for NLRP3 oligomerization and activation [126,127]. Preclinical studies have shown 

promises in several different types of inflammatory diseases, including Crohn’s disease [128], 

ulcerative colitis [129], Alzheimer disease [130,131], rheumatoid arthritis [132], Huntington’s disease 

[133], cardiovascular disease [134] and multiple sclerosis [135]. In bone marrow-derived 

macrophages (BMDMs), MCC950 showed inhibition of IL-1 release at IC50 of 7.5 nM, while in human 

monocyte derived macrophages (HMDM) IC50 is 8.1 nM [125,136]. MCC950 also reduces brain injury 

and inflammation in a mouse model of traumatic brain injury [137]. Recent evidence showed that in 

an in vitro SH-SY5Y model and in vivo model of cerebral trauma induced by PTZ, the administration 

of MCC950 significantly provided a protective effect, reduced epileptic neuronal apoptosis by 

inhibiting NLRP3 inflammasome activation [72]. Positive correlation between NLRP3 and ERS has 
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been observed in several models of epilepsy, including temporal lobe epilepsy, and in human brain 

tissues from patients with epilepsy [138–141], suggesting that it may be an underlying mechanism in 

the development of seizures. Recently, Yue et al. demonstrated that MCC950 significantly reduced 

the levels of NLRP3 and expression of ERS related markers in the hippocampi of pilocarpine-induced 

SE mice [73]. MCC950 has been shown to inhibit the NLRP3 inflammasome activation in KA-induced 

SE mice and KA-treated astrocytes [85]. Furthermore, clinical trials of MCC950 have also been 

initiated to evaluate its safety and efficacy conducted [142]. MCC950 was initiated in a phase II clinical 

trial for rheumatoid arthritis, but it was discontinued due to liver toxicity. 

CY-09 (4-[[4-Oxo-2-thioxo-3-[[3-(trifluoromethyl) phenyl] methyl] -5-thiazolidinylidene] 

methyl] benzoic acid) is a specific and direct inhibitor of NLRP3 that inhibited its ATPase activity 

and activation by binding to the Cys172 residue in the Walker A motif of the NACHT domain of 

NLRP3 [143]. CY-09 demonstrated favorable pharmacokinetic properties for safety, stability, and oral 

bioavailability.  Previous studies have suggested that CY-09 could be used for the treatment of 

NLRP3 inflammasome associated diseases, including type 2 diabetes, gout, thrombosis, cryopyrin-

associated autoinflammatory syndrome (CAPS) mouse models and other diseases [143–145]. In 

addition, CY-09 inhibited monosodium urate (MSU), nigericin and ATP-mediated inflammation as 

well as IL-1b secretion in BMDMs at the doses of 1-10 mM. CY-09 blocks the release of inflammatory 

cytokines, intracellular Ca2+ via inhibiting TRAP1-mediated activation of NLRP3 inflammasome 

[144]. Shen et al reported that CY-09 inhibited the NLRP3 driven neuroinflammation in PTZ induced 

kindling mouse model, a chronic model of generalized seizures [146]. CY-09 repressed the expression 

of NLRP3, IL-1b and IL-18 in injured brain tissue in the rat TBI models [147]. The findings from Wang 

et al showed that CY-09 attenuates depression-like behaviors by inhibiting the NLRP3-mediated 

neuroinflammation in LPS-induced mice [148]. In clinical trial, CY-09 was found to be effective in 

reducing the number and severity of seizures in people with focal epilepsy when compared to 

placebo. However, confirmatory studies are worthy of broadening its potential in treating epilepsy.  

Glyburide, a sulfonylurea also known as glibenclamide, is an FDA-approved ATP-sensitive K+ 

(KATP) channel inhibitor to treat type 2 diabetes mellitus [149]. In 2001, Perregaux et al. reported first 

time that glyburide inhibits IL-1b release in LPS-activated human monocytes [150]. In another study, 

glyburide was shown to inhibit IL-1b release during bronchial hypo responsiveness through KATP 

channels [151]. Glyburide has been reported to exhibit anti-inflammatory effects mainly by inhibition 

of microbial ligand-induced NLRP3 inflammasome activation and IL-1β secretion by blocking KATP 

channels [152]. Glyburide has been shown to block NLRP3 inflammasome activity and IL-1β 

secretion stimulated by islet amyloid polypeptide which is associated with type 2 diabetes [153]. In 

human pancreatic islets, glyburide partially reduced the increased NLRP3 and IL-1b exression 

induced by LPS and ATP [154]. Recent study has reported that glyburide blocked the assembly and 

activation of NLRP3 inflammasome and IL-1b release by dampening the binding of NEK7 to NLRP3 

in ventilator-induced lung injury [155]. Research has shown that it plays a dual role in attenuating 

cerebral edema and improving long-term cognitive function in pilocarpine-induced mouse model of 

status epilepticus [156]. Acute administration of glyburide, 30 min prior to the PTZ, significantly 

increased the seizure threshold in intravenous PTZ mode of mice [157]. 

