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Abstract: Thyrotropin releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly 
by neurons. Among the multiple pharmacological effects of TRH, that on food-intake is not well understood. 
We review data that show that peripheral injection of TRH generally produces a transient anorexic effect, 
discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central 
administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are 
likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the 
hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into 
the brain stem. Functional evidence suggests that TRH neurons that are prime candidate vectors for TRH action 
on food-intake include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly 
TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH 
neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly 
understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of 
its role in food-intake control in each anatomical scene. 

Keywords: TRH; hypothalamus; arcuate nucleus; lateral hypothalamus; nucleus accumbens; raphe 
nuclei; brain stem; TRH-R1; TRH-DE; food-intake 

 

1. Introduction 

Thyrotropin releasing hormone (TRH; pGlu-His-Pro-NH2) is a small peptide produced in 
neurons and other cells through proteolytic processing of a large precursor [1,2] expressed mainly in 
the central nervous system (CNS) but also in some peripheral locations. It is an intercellular signal 
with many actions. Hypophysiotropic TRH neurons in the paraventricular nucleus of the 
hypothalamus (PVH) integrate information about energy balance to regulate thyrotropin secretion 
and thus thyroid hormone (TH) secretion [3,4]. Additionally, mRNA coding for pre-pro-TRH, pro-
TRH, TRH, and other pro-TRH derived peptides are detected in various regions of the brain and a 
few other organs [5–10]. Among its multiple pharmacological effects, that on food-intake is still 
puzzling. Since food-intake is usually modified in obesity [11], knowledge of the mechanisms 
involved in TRH could lead to novel treatments for this condition. Although some reviews have 
included the effect of TRH on food-intake [12–19], the understanding of its mechanisms of action is 
far from consensus. In this manuscript, we review the original literature on the role of TRH in food-
intake, focusing mainly on functional and anatomical studies, excluding studies that do not precisely 
indicate the circuit under analysis, and most studies describing correlative evidence; it is a 
perspective, based on recent advances in the circuits that control food-intake, TRH cell and receptors’ 
cartographies, and functional effects of TRH in multiple anatomical sites, that addresses hypotheses 
about TRH circuits that are involved in food-intake control. The next section refers briefly to some of 
the core mechanisms to introduce the context of TRH studies on food-intake.  
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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2. Food Appetite, Foraging, Intake, Satiation, and Satiety 

The brain and periphery interact through multiple circuits to control energy intake (Figure 1). 
Many reviews have dealt with this actively researched field [20–32]. Energy intake is a complex 
behavior that goes from motivation for food-intake, to food foraging, and consummatory episodes. 
Foraging and food-intake are induced by hunger and by appetite, psychological experiences related 
to the energy state of the organism, and emotional or external causes. Food-intake leads to reward 
and satiation, and thus intake termination, and a state of satiety. After food consumption, satiation 
occurs when feeling full or satisfied; it dictates the end and therefore the size of the meal and 
translates the recent postprandial record. On the other hand, during postprandial fasting, satiety 
indicates the absence of desire for food and determines the intervals between meals [33]. 

 
Figure 1. Peripheral signals and central nodes that control food-intake. The peripheral organs produce 
signals related to energy stores and recent meals, signals that promote satiety (black arrows) or 
hunger (red arrows). These signals can act in circumventricular organs or cross the BBB to act in the 
hypothalamus or NTS or are perceived by the vagus nerve. Both the hypothalamus and the NTS 
integrate these signals with central clues to generate the behavioral repertoire of food-intake. GLP-1: 
glucagon peptide-like 1, PYY: peptide YY, CCK: cholecystokinin, NTS: nucleus of the solitary tract. 
The figure was created with BioRender.com. . 

Food-intake depends on circadian, anticipatory, learnt, sensory, and hedonic clues as well as 
peripheral signals of energy homeostasis interacting with brain circuits encoding the behaviors 
needed to acquire and consume food, most of it below our conscious awareness. Energy intake is 
controlled by short-term mechanisms and over extended periods of time through a homeostatic 
system. Integration of systemic metabolic information with sensory and hedonic information allows 
the initiation / prolongation or termination of food consumption according to sensory and external 
information independently of homeostatic signals. Thus, emergency circuits can override 
homeostatic circuits and promote or inhibit food-intake [34]. 

Food-intake behavior involves a neural network organized around key nodes, such as the 
nucleus of the solitary tract (NST), the hypothalamus, the parabrachial nucleus (PBN), as well as the 
amygdala, the striatum and cortical areas [34,35]. Peripheral signals (nutrients, hormones, cytokines) 
communicate information about acute nutritional state, energy stores, and inflammatory status to the 
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brain. Physical information from the gastrointestinal tract (GI) is furthermore detected by vagal 
afferent fibers which have connection with the NTS in the caudal hindbrain [34,36]. 

In addition to being the target of vagal afferents that transmit peripheral information, neurons 
of the NTS are next to the area postrema, a circumventricular organ that is outside the blood-brain 
barrier (BBB) and receives information directly from humoral factors, which is then transmitted to 
the NTS. This allows the NTS to control short-term homeostasis, through projections to ingestive 
premotor neurons in the hindbrain and to the hypothalamus, including the arcuate nucleus of the 
hypothalamus (ARC) [24,37]. 

