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Using Full Binary Directed Tree Proof the
Collatz Conjecture

Jishe Feng

(School of Mathematics and Information Engineering, Longdong University, Qingyang, Gansu, 745000, China E-mail:
gsfjs6567@126.com.)

Abstract: We use binary string to represent a natural number and show the composite procedure of odd-number

and even-number functions, thus we propose full binary directed tree to represent the set of natural numbers

and give another partition the natural number set to three sets: pure odd, pure even and mixed number. For

the Collatz conjecture we make use of the parity of a natural number to analyse the sequence of iteration (or

composite) of Collatz function and reduced Collatz function analog to the inverse function. We give tabular and

binary strings to the algebra expression to state the sequence of Collatz, this is the key topic to proof the conjecture:

the discrete powers of 2 can be changed to ultimately continuous powers of 2, finally get to pure even number

and to the smallest number 1. The sequence created by the infinite iterations of the Collatz function becomes the

ultimately periodic sequence if any natural number is the beginning value, proving the conjecture that has been

held for 87 years.

Keywords: binary string; full binary directed tree; composite function; Collatz conjecture; ultimately periodic se-

quence

MSC: 03D20, 11B25, 11B83

In the study of number theory, odd and even numbers are a fundamental pair of ideas. Natural
number set is parted into two different sets. Number theory frequently examines the connections
between various numbers. There are many conjectures that attempt to generalize the facts of different
kinds of natural numbers discovered in a restricted range to the entire infinite set of natural numbers.
This article will examine the famous Collatz conjecture, which states that for each natural number n, if
it is even, divide by 2, if it is odd, multiply by 3, add 1, and so on, the result must eventually reach 1. It
is also referred to as the 3n + 1 conjecture and was put forth in 1937 by Lothar Collatz, also known as
the 3n + 1 problem. The mathematician Paul Erdos once said of this conjecture: “Mathematics may
not be ready for such problems” [1,2].

The inconsistencies between the finite and the infinite, as well as the relation between various
kinds, present difficulties in the study of number theory problems. We are talking about the connection
between two different mathematical ideas: the iterated sequence is a ultimately periodic sequence
whether the initial value is odd or even.

The finite and the infinite can be connected by the useful mathematical construct known as
a function, and the value will also be finite and infinite. A special function that has particular
significance in discrete mathematics is the piecewise function. Composite functions and piecewise
functions combined is a highly clever mathematical trick. Particularly in number theory, which is the
most fundamental idea and mathematical expression, the sequence of numbers is a close connection
between functions and finite or infinite. Numerous conjectures are obtained through restricted iteration
of an iterative algorithm, which is a widely used method in number theory, but people typically lack
the tools to demonstrate the accuracy and reasoned nature of conjectures. A fresh technique or new
knowledge is frequently used to support a hypothesis.

For the Collatz conjecture, we can describe it as a function:

T(n) =

{
3n + 1, if n is odd number,

n
2 if n is even number.

(1)
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The following sequence is obtained via the composite function (iteration): A = {n, T(n), T(T(n)),
T(T(T(n))), · · · } = {n, T(n), T2(n), T3(n), · · · }. Consequently, the Collatz conjecture can be stated
as follows:

Collatz conjecture 1: For any natural number n, there is finite natural number m, the sequence A
always leads to the integer 1, namely Tm(n) = 1.

The series A is an infinite sequence of ultimately period [9,10]. So we give another statement of the
Collatz conjecture as the following.

Collatz conjecture 2: The series A is an infinite sequence of ultimately period, the preperiod η(n)
varies with the initial value n, but the ultimately period is always {4, 2, 1}.

The key problem is how find the beingness and finiteness of the natural number m. In order to
solve the key problem, we propose full binary directed tree. Although there are binary tree and graphs
in papers [5,13,14], comparing their binary tree and mine, there are many differences as the follows:

1) We use the full binary directed tree to represent the procedure of the composition of odd-
number and even-number function from 1. Namely we visual represent the procedure of the function
n = f k(1), k is the number of the level of the full binary directed tree, the function f (n) in (2.2).

2) By binary string of arbitrarily given natural, it is visual to the iteration procedure of the Collatz
function, thats are the following two actions jump and trace accordingly two functions 3n + 1 and n/2.

1. An Algebra and Graph Representation of Natural Numbers

1.1. The Composition of Odd-Number and Even-Number Functions

If a natural number can be divided by 2, it is said to be an even number; otherwise, it is said to
be odd number. The Peano’s Axiom states that 1 is the smallest natural number. The set of natural
numbers N = {1, 2, 3, · · · } may be separated into odd and even sets, we will utilize the standard
definition of natural numbers in this work.

{natural number} = {odd number}⋃{even number}.
In the set of natural numbers where 1 is the smallest odd number and 2 is the smallest even

number, we can use the expression n = 2k − 1 to indicate that it is an odd, and the expression n = 2k
to indicate that it is an even, where k is any natural number.