Beta-hydroxybutyrate (BHB), one of the ketone bodies, has been shown to reduce inflammatory 

cytokines release mediated by NLRP3. It has been studied for its potential therapeutic benefits in 

various inflammatory diseases, including epilepsy [158–162]. The mechanism of action by which BHB 

acts as an NLRP3 inhibitor is not fully understood. However, it is thought that BHB may inhibit 

NLRP3 inflammasome activation by modulating the production of reactive oxygen species (ROS) and 

by reducing the levels of ATP in the cell. Beta-hydroxybutyrate also inhibits the NLRP3 

inflammasome by preventing K+ efflux and reducing ASC oligomerization and speck formation [163]. 

Kim et al. reported that BHB reduced the spontaneous recurrent seizures in spontaneously epileptic 

Kcna1-null mice [164]. Furthermore, BHB decreased seizure duration and frequency in 6-Hz induced 

seizure model of refractory epilepsy [165]. It's important to note that more research is needed to fully 

understand the mechanism of action and potential clinical applications of BHB as an NLRP3 inhibitor. 
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RRx-001 (1-bromoacetyl-3,3-dinitroazetidine) was initially developed as an anticancer agent by 

the aerospace industry [166] has been extensively studied in vitro and in vivo models of several 

inflammatory diseases including Alzheimer’s disease, stroke, multiple sclerosis, pulmonary fibrosis, 

and IBD [167]. In a randomized Phase 2 trial called (PREVLAR; NCT03699956), RRx-001 

administration in 53 first-line head-and-neck cancer patients dramatically improved the incidence, 

duration, time to onset and severity of oral mucositis. RRx-001 has been safely evaluated in clinical 

trials, including in an ongoing phase 3 trial for the treatment of small cell lung cancer (REPLATINUM; 

NCT03699956) [166]. RRx-001 is the highly selective and most clinically advanced small molecule 

NLRP3 inhibitor that has been safely evaluated in over 300 patients [166]. Mechanistically, RRx-001 

covalently binds to cysteine 409 of NLRP3 on the central NACHT domain of NLRP3, which inhibits 

the assembly and activation of the NLRP3 inflammasome [166,167]. The BBB-penetrant nature of 

RRx-001 inhibitor and the preclinical assessment of this inhibitor in various neurodegenerative 

diseases [168] advances the possibility of this uncharged small molecule inhibitor to be tested soon 

in epilepsy. 

Several other classes of compounds that have been explored for NLRP3 inflammasome 

inhibition includes flavonoids, chalcone and boron-based compounds. Amentoflavone, a naturally 

occurring bioflavonoid [78] and semaglutide, a glucagon like peptide-1 [74] were reported to affect 

epileptogenesis and reduce seizures via their neuroprotective effects because of NLRP3 

inflammasome inhibition in PTZ-kindled mice. Sun et al. revealed that endogenous as well as 

exogenous IL-10 downregulates IL-1β production in microglia in mice exposed to epileptogenic 

injury thorough STAT3-dependent inhibition of NLRP3 inflammasome activity [169]. 

Licochalcone B, Isoliquiritigenin, Cardamomin are the natural chalcone-based compounds that 

showed promising NLRP3 inflammasome inhibitory effects. Licochalcone B binds with NEK7 

preventing the interaction with NLRP3 which is important for the NLRP3 inflammasome activation 

[170]. Isoliquiritigenin isolated from Glycyrrhiza uralensis has been reported to activate the Nrf2 

mediated antioxidant signaling preventing the activation of NF-κB and NLRP3 inflammasome 

[171,172]. Cardamomin reduced the protein levels of NLRP3, Casp1 and IL-1 in 2,4,6-

Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice [173]. BC7, BC23 and NBC6 are potent 

oxanorbornenes molecules developed as potent NLRP3 inflammasome inhibitors. Among these three 

molecules, compound NBC6 showed the most potent inhibition of IL-1 release from THP-1 

monocytes with an IC50 of 574 nM. BC7 and BC23 showed the IC50 value of 1.16 M and 2.29 M, 

respectively for the inhibition of IL-1 release [13,14]. 