The ARC is critical for sensing energy balance [34] because, in addition to receiving input from 
various brain nuclei, it is adjacent to the median eminence of the hypothalamus (ME), a 
circumventricular organ, and partially outside the BBB, which facilitates directly receiving energy-
related clues. ARC has two main neuronal populations involved in food-intake control: one type that 
synthesizes neuropeptide Y (NPY) and co-expresses Agouti-related protein (AgRP), as well as 
gamma-aminobutyric acid (GABA), stimulates the appetitive and consummatory aspects of food-
intake behavior; a second type that synthesizes pro-opiomelanocortin (POMC), the precursor of α- 
or β-melanocortin (α- or β-MSH), and co-expresses cocaine and amphetamine-regulated transcript 
(CART), has a potent appetite-suppressing activity preferentially relevant for long-term control of 
food-intake [37–41]. 

NPY/AgRP/GABAARC and POMC/CARTARC neurons project to hypothalamic and 
extrahypothalamic neurons that control reward and food-intake. Among these targets, PVH is critical 
for food-intake; for example, activation of AgRP terminals in PVH reproduces the food-intake 
observed when stimulating AgRP neurons in the ARC [41]. Another target of ARC is the dorsomedial 
nucleus of the hypothalamus (DMH), a positive regulator of the circadian control of food-intake 
behavior [42]. 

A critical downstream target of the ARC is the lateral hypothalamus (LH), which integrates 
reward and energy homeostatic information and generates outputs to midbrain motor pattern 
generators that maintain the behavioral repertoire of food-intake, ie the mesolimbic dopaminergic 
system, as well as the NTS, which regulates satiety [20,21,43–48]. LH contains orexin (ORX) neurons, 
critical for the promotion of food-intake [49,50], as well as melanin-concentrating hormone (MCH) 
neurons that promote appetite and consumption [51], and many GABA neurons that form 
functionally diverse subpopulations regulating food-intake [52,53]. 

Furthermore, projections from NPY/AgRP/GABAARC neurons to the PBN are critical for food-
intake control [54,55]. The PBN also receives direct input from two glutamatergicPVH neuron types 
that control food-intake [56,57]. 

The ARC neurons also project to the reward circuits including mesolimbic dopaminergic 
neurons of the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc) and other 
regions. For example, a circuit between AgRP neurons and mesolimbic dopamine neurons regulates 
food reward [58]. In the nucleus accumbens shell (NAcSh), dopamine communication integrates 
motivational and sensory inputs, which is involved in incentive salience [59,60] and when activated 
reduces food-intake [61–66]. Dopamine receptor 1NAcSh project onto GABALH neurons that tend to be 
in apposition with ORX or MCH neurons and transmit a stop-eating signal when they are activated 
[67]. 

Research on food-intake has allowed the visualization of some of the major circuits and 
molecular mechanisms that control multiple outputs; however, several questions remain 
unanswered. Among them, the effect of TRH on food-intake, albeit identified a few decades ago, is 
still poorly understood. 

3. Discovery of the Effects of TRH, a TRH Analogue, and TRH Catabolites on Food-Intake 

3.1. The Peripheral Administration of TRH Modifies Food-Intake in Mammals, according to the Route of 
Administration 

Food-intake increases in female rats consuming TRH in drinking water over 30 days (Table S1). 
TRH may be transported through the intestinal epithelial barrier by peptide transporter 1 (SLC15A1), 
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one of the proton-coupled oligopeptide transporters, which is expressed in the intestine and can 
transport TRH [68]. TRH may then enter the general circulation and act through the pituitary-thyroid 
axis since the effect on food-intake is blocked by thyroidectomy (Table S1). This route of 
administration may lead to the preferential activation of anterior pituitary TSH secretion and TH 
regulated food-intake.  

In rodents the peripheral or intracerebral injection of 3,3′,5-triiodothyronine (T3) increases food-
intake, possibly through regulation of either NPYARC and POMCARC neurons, although this has been 
contested, and/or through regulation of the phosphorylation of 5´ adenosine monophosphate-
activated protein kinase in the ARC, or through a direct effect of T3 on the ventromedial 
hypothalamus (VMH) (Table S2). 

In contrast to its effect in drinking water, other reports indicate a strong anorexic effect of TRH 
if administered through subcutaneous (sc) or intraperitoneal (ip) routes. After one TRH injection, the 
effect is maximal after 15-30 min, disappearing after 1 h. If a chronic administration is used, the results 
are less consistent. The data are similar in rats, mice, Siberian hamsters, and dogs. They are observed 
in either genetically obese or wild type rats fed ad libitum, or in tail-pinched or starving rats (Table 
S1) [69]. Although the phase of food-intake behavior affected by TRH cannot be ascribed, some of the 
data suggest that there is, at least in part, an effect on the consummatory phase. However, the precise 
impact of TRH on this phase of food-intake (food-intake delay, meal frequency, duration, ...) is clearly 
missing.  

3.2. TRH Acts through TRH Receptor-1 (TRH-R1) and TRH Receptor-2 (TRH-R2) in Mammals 

Three subtypes of TRH receptors (TRH-R1-3), that are closely related to GTP-binding protein 
coupled receptors (GPCR), have been characterized. Mammals generally express Trhr (TRH-R1) and 
Trhr2 (TRH-R2); humans express Trhr and a receptor distinct from Trhr whose sequence awaits 
characterization [70].  