We introduce two functions O(x) = 2x + 1 to express odd numbers greater than 1, and E(x) = 2x
to express even numbers, where x is any natural number in N.

We define a strictly increase monotonically piecewise function f (n), from a natural number n it
generates two cases: odd or even numbers:

f (n) =

{
2n + 1 = O(n), the value is odd number,
2n = E(n), the value is even number.

(2)

Definition 1 A natural number n is obtained by composition of the odd-number function
O(x) = 2x + 1 and the even-number function E(x) = 2x several times, namely{

n = f ( f (· · · f (1))) = f k(1), (3)

the function f is either odd-number function O(x) or even-number function E(x).
For example, f (1) = O(1) = 3, f (1) = E(1) = 2, 7 = f 2(1) = 2 · 3 + 1 = 2 · (2 · 1 + 1) + 1) =

O(O(1)), 189 = f 7(1) = 2 · (2 · (2 · 4 + 1) = 2 · (2 · (2 · (2 · (2 · (2 · 1) + 1) + 1) + 1) + 1)) + 1 =

E(O(O(O(O(E(O(1)))).
Any natural number n is the value of the finite times composite function of odd-number and

even-number function. Namely if n = f ( f (· · · f (1))) = f r(1), then the inverse function is f−r(n) = 1,
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1.2. Use Binary String to Represent Natural Numbers

An natural number is the value of composition of O(x) and E(x), in order to more clearly
express the odd-number and even-number functions composite process of a natural number, we use
binary string to represent a natural number n, the string from right to left of 0 and 1 accordingly
the procedure from top down to itself, it indicates the order of the composition of O(x) and E(x), 0
implicate even-number function, and 1 implicate odd-number function.

The binary string of a natural number is a representation of its odd-even composite function,
where the 1 in the i(i > 0)-bit from left to right is the i(i > 0) odd-number function O(x), and 0 is the
corresponding even-number function E(x). For example, Figure 1 shows the decomposition of the
composite function of 60.

The natural number n is then represented by the bring 0 and 1 string abcde f , we note in passing
that the f , e, d, c, b, a are the remainders left after successive divisions of n by 2.

60=2*(2*(2*(2*(2*1+1)+1)+1)+0)+0 = E(E(O(O(O(1))))) =  (111100) 2

60

30

0
2

2
0

152
1

7

3

2

2

1

1

1

Figure 1. Natural number 60 is obtained from 1 through the compositionof five even and odd functions
its binary string is (111100)2.

1.3. Use a Graph to Represent the Composite Procedure of the Natural Numbers

In order to give an intuitive impression, we provide a full binary directed tree to represent the
natural number set, the root is the smallest number 1. For per vertex, its left-child is an even number
which double itself, its binary string is appended by 0, right-child is an odd number which double
itself and add 1, its binary string is appended by 1. For an natural number its binary string indicates
the procedure of the composition of O(x) and E(x) from initial value 1 to the final accordingly binary
string from the left to right. The full binary directed tree, as in Figure 2, is a very good representation
of natural number N, it is infinitely isosceles triangle.

Proposition 1 The length of a binary string implies its level in the full binary directed tree, and
the number of the times of composite of odd-number and even-number function is the length of a
binary string minus 1.
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Figure 2. The representation of natural number set is a infinite full binary directed tree.

For given natural number n, its binary string from the second bit in left to right appending 0
or 1, indicates which comes from the root 1 of the full binary directed tree traversal according only
one branch to itself. For instance, Figure 3 illustrates the procedures of composite odd-number and
even-number of 21 and 29.
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Figure 3. 21 = (10101)2 and 29 = (11101)2 comes from the path from root 1 walk to 10101 and 11101
accordingly appending 1 or 0 to the vertexes in succession.

1.4. Another Partition of the Natural Number Set

We give the definitions of three kinds of natural numbers:
Definition 2(i) By applying the odd function O(x) m compositions, a natural number, namely

Om(1) = 2m − 1 = 2m−1 + 2m−2 + · · · + 2 + 1 = (11 · · · 1)2, is obtained. such as 3 = (11)2, 7 =

(111)2, 15 = (1111)2, 31 = (11111)2, 63 = (111111)2, · · · , which we call it as pure odd number. Those
are in the right leg of the isosceles triangle, namely the full binary directed tree of the Figure 2.

(ii) By applying the even function E(x) m compositions, a natural number, namely Em(1) = 2m =

(10 · · · 0)2, is obtained, such as, 2 = (10)2, 4 = (100)2, 8 = (1000)2, 16 = (10000)2, 32 = (100000)2, 64 =
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(1000000)2, · · · , which we call it as pure even number.Those are in the left leg of the isosceles triangle,
namely the full binary directed tree of the Figure 2.