Huperzine A, a naturally occurring sesquiterpene alkaloid and valproic acid, one of the most 

prescribed medications against epilepsy have been shown to inhibit activation of NLRP3 

inflammasome in the rat KA-induced model of epilepsy in a ROS-dependent manner [174]. Recently, 

furosemide (4-chloro-5-sulphonyl-N-furfuryl-anthranilic acid), a diuretic drug, has been shown to 

decrease the NLRP3 as well as NLRP1 level significantly when treated in combination with valproic 

acid in KA-induced epileptic rats [175].   

Studies from Li and coworkers have reported that ibuprofen may have antiepileptic and 

neuroprotective effects in the rat model of PTZ-induced epilepsy via inhibiting NLRP3 

inflammasome activation [176]. Rapamycin, an inhibitor of mTOR signaling have been reported to 

alleviate the symptoms of   seizures, anxiety, and depression in PTZ-kindled rats by inhibiting 

NLRP3 inflammasomes and ROS production [177]. Chaihu-Longgu-Muli decoction, a well-known 

ancient formula in traditional Chinese medicine could significantly reduce the frequency and 

duration time of epileptic seizures, and inhibit the expression of NLRP3, TNF-α, Caspase-1 and IL-

1β [178]. Natural products such as parthenolide and oridonin from Rabdosia rubescens, were also able 

to inhibit the NLRP3 inflammasome [179,180]. It was observed that oridonin binds covalently with 

the Cys279 of the NLRP3 NACHT domain. This binding prevents the interaction between NLRP3 

and NEK7 which is essential for the NLRP3 inflammasome assembly and activation [179]. Recently, 

oridonin has been shown to rescue kanamycin related hearing loss by inhibiting NLRP3 

inflammasome activation [155,181]. BAY 11-7082, an NF-κB inhibitor has also reported to inhibit the 
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NLRP3 ATPase activity in macrophages independent of their inhibitory effect on NF-kB activity 

[180]. 

Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione)), a 

polyphenolic compound present in turmeric (Curcuma longa) exhibits an antioxidant, anti-

inflammatory and neuroprotective properties and its beneficial effect on epilepsy has been shown in 

many preclinical studies [182–186]. Curcumin has been reported to inhibit IL-1b release and prevent 

inflammation via inhibition of NLRP3 [187] and suppressed KA-induced epileptic syndrome via 

inhibiting NLRP3 inflammasome activation in Sprague Dawley rats [68]. 

MicroRNAs (miRNAs) are endogenous~20–23 nucleotide long non-coding RNA that bind to the 

3’ untranslated region (3’UTR) of protein-coding mRNAs to regulate their translation and thus can 

have significant impacts on cellular processes. Several miRNAs that can target different components 

of the NLRP3 inflammasome and modulate its activity have been identified. For example, miR-223 

has been shown to target the NLRP3 inflammasome in the brain and reduce neuroinflammation and 

neuronal damage [188] and inhibit NLRP3 expression and reduce inflammation in various disease 

models, including arthritis, atherosclerosis, and myocardial infarction [56,189,190]. miR-29c reduces 

the inflammatory response of microglia by modulating the NLRP3 inflammasome [191], miR-17-5p 

ameliorated NLRP3 inflammasome activation mediated hypoxic–ischemic brain injury in rat [192], 

miR-138-5p overexpression in epileptic neuron inhibits NLRP3 by directly binding with ubiquitin-

specific peptidase 47 (USP47), a positive regulator of NLRP3 [193]. miR-29a-5p mimics protect TBI-

induced BBB dysfunction via suppressing NLRP3 inflammasome activation [194]. Other miRNAs, 

such as miR-23a, miR-let-7e, miR-30e and miR-223, have also been found to inhibit the NLRP3 

inflammasome and reduce inflammation [195]. Overall, use of miRNAs as NLRP3 inhibitors holds 

promise as a potential therapeutic approach for treating a range of inflammatory and autoimmune 

diseases. However, more research is needed to fully understand the mechanisms underlying miRNA 

regulation of NLRP3 and to develop effective and safe miRNA-based therapies for different diseases. 