When activated by TRH, TRH-R1 and TRH-R2 exhibit similar signaling pathways. In mammals, 
TRH effects are transduced through Gq/11, as well as Gs and Gi subunits, with the intracellular 
pathways and the signaling outcome depending on the cell type where TRH-R is present; TRH-R 
activation leads to desensitization and internalization of the receptor [71,72]. For example, the 
recurrent application of TRH to neurons of the dorsal motor nucleus of the vagus (DMV) promotes a 
reduction of response [73]. 

TRH receptors are expressed mostly in endocrine cells and neurons. In neurons, TRH receptor 
activation is linked to the modification of cation conductance mediated by either G protein-coupled 
inwardly rectifying potassium channel-like proteins, or transient receptor potential channel-4/5, or 
fast transient A-type potassium current, or calcium-dependent slow after-hyperpolarization, or other 
channels, and generally stimulates neuronal excitability through a postsynaptic action [74–80].   

In the central nervous system, Trhr expression is high in the hypothalamus and brainstem, while 
that of Trhr2 is more extensive, including the thalamus, the cerebral and cerebellar cortex, medial 
habenula, medial geniculate nucleus, pontine nuclei, and reticular formation [81]. In peripheral 
tissues, Trhr mRNA is found in the heart, spleen, liver, lung, skeleton, muscle, kidney, testis, stomach, 
small intestine, colon, adrenal medulla, and pancreas [71,82,83]. In contrast, Trhr2 has a limited 
peripheral distribution; it is present in the testis and gastrointestinal tract [71,82].  

There is a lack of specific antagonists of TRH receptors. In vitro, a benzodiazepine working at 
micromolar concentration has been used to test whether TRH effects can be attributed to interaction 
with its receptors [84], but the specificity and potency of this benzodiazepine are not adequate for in 
vivo studies. Recent results indicate that [β-Glu2]TRH is a functional antagonist of TRH-R1 [85], yet 
to be tested in food-intake experiments.  

3.3. Peripheral TRH Is Hydrolyzed by a Metallopeptidase that Likely Limits Its Effect on Food-Intake 

The peripheral effect of TRH is transient, likely because of receptor desensitization, but also due 
to peptide inactivation through renal clearance [86] or hydrolysis. TRH degradation half-life in 
plasma or in blood after intravenous (iv) injection is of a few minutes [89,90]. The major mechanism 
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of extracellular inactivation of TRH is its hydrolysis by thyrotropin releasing hormone-degrading 
ectoenzyme (TRH-DE), a narrow specificity enzyme whose main biological substrate is TRH. The 
enzyme is detected in serum and at low levels in some peripheral organs [17]. Hydrolysis of TRH by 
TRH-DE produces histidyl-proline amide, which spontaneously cyclizes to his-pro-diketopiperazine 
(HPD), and pyroglutamic acid. The intraperitoneal injection of pyroglutamic acid or HPD to adult 
male rats does not change food-intake (Table S1).  

Since the anorectic effect of peripheral TRH on food-intake takes min to develop, the 
mechanisms involved should be faster than those relying on long-term effects of TRH, such as cell 
survival. In the remainder of the review, we will focus only on mechanisms that are sufficiently rapid 
to contribute to the TRH effect. 

3.4. The Anorexic Effect of Peripheral TRH on Food-Intake Is Independent of the Control of the Pituitary 
Thyroid Axis 

Transient activation of the pituitary by peripheral TRH may lead to effects on food-intake. The 
peripheral effect of TRH on food-intake occurs before it produces any effect on serum TH 
concentrations [89], although changes in serum TSH concentration occur more rapidly. The systemic 
injection of TRH enhances plasma TSH concentration within 15 min, while levels of TH are not 
changed before 30 min [90–93].  

A high dose of TSH administered intraperitoneally (ip) does not inhibit short-term food-intake 
in adult male rats that have been food-deprived, but the intracerebroventricular (icv) injection of TSH 
reduces food-intake in rats. Because in mice TSH-R is expressed by α2-tanycytes that send 
cytoplasmic extensions into the ARC [94], the effect of icv injection of TSH may reflect a central action 
of TSH produced locally, not related to TRH. Finally, sc TRH-induced suppression of mild tail-pinch-
induced eating is detected in hypophysectomized animals, showing that it is not a TSH or TH 
dependent effect (Table S1). This evidence is consistent with the idea that the anorexic effect of 
peripheral TRH cannot be mediated through an increase in TSH or TH. 

3.5. Peripheral TRH Effect on Food-Intake and Vagus Nerve or Other Sensory Nerve Inputs 

The peripheral effect of TRH on food-intake requires an intact vagus nerve [95], suggesting the 
engagement of a peripheral TRH receptor whose activation generates an anorectic signal conveyed 
through the vagus nerve to the brain stem. An alternative interpretation is that the activity of the 
vagus nerve is required to express the effect of TRH on food-intake [96]. 