(iii) The natural number obtained by the composition of odd function O(x) and even function
E(x), we call it mixed number. Such as, 18 = (10010)2, 28 = (11100)2, 67 = (1000011)2, 309 =

(100110101)2. Those are in the inside of the isosceles triangle, the complete directed binary tree of the
Figure 2.

In particular, the natural numbers obtained by the finite alternately composition of the odd func-
tion O(x) and the even function E(x), namely, [E(O(1))]m = (101 · · · 101)2. Such as 5 = (101)2, 21 =

(10101)2, 85 = (1010101)2, 341 = (101010101)2, 1365 = (10101010101)2, 5461 = (1010101010101)2, · · · ,
which we call hard numbers.

For a natural number n, if its binary string has k + 1 bits, then the degree of composite function
is k. The binary string of a pure odd number is made of all 1; and the binary string of a pure even
number is all 0 besides 1 in left-most; the binary string of a mixed number is made of many 0 and 1.

Thus for any natural number n, its binary string 1 ×× is the traversal path in the full binary
directed tree from the root to down along the arcs. For example in Fig 3, for 21 = (10101)2, it comes
from the root 1 down 2,5,10, finally reach 21, it is appending 0,1,0,1 to the vertexes, 1 → 10 → 101 →
1010 → 10101. And for 29 = (11101)2, it comes from the root 1 down 3,7,14, finally reach 29, it is
appending 1,1,0,1 to the vertexes, 1 → 11 → 111 → 1110 → 11101.

Property 2 The set of natural numbers can be divided into three different sets: {natural number}=
{pure even number}∪{pure odd number}∪{mixed number}, where {mixed num-

ber}={mixed even number}∪{mixed odd number}
Example 1 (1)60–97 are mixed numbers.
(2)64,1180591620717411303424 are pure even numbers.
(3)63,1180591620717411303423 are pure odd numbers.
When we convert those natural numbers from decimal to binary, the facts are obvious.
60 = (111100)2 is a mixed-even number, 97 = (1100001)2 is a mixed-odd number.
64 = 26 = (1000000), 1180591620717411303424 = 270 = (10000 . . . 0) are pure even numbers:
63 = (111111)2, 1180591620717411303423 = 270 − 1 = (11 . . . 1) are pure odd numbers.

2. Study the Collatz Function

2.1. Using Tabular Form and Algebraic Expressions to Represent the Collatz Sequence

The reduced Collatz function [6] is an alternate form of the Collatz function that maps one odd
number to the next odd number, so that only odd numbers are included in the Collatz sequence.

RT(n) =

{
3n+1

2m , if n is odd number, 3n+1
2m is an odd number,

n
2r if n is even number, n

2r is an odd number.
(4)

where m and r are two natural number, and the result is an odd number. We use a table that has been
modified from the tabular forms in [6], which is the process for iterating the Collatz function (1.1) on n.
For instance, if n = 117, the tabular forms is as follows.

Line 0 117 35

215 · 117

Line 1 117→ 352→ 176→ 88→ 44→ 22→ 11 34

215

Line 2 11→ 34→ 17 33

210

Line 3 17→ 52→ 26→ 13 32

29

Line 4 13→ 40→ 20→ 10→ 5 3
27

Line 5 5→ 16→ 8→ 4→ 2→ 1 1
24

Line 6 1→ 4→ 2→ 1
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The tabular’s unique feature is that the first and last numbers in each row are all odd numbers. If
x is the first odd number, then y in the same row can be represented by the formula

y =
3x
2r +

1
2r , (5)

where r is the number of the arrows from the even number to last odd number in the same row. For
instance, for the table on n = 117, there are the following,

Line 1 suppose v = 117, there is the expression 3
25 · v + 1

25 = 11 = u,
Line 2 suppose u = 11, there is the expression 3

2 · u + 1
2 = 17 = z,

Line 3 suppose z = 17, there is the expression 3
22 · z + 1

22 = 13 = y,
Line 4 suppose y = 13, there is the expression 3

23 · y + 1
23 = 5 = x,

Line 5 suppose x = 5, there is the expression 3
24 · x + 1

24 = 1,
Line 6 suppose a = 1, there is the expression 3

22 a + 1
22 = a = 1.

Substitute the expression in line 1 into the expression in line 2, we obtain

3
2
· ( 3

25 · v +
1
25 ) +

1
2
=

32

26 · v +
3
26 +

1
2
= z

We substitute this expression into the expression in line 3, get

3
22 · (32

26 · v +
3
26 +

1
2
) +

1
22 =

33

28 · v +
32

28 +
3
23 +

1
22 = y

Using the same method, we get the following expressions,

3
23 · y +

1
23 =

3
23 · (33

28 · v +
32

28 +
3
23 +

1
22 ) +

1
23 =

34

211 · v +
33

211 +
32

26 +
3
25 +

1
23 = x

3
24 · x +

1
24 =

35

215 · v +
34

215 +
33

210 +
32

29 +
3
27 +

1
24 = 1

Thus, we have an algebraic expression

T20(117) =
35

215 · 117 +
34

215 +
33

210 +
32

29 +
3
27 +

1
24 = 1. (6)

In general, the algebraic expressions are obtained: Starting from the last row of the table and going
up to the binary corresponding to the initial value n of the first row, the numerator is 3k, k = 0, 1, 2, 3, · · · ,
The denominator is 2rk , r0 = m0, rk = rk−1 + mk, k = 1, 2, 3, · · · , mk here for the before k lines at the
end of the second column of binary string number 0. The details are expressed in the last column of
the corresponding table.