6.2. NLRP3 Inflammasome Inhibitors and Their Limitations as Remedial Strategies 

NLRP3 inhibitors have been investigated as potential drugs for the treatment of various 

inflammatory and autoimmune diseases. Off-target effects are the significant drawback of using 

NLRP3 inhibitors. For example, MCC950 at high micromolar concentrations could inhibit carbonic 

anhydrase 2 [196] and block Cl-1 efflux from nigericin-activated macrophages [143]. CY-09 has been 

reported to affect cytochrome P450 enzymes [123]. Another inhibitor, oridonin has several targets 

e.g., AKT/2, c-Myc, p39 and MAPK [197]. Since NLRP3 is involved in many important cellular 

processes, including immune defense and tissue repair, blocking its activity could lead to unintended 

consequences including impairing pathogen clearance and thus increasing the risk of infection. 

MCC950 has been examined in phase II clinical trial for the treatment of rheumatoid arthritis, but the 

trial was discontinued due to hepatic toxicity [52]. NLRP3 plays a crucial role in the immune system, 

blocking its activity may also interfere with the body’s ability to fight infections and heal wounds. 

Future studies should take advantage of available cryo-EM and crystal structures of NLRP3 

bound to NEK7 [46], and focus on the development of structure-guided direct inhibitors with 

improved specificity and potency. Recently, Agarwal et al rationally designed MCC950-derivative 

compounds [182,198,199]. These compounds were found to be potent and selective NLRP3 inhibitors 

with    good pharmacokinetic profile and high oral bioavailability in mice. In addition, another 

NLRP3 inhibitor NT-0796 boasts innovative chemistry, delivering unparalleled potent and the 

promise of extended pharmacodynamic impact. Furthermore, it demonstrates the capability to 

penetrate the BBB[200]. Since nanoparticle (NP)-based drug delivery is an emerging area of research 

in the field of nanomedicine and immunotherapy due to their intriguing properties such as target site 

specificity, systemic stability, and low toxicity [201], Mancuso et al analyzed the effect of Glyburide-

loaded nanovesicles (GNVs) on NLRP3 inflammasome activation in LPS and nigericin-activated 

THP-1 cell model [202]. Their results confirm that GNVs were able to inhibit IL-1b secretions more 

efficiently than free glyburide. Recently, Kulkarni and coworkers synthesized and analyzed MCC950 

loaded nanoparticles (MCC NPs) and found that MCC NPs showed a significant reduction in IL-1b 
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secretions in vitro and in vivo [203]. Tang et al engineered a unique delivery system, VHPK-

PLGA@COL, incorporating colchicine (), demonstrating enhanced biosafety and prolonged drug 

release. This was validated both in cell culture and in animal models [204]. The inhibitory effect of 

VHPK-PLGA@COL on NLRP3 and its downstream molecules was more significant than that of free 

colchicine. Exosome-like nanoparticles from ginger rhizomes strongly inhibited NLRP3 

inflammasome activation [205]. Another group prepared garlic chive-derived vesicle like 

nanoparticle which exhibit potent anti-NLRP3 inflammasome activity [206].  Moreover, 

dexamethasone-loaded ROS-responsive polymer nanoparticles prepared by a modified emulsion 

approach had a strongest ability to inhibit the expression of NLRP3, caspase1, and IL-1b [207]. It has 

been reported that nanoparticles itself trigger the NLRP3 inflammasome activation [208–211]. 

However, the formation of protein corona layer on lipid NPs caused a significant reduction in NLRP3 

inflammasome activation and controls the toxicity, biodistribution, and cellular uptake [212]. 

Chalcones are natural compounds with α, β unsaturated carbonyl group (Michael acceptor) found in 

many plants and have gained attention for their medicinal properties [213,214]. We and others 

investigated some chalcones for their potential as NLRP3 inhibitors [215,216]. Our preliminary data 

encourage further development of more potent NLRP3 inhibitors based on this chalcone scaffold 

which could lead to the development of novel treatments for epilepsy and other inflammatory 

diseases.  

7. Conclusions and Perspectives 

Scientific evidence support the role of NLRP3 in epileptic seizures and use of NLRP3 inhibitors 

seems promising in understanding the biological mechanisms behind epilepsy, leading to 

development of biomarkers for early detection and more targeted, effective treatments to reduce 

seizures in high-risk individuals with epilepsy. Clinical trials are underway to investigate the efficacy 

and safety of these inhibitors in humans, and if these trials are successful, NLRP3 inhibitors may 

eventually become standard medical care for patients with epilepsy.  