Multiple single cell transcriptome studies reveal a high heterogeneity of cell molecular 
signatures in the peripheral nervous system (PNS) [97]. Three major PNS neuronal types, sensory 
(dorsal root ganglia), sympathetic, and enteric neurons, subclassified in clusters according to the 
expression of multiple molecular markers [98] did not show expression of Trhr. However, the 
integration of recent and focused organ transcriptomes shows Trhr expression in a cluster 
corresponding to Gabra expressing neurons from the nodose ganglia [99], coincident with data 
showing that TRH enhances intracellular Ca2+ concentration in a subset of neurons of the nodose 
ganglion in cell culture [100]. Whether these neurons convey an anorexic signal to the brain awaits 
resolution, so as the endogenous source of TRH acting on the nodose ganglion. Since circulating 
levels of TRH are very low [101], it is unlikely that an effect on the ganglion is due to an endocrine 
source of TRH.  

3.6. Peripherally Injected TRH Can Enter the Brain through the BBB 

Although initially a controversial concept, it is now clear that peptides can cross the blood-brain 
barrier (BBB) through various mechanisms [102]. Critical characteristics include the molecular weight 
(lower than 500 Daltons facilitate entry) [103], lipophilicity (the higher the better entry), which allow 
non-saturable entry, and absolute charge, that can allow adsorptive transcytosis. In addition, some 
peptides are transported by a saturable system, which seems to be quantitatively the main 
mechanism [102].  
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Although TRH permeability through the BBB is very low [104], a small fraction of peripherally 
injected TRH does enter the brain. TRH can be traced in human samples of CSF in biologically active 
levels after an iv infusion of 10 mg/kg of TRH, peaking after 90 to 120 minutes post administration 
[105]. The specific mechanism of TRH entry to the brain is unknown to date, although different 
measurements show the dynamics of its internalization to the brain. Short term leakage dynamics of 
exogenous TRH through the BBB is like other hypophysiotropic peptides and inert polar molecules 
[106,107]. Experiments in vitro with the blood brain barrier preparations of sheep, guinea pigs, and 
rats demonstrate that TRH entry into the brain is a non-selective process in areas like the 
hippocampus and the cortex, showing no self-inhibitory effects at high concentrations of TRH 
[107,108]. Observations of long-term dynamics of TRH unmask a greater uptake of TRH when 
compared to mannitol [108], which suggests a slow passage of TRH by diffusion in BBB free areas 
with the added effect of cerebrospinal fluid bulk flow [106].  

Although hypothalamic TRH passage has not been directly measured after peripheral infusion 
of TRH, a transient passage of TRH into the ventral arcuate nucleus, where adjustments in the 
plasticity of the BBB structures have been detected during fasting [109,110], and during the circadian 
cycle [111] should be considered. 

The presence of caveolin in the terminal pole of β1- and β2-tanycytes [112] suggests the 
endocytosis/transport of molecules derived from the blood by a non-clathrin mechanism [113], as 
that of other receptor-mediated processes. Thus, an intriguing possibility is brain entry of TRH 
through transport mediated by TRH receptors in β1- or β2-tanycytes, since tanycytes might express 
Trhr [114], but see [115], a mechanism analogous to that suggested for leptin [116] and ghrelin [117] 
transport in tanycytes. Peripherally injected TRH effects may therefore be due, in part, to a central 
site of action. 

3.7. TRH Inactivation in, and Transport Out of, the CNS Parenchyma 

TRH can be hydrolyzed in the brain extracellular space by TRH-DE; thus, the importance of the 
use of TRH analogs resistant to hydrolysis [17]. Only one of the hydrolysis-resistant TRH analogs, l-
pyroglutamyl-l-histidyl-l-3,3’-dimethyl-prolineamide (RX77368) [118] has been tested in the context 
of food-intake. 

TRH could also be removed from the CNS extracellular space by a saturable transport system 
[119], or by diffusion into the ventricles and subsequent removal by the lymphatic system, and/or by 
unidirectional brain-to-blood transport [120]. icv injection of TRH leads to peripheral leakage [121], 
but it is unlikely that this is relevant to interpret its effect on food-intake.  

3.8. The Injection of TRH or of RX77368 in Rat, Hamster, or Mouse Cerebral Ventricles Increases or Reduces 
Food-Intake according to Ventricular Localization 

Independently of the peripheral site of action, the intra-lateral ventricle injection of TRH or 
RX77368 reduces food-intake maximally at 0.5-2 h post-injection in various models (fasting, tail-
pinch- or diazepam-induced eating), species (rat, hamster, or mice), or sex. The effect is dose 
dependent and transient. In contrast, icv TRH does not change muscimol- or norepinephrine-induced 
food-intake, suggesting its effect does not occur downstream of GABAA-receptor agonist or 
norepinephrine effects on food-intake. Finally, the food-intake reduction induced by ip 
coadministration of cholecystokinin (CCK) and leptin is reversed by the icv injection of antibodies 
against TRH and CART, suggesting TRH effect is downstream of leptin and CCK action (Table S3). 
This is one of the few pieces of evidence that endogenous TRH is relevant in food-intake control (see 
also sections 4.1.5, 4.2.2, and 4.2.3).  

Other data suggest that the sensitivity to the anorexic effect of TRH is localized around the third 
ventricle (3V), since an intra-3V injection of a very small dose of TRH to rats or Siberian hamsters 
reduces food-intake. In contrast, the intracisternal injection (ic) of RX77368 increases food-intake in 
rats fed ad libitum (Table S3).  