The powers of 2 in the denominator are the sum of the numbers of arrows after the even numbers
to the end of the row and the power of 2 in next row. We can see that in the last column of the table
from the last row to the first row, the powers of 3 are 0, 1, 2, 3, · · · in the numerator successively.

2.2. Discuss the Collatz Problem by Binary Strings

If the Collatz function (1.1) is expressed in binary form as

T(n) =

{
(11)2 · (1 × · · · × 1)2 + 1 = (1 ××× 10 · · · 0)2, if n is odd number,

(1×···×10)2
(10)2

= (1 × · · · × 1)2, if n is even number.
(7)

The characteristics of the left side and right side and the penultimate of the binary string are
illustrated by the Figure 4.
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1

0

Grows to the left 

by two bits 10.

The last bit must be 0,and 

the penultimate bit does not 

change.

1 1 y x 1

1 1 y x 1

0 z x1

1

0

Grows to the left by 

one bit 1.

1 0 0 x 1

1 0 0 x 1

1 1 x

The last bit must be 0,and 

the penultimate bit does not 

change.

Figure 4. Binary representation of the Collatz function, grows by appending 1 or 10 to the left side of
the binary string delete at least one 0s in the right side of the binary string.

Then we use binary string to illustrate the reduced Collatz function (3.8) as the follows,

RT(n) =


(1×××10···0)2

(10···0)2
= (1 ××× 1)2, if n is odd number, 3n+1

2m is an odd number,
(1×××10···0)2

(10···0)2
= (1 ××× 1)2 if n is even number, n

2r is an odd number.
(8)

where × is 0 or 1.
In the Collatz squence, for the Collatz function T(n), next T2(n), and next and next T3(n), so on,

there have not unified formulas. If we use binary string to state the procedure Tk(n), i.e., n → RT(n),
which is correspond to add 1 or 10 in the left side or delete all 0 in the right side. Thus we reduced the
tabular form to the follows. For example, for n = 67, 10027 one obtain the following tables.
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1000011→ 11001010→ 1100101 38

219 · 67 37

219

1100101→ 100110000→ 10011 36

218

10011→ 111010→ 11101 35

214

11101→ 1011000→ 1011 34

213

1011→ 100010→ 10001 33

210

10001→ 110100→ 1101 32

29

1101→ 101000→ 101 3
27

101→ 10000→ 1 1
24

1

T27(67) = T(8, 19, 67) =
1
24 +

3
27 +

32

29 +
33

210 +
34

213 +
35

214 +
36

218 +
37

219 +
38

219 · 67 = 1

330

261 ·10027
10027=(10011100101011)2 → (111010110000010)2 → (11101011000001)2

329

261

15041=(11101011000001)2 → (1011000001000100)2 → (10110000010001)2
328

260

11281=(10110000010001)2 → (1000010000110100)2 → (10000100001101)2
327

258

8461=(10000100001101)2 → (110001100101000)2 → (110001100101)2
326

256

3173=(110001100101)2 → (10010100110000)2 → (1001010011)2
325

253

595=(1001010011)2 → (11011111010)2 → (1101111101)2
324

249

893=(1101111101)2 → (101001111000)2 → (101001111)2
323

248

335=(101001111)2 → (1111101110)2 → (111110111)2
322

245

503=(111110111)2 → (10111100110)2 → (1011110011)2
321

244

755=(1011110011)2 → (100011011010)2 → (10001101101)2
320

243

1133=(10001101101)2 → (110101001000)2 → (110101001)2
319

242

425=(110101001)2 → (10011111100)2 → (100111111)2
318

239

319=(100111111)2 → (1110111110)2 → (111011111)2
317

237

479=(111011111)2 → (10110011110)2 → (1011001111)2
316

236

719=(1011001111)2 → (100001101110)2 → (10000110111)2
315

235

1079=(10000110111)2 → (110010100110)2 → (11001010011)2
314

234

1619=(11001010011)2 → (1001011111010)2 → (100101111101)2
313

233

2429=(100101111101)2 → (1110001111000)2 → (1110001111)2
312

232

911=(1110001111)2 → (101010101110)2 → (10101010111)2
311

229

1367=(10101010111)2 → (1000000000110)2 → (100000000011)2
310

228

2051=(100000000011)2 → (1100000001010)2 → (110000000101)2
39

227

3077=(110000000101)2 → (10010000010000)2 → (1001000001)2
38

226

577=(1001000001)2 → (11011000100)2 → (110110001)2
37

222

433=(110110001)2 → (10100010100)2 → (101000101)2
36

220

325=(101000101)2 → (1111010000)2 → (111101)2
35

218

61=(111101)2 → (10111000)2 → (10111)2
34

214

23=(10111)2 → (1000110)2 → (100011)2
33

211

35=(100011)2 → (1101010)2 → (110101)2
32

210

53=(110101)2 → (10100000)2 → (101)2
3
29

5=(101)2 → (10000)2 → (1)2
1
24
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T91(10027) =
1
24 +

