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Abstract: Deep learning image reconstruction (DLIR) algorithms employs convolutional neural
networks (CNNSs) for CT image reconstruction to produce CT images with a very low noise level,
even at low radiation dose. The aim of this study was to assess whether the DLIR algorithm reduces
the CT effective dose (ED) and improves CT image quality in comparison with filtered back
projection (FBP) and iterative reconstruction (IR) algorithms in intensive care unit (ICU) patients.
We identified all consecutive patients referred to the ICU of a single hospital who underwent at
least two consecutive chest and/or abdominal contrast-enhanced CT scans within a time period of
30 days using DLIR and subsequently FBP or IR algorithm (Advanced Modeled Iterative
Reconstruction model-based algorithm [ADMIRE], or Adaptive Iterative Dose Reduction 3D [AIDR
3D]) for CT image reconstruction. The radiation ED, noise level, and signal-to-noise ratio (SNR)
were compared between the different CT scanners. The non-parametric Wilcoxon test was used for
statistical comparison. Statistical significance was set at p <0.05. A total of 83 patients (mean age, 59
+ 15 years [standard deviation]; 56 men) were included. DLIR vs FBP reduced ED (18.45 + 13.16 mSv
vs 22.06 + 9.55 mSv, P < 0.05), while DLIR vs FBP and vs ADMIRE and AIDR 3D IR algorithms
reduced image noise (8.45 + 3.24 vs 14.85 + 2.73 vs 14.77 + 32.77 and 11.17 + 32.77\, P < 0.05) and
increased SNR (11.53 + 9.28 vs 3.99 + 1.23 vs 5.84 + 2.74 and 3.58 + 2.74, P < 0.05). CT scanners
employing DLIR reduced radiation ED and improved SNR compared to CT scanners using FBP,
whereas CT scanners using DLIR improved SNR compared to CT scanners using FBP or IR
algorithms in ICU patients.

Keywords: CT; intensive care; reconstruction; algorithms; deep learning

1. Introduction

CT image reconstruction has evolved from the original filtered back projection (FBP) to hybrid
and model-based iterative reconstruction (IR) algorithms, with a significant decrease in the radiation
dose [1]. The main advantage of FBP is its computational efficiency, whereas its disadvantages
include significant noise at low radiation doses and limited artifact reduction [1]. Iterative
reconstruction (IR) algorithms are widely employed in CT image reconstruction to preserve image
quality, even in low-dose CT acquisitions, with reduced image noise and artifacts. [1,2]. Hybrid-IR
algorithms employ both FBP and IR algorithms (ranging from 50% to 90% with complementary levels
of FBP), and allow fast CT image reconstruction with a reduction in image noise [1] and an
improvement in image quality at lower radiation doses. Model-based IR algorithms are fully IR
algorithms that use forward and backward reconstruction steps from the sinogram domain to the
image domain [1]. The main advantage of model-based IR is the maintenance of CT image quality
with low noise, even at low doses; however, its disadvantage is the need for high computational
power and low capability in the detection rate of low-contrast structures on low-dose CT images [1-
4].
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In recent years, there has been growing interest in the application of deep learning image
reconstruction (DLIR) algorithms, which employ convolutional neural networks (CNNs) for CT
image reconstruction to produce CT images with a very low noise level, even at low radiation doses
[4]. The performance of DLIR algorithms for CT image reconstruction relies mainly on the quality
and quantity of the training data and high quality reference ground-truth CT images [5,6].

A marked reduction in radiation ED is particularly required in ICU patients who are exposed to
high radiation exposure, frequently higher than 100 mSv during a single hospital admission, and
particularly in those patients with prolonged hospitalization time [7,8], due to the extremely frequent
use of X-ray imaging modalities. In particular, ICU patients undergo frequent CT scans, often with
extended scanning lengths, hampered by low image quality and artifacts due to external or internal
medical devices and patient arms placed along the body. No previous study has provided an intra-
patient comparison between hybrid IR/FBP and DLIR CT reconstruction algorithms implemented in
different CT scanners in terms of the radiation dose and image quality in ICU patients.

The aim of the present study was to assess whether the DLIR algorithm may reduce the CT
effective dose (ED) and improve CT image quality in comparison with FBP and iterative
reconstruction (IR) algorithms in ICU patients.