Therefore, TRH might control food-intake through central sites of action, but since opposing 
effects are obtained according to the site of action, global approaches might yield confusing results. 
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Mice lacking the Trh gene show a transient growth retardation, likely related to the hypothyroid 
status of these animals [122], but quantification of food-intake was not reported. Mice constitutively 
overexpressing Trh in most neurons and other cells have an increased food-intake and lower body 
weight, possibly a consequence of increased sympathetic tone and metabolic rate, although thyroid 
axis hormones have normal serum concentrations [123].  

3.9. Is the Central TRH Effect on Food-Intake Dependent on TRH Receptors, or on a TRH Catabolite?  

Because of the lack of specific TRH receptor antagonists, the relevance of TRH receptors for TRH 
effect on food-intake could be inferred from the use of neutralizing receptor antibodies, antisense 
tools, the phenotype of mouse knockout (KO) for each receptor, or genome-wide association studies 
(GWAS). Mice KO for Trhr have low serum TH concentrations and mild hyperglycemia [124,125], 
but daily food-intake in 3-4 months old animals is not altered if normalized to body weight and even 
if the animals are made euthyroid [126,127]. While in euthyroid ob/ob mice, leptin injection twice daily 
for 3 consecutive days powerfully reduces food-intake, it does it less conspicuously in hypothyroid 
Trhr/ob double KO as well as in 2-mercapto-1-methylimidazole-, sodium perchlorate-treated ob/ob 
mice, suggesting that food-intake in response to leptin depends on thyroid status, but not on TRH-
R1 signaling [126]. In fasted Trhr KO mice, increases in stomach ghrelin-O-acyltransferase (GOAT) 
expression and acyl-ghrelin serum concentration are blunted independent of the thyroid state, 
suggesting TRH-R1 regulates GOAT expression, and thus the concentration of acylated ghrelin in the 
circulation [127]. Since acylated ghrelin exerts a strong orexigenic effect by activating NPY/AgRPARC 
neurons [128,129], these data suggest that TRH-R1 is implicated in a circuit relevant for food-intake 
(see section 4.2.3). GWAS indicates that Trhr is important for lean body mass [130,131], power in 
athletes [132], and possibly BMI [133,134], but none links Trhr to food-intake. 

The physiological significance of TRH-R2 for central TRH action has been challenged since data 
in mice show that TRH-R1 is the only receptor relevant for various pharmacological actions of TRH, 
although food-intake was not tested [135]. Mice KO for TRH-R2 have normal body weight, serum TH 
concentration, and latency and duration of food-intake [136], suggesting that TRH-R2 is not critical 
for food-intake. 

A less likely alternative is that the anorexic effect of TRH is mediated by a product of the 
extracellular catabolism of TRH by TRH-DE. HPD has been detected in the CNS [137,138], and at 
least in some brain regions, a significant percentage seems to arise from TRH catabolism [139]. Icv 
HPD decreases ad libitum food-intake, food deprivation- and stress-induced food-intake in rats for 
various hours, but these results have been attributed to a contamination of the HPD batch (Table S3). 
Furthermore, many effects of TRH are amplified if analogs resistant to degradation are used, or if 
inhibitors of TRH-DE are injected [17,140], and because the anorectic effect of TRH is transient while 
that of HPD is much more persistent (Table S3), it is unlikely that catabolism of TRH is required to 
obtain an effect on food-intake. Finally, young adult mice KO for Trhde grown in standard conditions 
have normal body weight, but food-intake was not reported [141]. 

4. In Search of the Central Circuits Involved in TRH Action on Food-Intake Behavior 

TRH neurons and TRH receptors are localized in various regions related to food-intake, and in 
some cases the chemical phenotypes of cells expressing TRH receptors have been identified as well 
as the electrophysiological, autonomic, endocrine and behavioral effects of TRH application. It should 
be noted that in general, the diffusion range of TRH injected into central nuclei is unknown, making 
the spatial interpretation of the in vivo pharmacological results imprecise. The evidence suggests that 
TRH effects on food-intake are at least in part due to central interactions. Except for one or two cases, 
the TRH neuron types that could sustain the physiological equivalent of the pharmacological effects 
have not been identified. In this section, we evaluate the most promising alternatives. 

4.1. Putative Hypothalamic TRH Neurons and Targets Sustaining Effect of TRH on Food-Intake 

4.1.1. Sim1PVH Neurons. 
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Are TRHPVH neurons a relay between ARC neurons and brain neurons that control food-intake? 
The single-minded1 (Sim1) gene encodes a transcription factor necessary for the development of the 
neurons of the PVH [142]. Sim1PVH neurons inhibit food-intake, at least on a long-term basis [143,144]. 
Ablation of Sim1-expressing neurons or reduction of Sim1 expression causes similar decreases in Sim1 
and Trh expression in the PVH [145,146], suggesting that some Sim1 neurons are Trh neurons, and 
that most Trh neurons are Sim1 neurons. However, whether Trh/Sim1PVH neurons are relevant for the 
control of food-intake is not settled. TRHPVH neurons can be divided in at least 2 broad types 
(neuroendocrine or hypophysiotropic, and non-neuroendocrine) [147], and probably in more 
subtypes [148]. 