3
29 +

32

210 +
33

211 +
34

214 +
35

218 +
36

220 +
37

222 +
38

226 +
39

227

+
310

228 +
311

229 +
312

232 +
313

233 +
314

234 +
315

235 +
316

236 +
317

237 +
318

239

+
319

242 +
320

243 +
321

244 +
322

245 +
323

248 +
324

249 +
325

253 +
326

256 +
327

258

+
328

260 +
329

261 +
330

261 · 10027

= 1

T106(31) =
1
24 +

3
29 +

32

210 +
33

211 +
34

214 +
35

218 +
36

220 +
37

222 +
38

226 +
39

227

+
310

228 +
311

229 +
312

232 +
313

233 +
314

234 +
315

235 +
316

236 +
317

237 +
318

239

+
319

240 +
320

242 +
321

243 +
322

244 +
323

247 +
324

249 +
325

250 +
326

251 +
327

252

+
328

254 +
329

255 +
330

256 +
331

258 +
332

259 +
333

261 +
334

263 +
335

264 +
336

265

+
337

266 +
338

267 +
339

267 · 31

= 1

T107(63) =
1
24 +

3
29 +

32

210 +
33

211 +
34

214 +
35

218 +
36

220 +
37

222 +
38

226 +
39

227

+
310

228 +
311

229 +
312

232 +
313

233 +
314

234 +
315

235 +
316

236 +
317

237 +
318

239

+
319

240 +
320

242 +
321

243 +
322

244 +
323

247 +
324

249 +
325

250 +
326

251 +
327

252

+
328

254 +
329

255 +
330

256 +
331

258 +
332

259 +
333

263 +
334

264 +
335

265 +
336

266

+
337

267 +
338

268 +
339

268 · 63

= 1

T118(97) =
1
24 +

3
29 +

32

210 +
33

211 +
34

214 +
35

218 +
36

220 +
37

222 +
38

226 +
39

227

+
310

228 +
311

229 +
312

232 +
313

233 +
314

234 +
315

235 +
316

236 +
317

237 +
318

239

+
319

240 +
320

242 +
321

243 +
322

244 +
323

247 +
324

249 +
325

250 +
326

251 +
327

252

+
328

254 +
329

255 +
330

256 +
331

258 +
332

259 +
333

261 +
334

263 +
335

264 +
336

265

+
337

266 +
338

269 +
339

270 +
340

271 +
341

273 +
342

275 +
343

275 · 97

= 1
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We observe the procedure of composite reduced Collatz function (3,8), i.e., the Collatz sequences,
that we pay close attention to the zeros in right side of binary strings of an even number and the
end-substring between the first 0 encountered from right to left which is make of 1. There are many
properties in the tabular expressions as the follows.

1. Column characteristic
1) In each row, the first column is always odd (empty when the initial value is even), i.e., the last

bit of its binary string must be 1.
The second column must be even, its binary string must end with at least one 0, the number of

subsequent even numbers must be as many as the number of zeros at the end of the second column’s
binary string, and the number of zeros at the end of each even number to the right is one less than the
previous one, until all zeros are deleted to become the last odd number in the row.

The last column must be odd, and the last bit of its binary string must be 1.
2) When there are only three numbers in a row, that is, only one even number, the last odd number

must be greater than the first odd number (the first column); When there are more than three numbers
in a row, that is, more than two even numbers, the last odd number must be smaller than the first odd
number.

3) The preceding binary string is identical from the second column to the last column in one line,
except for the all 0 at the end.

2. Row characteristic
From top to bottom, the binary string in the first column of two adjacent rows has the following

two characteristics:
1) If the number of bits of 1 in the end-substring of the previous row is greater than 1, the number

of bits of 1 in the end-substring of the next row is reduced by one, until it finally becomes only one;
The corresponding number is greater than the number in the previous row;

2) If the end-substring of the binary string in a row contains only one bit of 1, then the end-
substring of the binary string in the next row contains either one bit of 1 or many bits of 1, and the
corresponding number is smaller than the number in the previous row;

3. Comprehensive characteristic
1) When the end-substring of the binary is 1, the corresponding digit of the decimal number can

be any one of 1, 3, 5, 7, 9. For instance, 161 = (10100001)2, 433 = (110110001)2, 325 = (101000101)2,
577 = (1001000001)2, 2429 = (100101111101)2.