However, there is still much to be investigated before NLRP3 inhibitors are officially approved 

for the treatment of epilepsy. 
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Abbreviations 

ASM Antiseizure medication 

SRS Spontaneous recurrent seizure 

BBB Blood-brain barrier 

TBI Traumatic brain injury 

DAMP Damage-associated molecular pattern 
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PAMP Pathogen-associated molecular pattern 

ATP Adenosine triphosphate 

HMGB1 High mobility group box1 

ROS Reactive oxygen species 

CARD Caspase-recruitment domain 

ASC Apoptosis-associated speck-like protein containing a 

CARD. 

PRR Pattern-recognition receptor 

NBD Nucleotide binding domain 

LRR-CR Leucine-rich-repeat-containing receptor. 

AIM2 Absent-in-melanoma 2 

PYD Pyrin domain 

NOD Nucleotide-binding oligomerization domain 

NLR Nod-like receptor 

NLRP Nod-like receptor protein 

NLRP3 NLR family pyrin domain containing 3. 

NLRC4 NLR family CARD domain-containing protein 4 

CNS Central nervous system 

NACHT NAIP (neuronal apoptosis inhibitor protein), C2TA 

(MHC class 2 transcription activator), HET-E 

(incompatibility locus protein from Podospora 

anserina) and TP1 (telomerase-associated protein). 

HD Helical domain 

WHD Winged helix domain 

NIMA Never in mitosis A 

NEK7 NIMA related kinase 7 

NF-κB Nuclear factor kappa-light-chain-enhancer of 

activated B cells 

EM Electron microscopy 

IL Interleukin 

LPS Lipopolysaccharide 

miRNA MicroRNA 

P2RX7 P2X purinoceptor 7 

ERS Endoplasmic reticulum stress 

GSDMD Gasdermin D 

TLR Toll-like receptors 

TRIF TIR-domain-containing adapter-inducing interferon-

β 

RIPK1 Receptor-interacting serine/threonine-protein kinase 

1 

FADD Fas-associated protein with death domain 

KA Kainic acid 

TLE Temporal lobe epilepsy 
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SE Status epilepticus 

PTZ Pentylenetetrazol 

GABA γ-aminobutyric acid 

CAPS Cryopyrin-associated periodic syndromes 

MCC950 1-(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)-3-[4-(2-

hydroxypropan-2-yl)furan-2-yl]sulfonylurea 

BMDM Bone marrow-derived macrophage  

HMDM Human monocyte derived macrophage 

CY-09 4-[[4-Oxo-2-thioxo-3-[[3-(trifluoromethyl) phenyl] 

methyl] -5-thiazolidinylidene] methyl] benzoic acid 

FDA Food and drug administration 

BHB Beta-hydroxybutyrate 

STAT3 Signal transducer and activator of transcription 3  

Table 1. NLRP3 inhibitors as potential epilepsy therapeutics at pre-clinical stages. 

Compound Nature of 

inhibitor 

Mechanism of action Disease model References 

MCC950 Sulfonylurea Directly interacts with 

Walker B motif of the 

NACHT domain, 

changes NLRP3 

conformation.  

 

Blocks NLRP3-

dependent ASC 

oligomerization and 

NLRP3 

inflammasome 

activation 

 

Blocks ATPase 

activity  

 

In vitro SH-SY5Y 

model and in vivo 

model of cerebral 

trauma induced by 

PTZ 

 

Pilocarpine-

induced SE mice 

 

KA-induced SE 

mice 

 

[72,73,85,126,127,131,137] 

 

CY-09 Glitazones Directly binds to 

Cys172 residue in the 

Walker A motif of 

NLRP3 NACHT 

domain and inhibits 

NLRP3 ATPase 

activity 

0.83 mg/kg LPS-

induced mice  

 

PTZ induced 

kindling mouse 

model 

 

[144,146,148,217] 

Glyburide Sulfonylurea Suppresses KATP 

channels and 

Pilocarpine-

induced mouse 

model of SE 

[151,156,157] 
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inhibition of ASC 

agglomeration 

 

Blocks the assembly 

and activation of 

NLRP3 

inflammasome and 

IL-1 release by 

dampening the 

binding of NEK7 to 

NLRP3 

 

Seizures induced 

by i.v. or i.p. PTZ 

models 

BHB Natural 

products 

Inhibition of K+ efflux 

and reduced ASC 

oligomerization and 

speck formation 

 

Inhibit NLRP3 

inflammasome 

activation by 

modulating the 

production of ROS 

and by reducing the 

levels of ATP in the 

cell. 