4.1.2. Hypophysiotropic TRHPVH Neurons. 

The hypophysiotropic neurons of the PVH project their axons into the median eminence and 
release their neurotransmitters near the portal vessels that irrigate the anterior pituitary. In the rat, 
the hypophysiotropic TRH neurons are concentrated in the mid-caudal PVH; they express leptin 
receptors and receive afferents from various limbic regions, adrenergic/noradrenergic fibers from the 
brain stem, and NPY/AgRP/GABAARC and POMC/CARTARC neurons, making them able to regulate 
thyroid economy in response to changing energy levels [3,4,149]. Based on correlative arguments, 
some authors [18,19] propose that TRHhypophysiotropic PVH neurons are the vector of the anorectic effect of 
TRH, but there is no concrete (functional) evidence that this is indeed the case.  

4.1.3. TRHanterior PVH Neurons 

In rodents, most non hypophysiotropic TRH neurons are concentrated in the anterior PVH 
(aPVH) [150–152]. In rats, TRHaPVH neurons are innervated by NPY/AgRP/GABAARC and 
POMC/CARTARC neurons [3] and by adrenergic/noradrenergic fibers from the brain stem [153]. 
TrhaPVH neurons have been associated with anorexia since in adult female Wistar rats Trh expression 
increases in this part of the PVH in dehydration-induced anorexia [154]. Interestingly, projections of 
TRHaPVH neurons have been mapped to nuclei relevant for food-intake control [155].     

The ARC has a TRH innervation [156] arising, at least in part, from the aPVH [155] and expresses 
both Trhr and Trhr2 [81,157,158]. In mice, an orexigenic (through glutamate) glutamatergicPVH->ARC 
projection expresses Trh [159], but the precise location of the PVH neurons projecting onto the AgRP 
neurons and the specific role of TRH in this projection remain unknown. This projection regulates 
the strength of transmission across glutamatergic TRHPVH/AgRP synapses, and its glutamatergic 
activity produces a long-term increase in food-intake [160]. In slices, TRH does not affect the 
membrane potential or spontaneous spiking of POMC and NPY neurons [161] but see 162].  

TRH terminals are detected in the DMH [163], where a significant population of cells expresses 
Trhr [158]. In rats accustomed to a daily 4 h food-intake and drinking schedule, the bilateral injection 
of 8 nmoles of TRH per hemisphere in the medio basal hypothalamus (centered around the DMH, 
although the precision of the procedure is insufficient to be categorical about DMH relevance) 
produces a sustained (maximum at 30 min, still significant at 3 h reduction of food-intake in 20 h food 
and water deprived male adult rats [164]. ProdynorphinDMH neurons express Trhr, project into the 
PVH, and when activated inhibit food-intake [165].  

4.1.4. TRHrostral perifornical LH Neuron Projections 

The LH contains a large population of TRH neurons that are heavily contacted by axons from 
the AgRPARC and POMCARC neurons [163]. These neurons are localized in the perifornical, tuberal, 
and peduncular regions of the LH. In rat brain, almost all urocortin 3 (Ucn3) neurons in the rostral 
perifornical area express Trh [166]. ARC dorsomedial and lateral parts receive, respectively, a dense 
and moderate TRH innervation from, in part, the perifornical area [155]; preferably in the lateral part, 
many of these TRH fibers are UCN3/TRH axons [166], and more than half of the POMCARC neurons 
are in contact with UCN3/TRH axons, which form excitatory synapses. TRH prevents the 
depolarization and increased firing rate of POMC neurons induced by UNC3 [167].   
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TRHperifornical neurons also innervate the DMH [155]. The highest density of UCN3/TRH fibers is 
found in the rostral part of the DMH, primarily in its ventral part [166]. See Section 4.1.3 for a possible 
consequence of this innervation. 

TRHperifornical neurons also project to the VMH [155], which contains a very high density of 
UCN3/TRH axons, especially in its dorsomedial part [166]. TRH decreases food-intake when injected 
into the medio-basal hypothalamus [164], a region including the VMH, but the precision of the 
injection is insufficient to be categorical about the target region, and the density of TRH receptors is 
very low in the VMH [81,158]. 

4.1.5. TRHtuberal LH Projection to Histaminergic Neurons of the Tuberomammillary Nucleus (TMN). 

The TMN contains TRH axons that originate, at least in part, in the tuberal LH (TuLH). The 
TRHTuLH neuron terminals impinge on histaminergic neurons in all subdivisions of the TMN, where 
approximately half of the histaminergic neurons co-express Trhr [168]. In histamine depleted rats, the 
anorectic effect of icv TRH is reduced [169]. Furthermore, icv anti-TRH antibody suppresses the 
anorectic action of nesfatin 1, an effect which is histamine mediated [170]. Thus, the control of 
histamine neurons by TRHTuLH neurons may contribute to the anorectic actions of TRH, since 
histamine neurons control food-intake [171]. 

4.1.6. TRHDMH Neurons Projection onto LH GABA Neurons That Control MCH Neurons 

The DMH is, apart from the PVH, a major site of localization of TRH neurons. Some of the DMH 
neurons that project to the LH express Trh mRNA [42]. TRH terminals [161,163] and Trhr expression 
[81,158] are abundant in the LH. In rats accustomed to a daily 4 h food-intake and drinking schedule, 
the intracranial bilateral injection of 8 nmoles of TRH per hemisphere in the LH does not change food-
intake in 20 h food and water deprived male adult rats [164]. In contrast, other authors show that 
TRH injection into the LH induces anorexia in rats [172]. The controversy about LH sensitivity to the 
anorexic effect of TRH has not been settled but may be related to the large extension of the LH.  