2) The number ending in decimal is 9 and the corresponding binary number can end in any end-
substrings of 1—for instance—319 = (100111111)2, 479 = (111011111)2,719 = (1011001111)2,1079 =

(10000110111)2,1619 = (11001010011)2,2429 = (100101111101)2.
3) When the last substring of binary is reduced by one bit from many, the corresponding decimal

number’s unit’s digit are always reciprocated within the three groups of numbers: {1, 7}, or {3, 5},
and unit’s digit is always {9}.

2.3. Discuss the Collatz Sequences by Convert Function and Only Odd Numbers

Because the result of the reduced Collatz function (3.4) is only odd numbers, we talk three sets to
divide the odd number set O = {1, 3, 5, 7, 9, 11, 13, · · · }. In [15,16] the odd number set can be divided
into three sets θ1, θ3, θ5,

θ1 = {6i + 1|i = 0, 1, 2, 3, · · · } (9)

θ3 = {6i + 3 = 3(2i + 1)|i = 0, 1, 2, 3, · · · } (10)

θ5 = {6i + 5|i = 0, 1, 2, 3, · · · } (11)

As [16] the authors call inverse Collatz function, if an ≡ 1(mod 3), i.e., an ∈ θ1,

bm =
22m · an − 1

3
, m = 0, 1, 2, 3, · · · (12)
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for each an we get infinite sequences of Bn sets as following:
1 → B1 = {1, 5, 21, 85, 341, 1365, 5461, · · · },
7 → B2 = {9, 37, 149, 597, 2389, 9557, 38229, · · · },
13 → B3 = {17, 69, 277, 1109, 4437, 17749, 70997, · · · },
19 → B4 = {25, 101, 405, 1621, 6485, 25941, 103765, · · · },
25 → B5 = {33, 133, 533, 2133, 8533, 34133, 136533, · · · },
31 → B6 = {41, 165, 661, 2645, 10581, 42325, 169301, · · · },
· · ·
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213
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32
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128

512

Figure 5. The zigzag branchs are the B1 set in full binary directed tree.

If an ≡ 2(mod 3), i.e., an ∈ θ5,

cm =
22m−1 · an − 1

3
, m = 0, 1, 2, 3, · · · (13)

for each an we get infinite sequences of Cn sets as following:
5 → C1 = {3, 13, 53, 213, 853, 3413, 13653, · · · },
11 → C2 = {7, 29, 117, 469, 1877, 7509, 30037, · · · },
17 → C3 = {11, 45, 181, 725, 2901, 11605, 46421, · · · },
23 → C4 = {15, 61, 245, 981, 3925, 15701, 62805, · · · },
29 → C5 = {15, 61, 245, 981, 3925, 15701, 62805, · · · },
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35 → C6 = {23, 93, 373, 1493, 5973, 23893, 95573, · · · },
· · ·
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31

11111
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42 53

213

106

40
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160

640

Figure 6. The zigzag branchs are the C1 set in full binary directed tree.

B1 is the hard number set, they are in a zigzag branch which the start vertex is 1. The other
set Bi or Ci are in the other zigzag branchs. For the per number in one set Bi, Ci the Collatz paths
(corresponding Collatz sequence) from it to 1 are the same shape. It is shown in Figure 6.

For an ≡ 0(mod 3), i.e., an ∈ θ3, we give a new formula

dm =
3an + 1

2r (14)

which result is the odd set {θ1}
⋃{θ5}. We observe (3.10) that 3O = θ3.

32 · 1 + 1 = 10 = 2 · 5, 1 → 5,
32 · 3 + 1 = 28 = 22 · 7, 3 → 7,
32 · 5 + 1 = 46 = 22 · 23, 5 → 23,
32 · 7 + 1 = 64 = 26 · 1, 7 → 1,
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32 · 9 + 1 = 82 = 2 · 41, 9 → 41,
32 · 11 + 1 = 100 = 22 · 25, 11 → 25,
32 · 13 + 1 = 118 = 2 · 59, 13 → 59,
· · ·
Thus we have two properties:
Proposition 3 The formulas (3.12) and (3.13) can map θ1

⋃
θ5 to O.

Proposition 4 The formula (3.14) can map θ3 to θ1
⋃

θ5. Namely The formula dm = 32an+1
2r maps

from O to θ1
⋃

θ5.

3. Discuss the Collatz Sequences by the Full Binary Directed Tree

In order to study the Collatz conjecture by the full binary directed tree, we call two cases 3n + 1
and n

2 as two actions jump and trace correspondingly in the full binary directed tree. An one jump is
to walk down from a vertex to another vertex in another branch and another level of the tree. An one
trace is to walk along the branch from current vertex back to its parent-vertex.

Proposition 5 A jump action is that from an odd vertex to an even vertex which is neither its child
nor its descendant. A trace action is from even vertex back to its parent.