2. Materials and Methods
2.1. Patients

The study was conducted in accordance with the Declaration of Helsinki, and approved by the
Ethics Committee of our hospital (Prot. n. 0000569 approved on january 4th 2023). Patient informed
consent was waived due to retrospective nature of the study. We initially identified all consecutive
patients referred to the ICU of our hospital because of their severe clinical status, major traumas, or
even recent thoracic or abdominal major surgery (extended tumor resection or liver, cardiac, or lung
transplant) between October 1, 2021, and February 28, 2023. Subsequently, we retrospectively
selected only those patients who underwent at least two subsequent chest and/or abdominal contrast-
enhanced CT scans with comparable scan lengths covering the same body region (chest, abdomen,
or both chest and abdomen) during the same hospital admission. DLIR algorithm was used in the
first CT scan for CT image reconstruction, whereas FBP or Adaptive Iterative Dose Reduction 3D
(AIDR3D) hybrid or even Advanced Modeled Iterative Reconstruction (ADMIRE) model-based IR
algorithms were used in the second CT scan. To ensure that significant physical changes in patient
features, including body mass index, occurred between the two CT scans, only those obtained within
a limited timeframe of 30 days were included.

2.2. CT Scanning Protocols

Because it was not possible to use different CT image reconstruction algorithms on the same raw
data obtained from the same patients owing to the different CT acquisition technical settings related
to the subsequent CT image reconstruction algorithm (DLIR) applied to CT scans acquired with a
lower tube kV and current than IR or FBP, we compared different CT scanners equipped with
different CT image reconstruction algorithms, according to the manufacturer’s technical solutions
(Table 1).

Table 1. CT scanning parameters. FBP = filtered back projection; DLIR = deep learning image
reconstruction; ADMIRE = Advanced Modeled Iterative Reconstruction model-based iterative
reconstruction algorithm; AIDR 3D = Adaptive Iterative Dose Reduction 3D - hybrid iterative
reconstruction algorithm.

System (Vendor) Reconstruction Algorithm Pitch
Somatom Sensation 64
FBP .
(Siemens Healthineers) 08
Somatom Definition Edge ADMIRE 0.6

(Siemens Healthineers)



https://doi.org/10.20944/preprints202405.0462.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 May 2024 doi:10.20944/preprints202405.0462.v1

3
Aquilion ONE
AIDR 3D .81
(Canon Medical Systems) 0
Revolution E
evolution Evo DLIR 0.51

(GE Healthcare)

In every patient, CT was performed craniocaudally with a scan range from the lower neck to the
costophrenic angle level on chest CT and from the diaphragm level to the pelvis on abdominal CT
before and after iodinated contrast agent injection (ioexol 350 mgl/mL; Omnipaque 350, GE
HealthCare, Barrington, Illinois) or iodixanol 270 mg/mL (Visipaque 270, GE Healthcare, Barrington,
Ilinois, USA), iopromide 370 mgl/mL (Ultravist 370, Bayer, Leverkusen, Germany), or iomeprol 400
mgl/mL (Iomeron 400, Bracco, Milan, Italy). Patients were scanned with their arms placed along the
body owing to their critical clinical status. The volume of contrast medium was calculated based on
the patient’s lean body weight (LBW) which was estimated from the patient’s weight, height, and
gender using Boer’s equation [9]. The arterial phase was triggered by placing a region-of-interest
(RQI) over the abdominal CT scan at the level of the second lumbar vertebral body and starting the
scan when the density level achieves 100HU. The portal venous and late phases were obtained at 70
and 180 s after iodinated contrast injection. The contrast agent was injected into the antecubital vein
(total contrast volume and injection speed adjusted by the patient’s body weight to 3-4 mL/sec) and
saline push (10 s at the same rate). The following CT parameters were used: tube voltage, 100-120
kVp; automatic tube current modulation; gantry rotation period, 280 ms; detector collimation, 0.625
mm; and detector pitch, 1.53. The CT dataset was then reconstructed at 1.25 mm section thicknesses
with 512x512 matrices, using standard kernels for soft tissues.

Although the same scanning protocol was generally used in both the first and second CT scans,
a mismatch in scanning length, presence or absence of unenhanced CT scans, or even the number of
contrast-enhanced dynamic phases (arterial, portal venous, or delayed phases) was possible between
the two subsequent thoracic and/or abdominal CT scans. Therefore, these patients were excluded
from analysis. In patients who underwent more than two repeated CT scans, only the two closest CT
scans reconstructed using the DLIR and FBP or IR algorithms were considered for analysis.

Generally, the same iodinated contrast agent dosage and concentration were used in both the
first and second CT scans unless the use of a different iodinated contrast agent type is required (e.g.,
suspicion of bleeding after major surgery, change in iodinated contrast type and/or injected contrast
volume due to anaphylactoid reaction or incoming acute kidney injury, even suspicious pulmonary
embolism). Patients in whom the iodinated contrast agent type, injected volume, and/or iodine dose
was changed or modified were excluded from the analysis.