In LH slices, TRH promotes a reduction of the firing of the MCH neurons; this effect is mainly 
indirect, through stimulation of the activity of local GABAergic interneurons contacted by TRH 
neurons, presumably projecting from the DMH. This may contribute to the anorexic effect of TRH 
[161]. A few data are consistent with the idea that TRHDMH neurons transmit information that is 
relevant for processing energy balance. Compared to sedentary animals, Trh expression in the DMH 
of male adult rats is enhanced by 2 weeks of voluntary exercise, a condition in which rats consume 
less than sedentary control animals [173]. Furthermore, in female and male Wistar rats, 2 days of 
fasting reduce TrhDMH expression. In male rats, fasting increases the expression of TrhrLH [158], which 
suggests reduced TRH communication in LH during fasting.  

4.1.7. Local Projection TRHARC Neurons 

Scattered cell somata displaying TRH immunoreactivity are observed from bregma -2.3 mm to -
3.24 mm in the rat ARC [163]. In mice, afferents to AgRPARC neurons include GABA/TrhARC neurons, 
which express the glucagon-like peptide 1 receptor (Glp1r) and are activated by the GLP-1R agonist 
liraglutide. Activation of GABA/TrhARC neurons inhibits AgRPARC neurons activity and decreases 
food-intake, while inhibition of GABA/TrhARC neurons activity increases food-intake. The synaptic 
effects are explained by GABA action on AgRPARC neurons [174]. 

4.2. Putative Extra-Hypothalamic TRH Neurons and Targets Sustaining Effect of TRH on Food-Intake 

TRH neurons acting on food-intake are thus clearly localized within the hypothalamus, but this 
does not exclude that extrahypothalamic TRH neurons are also involved. 

4.2.1. TRHperifornical LH and/or TRHbed nuclei of the stria terminalis Neurons That Project to the NAc 

The NAc is densely innervated by TRH fibers and terminals [175]. These include a low density 
of double-labeled TRH/UNC3 fibers likely arising from the perifornical LH and/or bed nucleus of the 
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stria terminalis [166], but the complete map of the TRH neurons innervating the NAc is unknown. In 
mammals, an intermediate concentration of high-affinity TRH-binding sites is detected in the NAcsh 
[176], corresponding only to Trhr mRNA [81,177].  

In rats accustomed to a daily 4 h food-intake and drinking schedule, the bilateral injection of 
TRH in the NAc produces a sustained reduction of food-intake. In adult male food-restricted rats, 
TRH unilateral injection into the NAcsh reduces food-intake, motivation to eat, and increases 
dopamine release from the NAcsh. In ad libitum fed animals, there is no effect of TRH injection into 
the NAcsh on food-intake. Finally, an intra-NAcsh injection of TRH diminishes chow or palatable 
food-intake in isolation-stressed rats (Table S3). 

4.2.2. TRHNAcsh Neurons with Unknown Projections 

The NAcsh contains a small density of TRH neurons [81]. Injection of an antisense 
oligodeoxynucleotide (aODN) against pro-TRH mRNA into the NAcsh of 48h fasted rats does not 
change 2 h cumulative food-intake but blocks the anorectic effect of α-MSH in the NAc, suggesting 
that accumbal TRH neurons are downstream of α-MSH actions to inhibit food-intake in the NAc. 
These TRH neuron projections are unknown; since most accumbal neurons are GABAergic medium 
spiny neurons, they might release TRH in the LH, possibly regulating MCH neurons [178].  

4.2.3. TRHcaudal raphe nuclei Neurons Innervating the DMV 

The physiological significance of this projection has been reviewed [15]. Briefly, TRH neurons 
located in the raphe pallidus, raphe obscurus, and parapyramidal regions [127,179] innervate 
neurons of the DMV [180], synapsing on DMV neurons that contribute vagal efferent innervation of 
the stomach [181,182]. In the DMV, Trhr is expressed abundantly in the medial column, which 
contains neurons that innervate the stomach [81,183,184]. 

TRH induces a rapid and persistent excitation of these neurons [73,74,185,186], that leads to the 
enhancement of vagal efferent discharge [187–189]. TRH injected ic increases gastric acid secretion 
through vagal and cholinergic mechanisms [190]. RX77368 ic induces robust cFos expression in the 
myenteric plexus of the gastric corpus and antrum in conscious fasted rats [191]. In pentobarbital 
anesthetized rats, ic RX77368 induces total ghrelin secretion through a vagal and atropine dependent 
pathway in the stomach. The ic injection of RX77368 stimulates food-intake in freely fed rats, an effect 
that lasts for 3 h, and is inhibited by either peripheral atropine or a ghrelin receptor antagonist. In 
fasted rats, Trhraphe nucleus mRNA expression increases, and food-intake is reduced by ic TRH antibody. 
Thus, the TRHcaudal raphe nuclei projection onto the DMV seems to have a physiological role in food-intake 
[192]. Since fasted ghrelin and acyl-ghrelin increases are blunted in Trhr KO mice, DMV TRH-R1 
might be necessary for the control of ghrelin secretion and food-intake [126].  