Proposition 6 For a given number n, applying the Collatz function (1.1) or the reduced Collatz
function (3.4) or (3.8) gets the Collatz sequence has not common vertex until 1.

This means the path of the tree traversal by two actions jump and trace has not vertex of intersec-
tion until meets 1. Especially there is not the moment to jump to itself branch.

Proposition 7 In the sequence of the composites of Collatz function of natural number n, one
jump action only down to next level or next adjacent level. There are not adjacent jump actions, namely
two jump actions at least one trace action apart since 3x + 1 is even number when x is odd.

Proposition 8 In the sequence of the composites of Collatz function of natural number n, one
trace action only back to its parent. Two trace actions can adjacent, namely many trace actions can
adjacent to find its ancestor. For instance, a pure even 64 = 26, there are 6 trace actions adjacent to find
its ancestor 1.

In the sequence of the composites of Collatz function of natural number n, we call the substring
of a string encountered from right to left before the first 0 as end-substring.

Proposition 9 If the length of the end-substring of given odd number is one, the next odd must be
smaller than itself. If the length of the end-substring of given odd number is bigger than one, the next
odd must be bigger than itself.

Proposition 10 As in [16], for adjacent pair pure numbers, in the full binary directed tree and the
Collatz function (1.1) or reduced Collatz function (3.8). For a given odd number r = 2k − 1, the pure
odd 2r − 1 = 22k−1 − 1, if there exists natural number m such that Tm(2r − 1) = Tm(22k−1 − 1) = 1,
then for its right-child 2r+1 − 1 have the relation Tm+1(2r+1 − 1) = Tm+1(22k − 1) = 1.

In the graph format, there is a similar invariants structures of two sequence of the (or reduced)
Collatz function for a pure odd number with odd number lenght and its next pure number with even
number length, as the Figures 6–8.
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Figure 7. The same shapes paths for an odd-length pure odd and the next pure odd.
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Figure 8. The representation of natural number set is a complete binary tree.
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Figure 9. The representation of natural number set is a complete binary tree.

4. Comparison of Two Piecewise Functions and the Proof of Collatz Conjecture

Comparing the Collatz function T(x) and the function f−1(x), if their domain is defined as the
set of natural numbers, we find that they have the following relation:

1) The function f−1(x) is strictly monotonically decreasing,
2) When x is purely even, the function T(x) is only one case of the functions, is strictly monotoni-

cally increasing;
3) When x is a pure or mixed odd number, the function T(x) is wavy, which is increasing, followed

by one or more decreasing processes, that is, “increase – decrease – increase”, or “increase – decrease
· · · decrease – increase”. For example, Figures 3 and 4 are the plots of the iterated sequence of
Collatz functions with initial values of pure odd 255 = 28 − 1 = (11111111)2 and mixed odd number
97 = (1100001)2, respectively.
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Figure 10. Point plot of a sequence of 47 iterations of the Collatz function for pure odd 255.
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Figure 11. Point plot of a sequence of 118 iterations of the Collatz function for mixed number 97.

Due to the fact that an odd number can be either pure or mixed, when x is odd, the Collatz
function 3x + 1 can be parted into two parts. i.e., 3x + 1 = 2x + (x + 1).

(i) when x is a pure odd number, i.e., x = 2r − 1, The binary string 2x = 2r+1 − 2 is even, with
just one 0 at the end, and the other part x + 1 = 2r is pure even. As a result, 3x + 1 = 2x + (x + 1) =
2r+1 + 2r − 2 is a mixed even number with only one 0 in the last bit and r − 1 bits 1 in the second-to-last
substring, corresponding 3x+1

2 = 2r + 2r−1 − 1 > x, it means function T(x) is increase.
(ii) When x is a mixed odd number, it just has one 1 in the last binary substring, the value

3x+1
2r < x, (r > 1) is smaller odd than x, it means function T(x) is decrease. The last binary substring of

number 3x+1
2r , (r > 1) has two kinds, which :

(a) There many 1 in the last binary substring. For example, 893 = (1101111101)2, 3×893+1
23 =

335 = (101001111)2 = 335, 335 < 893.
(b) Only 1 in the last binary substring. For example, 17 = (10001)2, 3×17+1

22 = (1101)2 = 13,
13 < 17.

When the end of the binary substring is 1, using × denotes either 1 or 0, we discuss the changes
of the last substring three digits and four digits in the procedure of the Collatz function sequences:

×001 → ×× 100 → ×× 1, ×101 → ×000 → ×
×0101 → ×× 0000 → ××, ×1101 → ×× 1000 → ×× 1
3x + 1 can adjust the structure of its binary substring, when the end of the binary substring is

1, the value of Collatz function T(x) = 3x+1
2r , r > 1 decrease, thus the number of binary string digits

decrease at least 2. This process continues several times, and eventually you can reach the minimum
value of 1. The Collatz function shows that the Collatz conjecture holds.