Epileptic Kcna1-

null mice 

 

6-Hz induced 

seizure model of 

refractory epilepsy 

[163–165] 

Amentoflavone Naturally 

occurring 

bioflavonoid 

Exerts 

neuroprotective 

effects by inhibiting 

the NLRP3 

inflammasome 

The chronic 

epilepsy model 

and BV2 microglial 

cellular 

inflammation 

model were 

established by PTZ 

kindling or LPS 

stimulation, 

respectively. 

[78] 

Semaglutide Glucagon like 

peptide-1 

Decreases seizure 

severity, alleviated 

hippocampal 

neuronal apoptosis, 

ameliorated cognitive 

dysfunction by 

blocked ASC 

oligomerization and 

NLRP3 

PTZ-kindled 

C57/BL6J mouse 

model and LPS 

induced 

inflammation in 

BV2 cells 

[74] 
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inflammasome 

activation 

Huperzine A Naturally 

occurring 

sesquiterpene 

Inhibits activation of 

NLRP3 

inflammasome in a 

ROS-dependent 

manner 

 

Rat KA-induced 

model of epilepsy 

[174] 

Furosemide Sulfonamide 

 

Increases the efficacy 

of valproic acid by 

inhibiting NLRP3 

inflammasome 

activation 

KA-induced 

epileptic rats 

[175] 

Ibuprofen nonsteroidal 

anti-

inflammatory 

drug (NSAID) 

Exhibits antiepileptic 

and neuroprotective 

effects via inhibiting 

NLRP3 

inflammasome 

activation 

Rat model of PTZ-

induced epilepsy 

[176] 

Rapamycin Macrolide 

compound 

Inhibits 

NLRP3inflammasome 

and ROS production  

PTZ-kindled rats [177] 

Chaihu-

Longgu-Muli 

decoction 

Traditional 

Chinese 

medicine 

Could significantly 

suppress the 

frequency and 

duration time of 

epileptic seizures via 

reducinge the 

expression of NLRP3, 

Caspase-1 TNF-α and 

IL-1β. 

Rats with TLE [178] 

Parthenolide Naturally 

occurring 

sesquiterpene 

lactone 

Supresses NLRP3 

ATPase activity by 

alkylating cysteine 

residues in ATPase 

domain of NLRP3 

 

Inhibits protease 

activity of caspase 1 

In vitro LPS and 

ATP induced 

NLRP3 stimulation 

[180] 

Bay 11-7082 Sulfone Blocks ATPase 

activity of NLRP3 

(Juliana et al., 2010) 

In vitro LPS and 

ATP induced 

NLRP3 stimulation 

[180] 
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Oridonin Natural 

terpenoids 

Binds to Cys279 of 

NLRP3 NACHT 

domain and inhibits 

the interaction 

between NLRP3 and 

NEK7 thereby 

inhibiting the NLRP3 

inflammasome 

activation  

TBI mice [179,218] 

Curcumin  Natural 

polyphenolic 

compound 

Inhibit IL-1b release 

and prevent 

inflammation via 

inhibition of NLRP3 

KA-induced 

epileptic syndrome 

in Sprague Dawley 

rats 

[68,187] 

MCC950, 1-(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)-3-[4-(2-hydroxypropan-2-yl)furan-2-yl]sulfonylurea; 

NACHT, NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E 

(incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein); NLRP3, NLR 

family pyrin domain containing 3; ASC, apoptosis-associated speck-like protein containing a CARD; PTZ, 

pentylenetetrazol; kA, kainic acid; TLE, Temporal lobe epilepsy; SE, status epilepticus, LPS, lipopolysaccharide; 

CY-09, 4-[[4-Oxo-2-thioxo-3-[[3-(trifluoromethyl) phenyl] methyl] -5-thiazolidinylidene] methyl] benzoic acid; 

NEK7, NIMA related kinase 7; BHB,  beta-hydroxybutyrate; NSAID, nonsteroidal anti-inflammatory drug; 

ROS, reactive oxygen species; TBI, traumatic brain injury; ATP, adenosine triphosphate; IL-1b; interleukin -1beta. 
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