5. Conclusions 

The evidence suggests that apart from the putative effect of TRH on the nodose ganglion, TRH 
effects on food-intake are due to interactions with central target cells that express Trhr (Figure 2), 
interactions that are limited by the activity of TRH-DE. However, the pharmacological results should 
be taken with caution. Non-physiological mechanisms may arise from the fact that the intracerebral 
injection of TRH or analogues may overstimulate TRH receptors simultaneously in multiple regions 
and change the balance of action of co-transmitters, generating a nonspecific response. In addition, a 
food-intake response could be due to the interference of other behaviors induced by TRH with food-
intake. Although TRH does not modify some behaviors, such as shuttle box avoidance responding 
[193], ruling out a generalized non-specific response, it remains possible that arousal or locomotion 
induction by TRH may interfere with food-intake; for example, icv administration of TRH causes 
behavioral excitation in the rat during a 2-h ingestive period [194]. This idea has been analyzed for 
the peripheral administration of TRH in the Siberian hamster; the increase in general activity does 
not affect the time spent eating or near food, suggesting that locomotor activity in response to TRH 
does not reduce food-intake [89], but it will be important to analyze this kind of artefact in each case. 
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Available data hint at multiple central TRH neuron types and projections as putative controllers 
of food-intake. Confirmatory functional evidence has been obtained in a small number of locations 
with the use of neutralizing antibodies, chemical depletion of a neurotransmitter, or KO mice. While 
the orexigenic effect of the TRHraphe nuclei to DMV projection, and possibly the anorexigenic effect of 
the TRHTuLH to TMN projection, are sustained by functional evidence, in all other cases, the 
physiological role of TRH in each specific projection is almost unknown. 

The effects of TRH on food-intake may be carried out by various independent circuits 
participating in multiple contexts. The physiological events that mobilize each of these circuits are 
essentially unknown. Some of the TRH projections reviewed above may be the physiological 
substrate(s) of an anorexic effect of TRH; in one other projection, its role is orexigenic; finally, in yet 
another set of projections, it is difficult to predict how it will contribute to the control of food-intake. 
It is likely that the complete set of neurotransmitters available in each type of TRH neurons, and the 
electrophysiological properties of the TRH and target neurons define in each case the physiological 
relevance of TRH for food-intake control. 

Other unknowns abound. Most studies have used male adult animals, and thus a critical aspect 
is to understand the sexual and developmental dependencies of TRH effects. Finally, the evolutionary 
origin of the effect of TRH is poorly understood. It appears that TRH or TRH-type peptides have the 
capacity to modulate food-intake in many vertebrates and in non-vertebrate deuterostomes [195–198]. 
Thus, the control of food-intake by TRH-type peptides might have appeared early, even before 
vertebrate evolution. 

 
Figure 2. Schematic localization of TRH neurons and projections to intra- and extra- hypothalamic 
targets putatively involved in food-intake control. TRH neurons are represented by black stars; dark 
arrows indicate their projections. Eight types of TRH neurons are shown. A) TRHanterior part of PVH (green 
nuclei, differentiated from the mid/caudal part of PVH by a dotted line) projecting to anorexigenic 
POMCARC and orexigenic NPYARC neurons. B) TRHanterior part of PVH projecting to PDYNDMH neurons. C) 
TRHARC neurons innervating orexigenic AgRPARC neurons. D) TRHPeFLH neurons (purple nuclei, 
differentiated from LH tuberal area by a dotted line) projecting to anorexigenic POMCARC neurons. E) 
TRHTuLH neurons projecting to histaminergicTMN neurons. F) TRHDMH neurons projecting to GABALH 
neurons. G) TRH/UNC3BNST neurons projecting to D1RNAc neurons. H) TRHcaudal raphe nuclei neurons 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2024                   doi:10.20944/preprints202405.0538.v1

https://doi.org/10.20944/preprints202405.0538.v1


 12 

 

innervating DMV neurons that control ghrelin secretion from the stomach. TRH receptor 
representation is inserted in cells that show strong evidence of TRH receptor involvement in target 
activation. Abbreviations: aPVN, anterior part of PVH; ARC, arcuate hypothalamic nucleus; BNST, 
bed nucleus of the stria terminalis; D1R, dopamine receptor type 1; DNR, dorsal nucleus of raphe; 
DMH, dorsomedial hypothalamic nucleus; DMV, dorsal motor nucleus of the vagus; GABA, γ-
aminobutyric acid; HA, histamine; LH, lateral hypothalamus; NAcsh, nucleus accumbens shell; NPY, 
neuropeptide Y; PDYN, pro-dynorphin; PeF, perifornical area; Pi, pituitary gland; POMC, pro-
opiomelanocortin; PVH, paraventricular hypothalamic nucleus; TMN, tuberomammillary nucleus; 
Tu, tuberal area. Figure based on [199] and created in Biorender. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Table S1: Overview of studies regarding the effect of peripheral administration 
of TRH, TRH analog and TRH catabolite on food-intake behavior in mammals; www.mdpi.com/xxx/s2, Table 
S2: Overview of studies regarding the effect of administration of TSH or thyroid hormones on food-intake 
behavior in mammals; www.mdpi.com/xxx/s3, Table S3: Overview of studies regarding the effect of central 
administration of TRH, its immediate precursor, a catabolite, an analog, an antisense oligonucleotide, or anti-
TRH on food-intake behavior in mammals. 
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