We have known that mathematics formula

xk + xk−1 + · · ·+ x + 1 =
xk+1 − 1

x − 1
(15)
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when x = 2, there is a formula

2k + 2k−1 + · · ·+ 2 + 1 = 2k+1 − 1 (16)

The substantive characteristics is that the powers of 2 must be continuous natural numbers, this is the
key to our proof method to solve the Collatz conjecture.

Proof. (i) If a given natural number n = 2k is a pure even, it requires only an iteration of the k times
Collatz function to reach the smallest natural number 1, that is the conjecture holds.

(ii) When a natural number n is not pure even, that is, when it is either pure odd or mixed odd
(a mixed even is eliminated since the end-substring 0 can become an odd number; hence, we do not
include this case).

Given an odd number n, which can be expressed as follows in algebraic notation: n = (1 × · · · ×
1)2 = 2r + 2m + · · ·+ 1, then

3n + 1 = 2n + n + 1

= 2r+1 + 2m+1 + · · ·+ 2 + 2r + 2m + · · ·+ 1 + 1

= 2r+1 + 2m+1 + · · ·+ 2 + 2r + 2m + · · ·+ 2

= 2r+1 + 2r + 2m+1 + 2m + · · ·+ · · ·+ 2h

If the length of the end-substring of n is 1, the length of end-substring of the binary string 3x + 1
is either 1 or bigger than 1.

Two formulas, 2l + 2l = 2l+1 and above (5.16), can be used to modify the structure of the binary
string n to the binary string 3n + 1. That is, there is an appended term 2r−h in two equivalent terms,
2r+1−h and 2m+1−h. When the zeros in the middle of a binary string are compared to a bubble, it
means that these zeros are gradually being driven out of the rightmost end by 3n + 1. It is the same as
progressively removing the bubbles hidden in the sponge using a means 3n + 1. Once 3n+1, 0 shifts
one bit to the right, i.e., the length of the associated binary substring is reduced by one bit, when the
length of the end-substring is greater than 1. The end-substring length of the binary string 3x + 1 is
either greater than or equal to 1 if the length of the end-substring of n is 1.

We shall then divide 3n + 1 by the last term 2h,

3n + 1
2h = 2r+1−h + 2r−h + 2m+1−h + 2m−h + · · ·+ · · ·+ 20

get another odd number, this is the value of reduced Collatz function (4). And so on, finitely steps after
finally we get a pure even number 2t, this is the case in above (i), thus the Collatz conjecture hold on.
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We illustrate the procedure by a mixed odd number n = 67 and hard number set in the following,

67 = (1000011)2 = 26 + 22 + 20

3 · 67 + 1 = 2 · 67 + 67 + 1 = 27 + 22 + 21 + 26 + 21 + 20 + 20 = 27 + 26 + 23 + 21

3 · 101 + 1 = 2 · 101 + 101 + 1 = 27 + 26 + 23 + 21 + 26 + 25 + 22 + 20 + 20 = 28 + 25 + 24

3 · 19 + 1 = 2 · 19 + 19 + 1 = 25 + 22 + 21 + 24 + 21 + 20 + 20 = 25 + 24 + 23 + 21

3 · 29 + 1 = 2 · 29 + 29 + 1 = 25 + 24 + 23 + 21 + 24 + 23 + 22 + 20 = 26 + 24 + 23

3 · 11 + 1 = 2 · 11 + 11 + 1 = 24 + 22 + 21 + 23 + 21 + 20 + 20 = 25 + 21

3 · 17 + 1 = 2 · 17 + 17 + 1 = 25 + 21 + 24 + 20 + 20 = 25 + 24 + 22

3 · 13 + 1 = 2 · 13 + 13 + 1 = 24 + 23 + 21 + 23 + 22 + 20 + 20 = 25 + 23

3 · 5 + 1 = 2 · 5 + 5 + 1 = 23 + 21 + 22 + 20 + 20 = 24

1

For a special class of mixed numbers, the hard number 4k−1
3 = (101 · · · 101)2, then its Collatz

sequent result is

ak =
4k − 1

3
=

4k − 1
4 − 1

= 4k−1 + 4k−2 + · · ·+ 4 + 1 = (101 · · · 101 · · · 101)2,

T(ak) = 3ak + 1 = 4k = 22k = (10 · · · 0)2, T2k+1(ak) = 1.

This means that the Collatz conjecture is valid for this case. Therefore we have proved the Collatz
conjecture 1 at section 1 of this paper.

5. Conclusion

From previous proof of the conjecture, it becomes a theorem.
Theorem For any natural number n, if it is even, divide by 2, if it is odd, multiply by 3, add 1, and

so on, the result must finally reach 1.
Theorem For any positive integer n, the sequence of the Collatz function is an ultimately periodic

sequence, its preperiod η(n) is a related-to n positive, and the least period {4, 2, 1}, ρ(n) = 3.
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