2.3. CT Reconstruction Algorithms

Different CT image reconstruction algorithms were employed according to the available CT
equipment: Revolution Evo (GE Healthcare) CT with True Fidelity DLIR algorithm in the first CT
scan; Somatom Sensation 64 (Siemens Healthineers) with Filtered Back Projection (FBP) or Aquilion
ONE (Canon Medical Systems) with Adaptive Iterative Dose Reduction (AIDR 3D) IR hybrid
reconstruction algorithm, or even Somatom Definition Edge (Siemens Healthineers) with Advanced
Modeled Iterative Reconstruction (ADMIRE) IR hybrid reconstruction algorithm in the second CT
scan (Table 1).CT images were reconstructed at 3mm and 512x512 pixel matrix. DLIR strength was
set to the highest level (DLIR-H), according to the manufacturer’s default settings.

2.4. Radiation Effective Dose Analysis

The CT dose index volume (CTDIvol) and dose-length product (DLP) were obtained from CT
dose reporting produced automatically by the CT equipment at the end of the scan and archived on
the PACS. The radiation ED was calculated by multiplying the DLP by. body region- specific
conversion coefficient, k, according to the ICRP recommendations [10,11].
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2.5. Visual Image Quality Analysis

Two radiologists with 3 and 10 years of experience performed subjective analyses of the three
groups of images. The radiologists were blinded to the image reconstruction techniques and patient
characteristics. The images are displayed in random order in a preset window, displaying a sequence
at a time. The radiologists were able to scroll through the image and adjust the window width and
position randomly. We used a 5-point scale to evaluate the subjective image quality of the soft and
lung tissues. The scoring standard for soft tissue was as follows: 1 = poor definition of mediastinal /
abdominal parenchyma borders and clearly visible noise, unacceptable image; 2 = moderate
definition of mediastinal / abdominal parenchyma borders and moderately visible noise, suboptimal
image; 3 = moderate definition of mediastinal / abdominal parenchyma borders and barely visible
noise, acceptable image; 4 = good definition of mediastinal / abdominal parenchyma borders and
barely visible noise, good image; and 5 = excellent definition of mediastinal / abdominal parenchyma
borders and very low image noise, optimal image.

2.6. Quantitative Image Quality Analysis

CT image noise was calculated off-site on a dedicated PC using MATLAB (MATLAB version:
9.13. 0 (R2022b), Natick, Massachusetts: The MathWorks Inc.; 2022) with the Global Noise Level
(GNL) algorithm for automatic noise measurement [12,13] by a medical student with specific
competence in CT image quantitation software analysis over 4 years. The GN algorithm was used to
analyze only the selected slice images. Observers selected similar slice locations, and therefore,
approximately similar noise, by using anatomical landmarks for slice selection. This assumption was
tested by measuring the variation in the selected slice locations across the observers. The slice
locations selected by the observers were averaged, and the slice image closest to this location was
selected for GN analysis.

To objectively compare image quality, the signal-to-noise ratio (SNR) was measured for different
reconstruction algorithms. For thoracic evaluation, the SD of the values in Hounsfield units (HU) was
measured in regions of interest (ROIs) measuring > 1 cm2 drawn in the bilateral abdominal fat (SDax1
and SDax2) and the average HU values were measured in the bilateral paraspinal muscles (HUPSM1
and HUPSM2). The noise and SNR for each scan were calculated using the following equations.

Noise=(SDax1+SDax2)/2

SNR=(HUPSM1+HUPSM2)/(SDax1+SDax2)

2.7. Statistical Data Analyses

Statistical data analyses were performed using SciPy 1.11.2, an open-source software using
Python 3.12 programming language, by a medical student with specific competence in statistical
software analysis over 4 years. After the Shapiro-Wilk test failed to show a normal distribution, the
Wilcoxon signed-rank test for paired data was used to assess the differences between the FBP, IR,
and DLIR effective doses and image quality. Cohen’s kappa statistic was calculated for an agreement
on the independent scoring of the image quality between the two radiologists. A kappa statistic of
0.81~1.00 implies an excellent agreement; 0.61~0.80, a substantial agreement; 0.41~0.60, a moderate
agreement; 0.21~0.40, a fair agreement; and 0.00~0.20, a poor agreement. For all statistical tests, a P
value <0.05 was set to indicate a statistically significant difference.
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3. Results
3.1. Patients

Figure 1 show patient flow chart.

[ 14431 patients admitted to Icu

13417 patients, >30 days CT range |

1014 patients

860 patients, CT scan mismatch

71 patients
non-chest or abdomen CT scans

83 patients

Figure 1. Patient flow chart.

Initially, we identified 14,431 patients who were admitted to the ICU. We excluded 13,417
patients due to a temporal distance of >30 days between the two subsequent CT scans; 860 patients
due to a mismatch in the scanning length between the two CT scans (n=350), or differences in CT
scanning protocols (n=251), including the absence of an unenhanced scan, different numbers of
dynamic phases, or even changes in contrast agent type and/or contrast volume administration
(n=259); and 71 patients due to CT scans that did not include the chest and/or abdomen (e.g., brain
and limb). The total hospitalization period was 10 — 45 days (mean * SD, 22 + 10 days).

Finally, we included 83 patients (Table 2) who underwent CT scans of the chest (n=14; 5 patients
were scanned on unenhanced CT and during the arterial phase, while 9 patients underwent both
unenhanced CT and contrast-enhanced CT on arterial and portal venous phases), abdomen (n=51; 32
patients scanned on unenhanced CT and arterial phase, and 19 patients scanned both on unenhanced
CT and arterial and portal venous phases), and both chest and abdomen (n=18; 12 patients scanned
on unenhanced CT and arterial phases, and 6 patients scanned both on unenhanced CT and arterial
and portal venous phases). The timeframe between the two CT scans considered for quantitative
analysis was 10.8 + 8.6 days (range, 1 — 30 days).

Table 2. Patient features.

Patients Total FBP vs ADMIRE vs AIDR 3D vs

DLIR DLIR DLIR
Patients included 83 12 59 12
Male / Female 56 /27 9/3 37/22 10 /2
Age, years mean £ SD (range) i7135) (31- 64 i6i)(52' 54+16 (34-73) 50+ 27 (31-70)
CT time interval, days mean + SD 17 £10 (2-
(range) 1290130 g 9+ 8 (1-30) 11 +8(2-27)
CT scans
Chest CT
14 17%) 4 /12 (33% 1 17% 12 (0%
(percentage) /83 (17%) 4 /12 (33%) 0/59 (17%) 0/12(0%)
Abdomen CT

(percentage) 51/83 (61%) 5/12 (42%) 35/59 (59%)  11/12 (92%)
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Chest and abdomen CT

o o, o o
(percentage) 18/83 (22%) 3 /12 (25%) 14 /59 (24%) 1/12(8%)

3.2. Visual Analysis

Visual analysis results showed significant differences in the image quality of soft tissue among
the three reconstruction methods (all p < 0.05). The image score of DLIR (mean score = 5) was higher
than that of ADMIRE (mean score = 4) and AIDR 3D (mean score = 3) and FBP (mean score = 3) by
50% of observers. Both radiologists believed that DLIR had outstanding noise reduction. The
subjective scores of the two radiologists were consistent (kappa value range: 0.48-0.91) (Figure 2).

Figure 2. a - f. Visual analysis. Visual differences in abdominal parenchyma border definition and
noise among different reconstruction algorithms (a, b) 45-year-old male patient after major surgery.
(c, d) 47-year-old male patient after lung transplant. (e, f) 55-year-old male patient after cardiac
transplant. Filtered Back Project (FBP) (a), Advanced Modeled Iterative Reconstruction model-based
iterative reconstruction (ADMIRE) (c), and Adaptive Iterative Dose Reduction 3D (AIDR 3D) hybrid
iterative reconstruction (e) vs. Deep Learning Image Reconstruction (DLIR) (b, d, f). FBP, ADMIRE,
and AIDR 3D were scored as 2, 4, and 3, respectively, whereas DLIR images were scored as 5 by all
reviewers.

3.3. Effective Dose and Quantitative Analysis

DLIR reduced the effective dose compared to FBP (Table 3) and improved both the image noise
and SNR compared to both the FBP and IR algorithms (Tables 3 and 4). Among IR algorithms,
compared to AIDR 3D, ADMIRE provided similar exposure data (Table 3) with lower noise and
higher SNR (Table 4).
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Table 3. Dose analysis results. * Indicates a P value < 0.05, compared with DLIR. FBP = filtered back
projection, ADMIRE = Advanced Modeled Iterative Reconstruction model-based iterative
reconstruction algorithm; AIDR 3D = Adaptive Iterative Dose Reduction 3D - hybrid iterative
reconstruction algorithm; DLIR = deep learning image reconstruction; CTDIvol = CT dose index
volume; DLP = dose-length product.
. CTDI (mGy) DLP (mGy x cm) Effective Dose (mSv)
Algorithm
mean +SD, range mean +SD, range mean +SD, range
FBP 29.5+12.46 (6.41 -51.79) * 1476.81 + 626.30 (284 — 2105) * 22.06 ;195575; £3'98 -
22.19+17.91 (1.48 -
ADMIRE 29.42 £5.86 (3.52-35.27) 1472.86 +1191.68 (106 — 6778) ? 101 27)( 8
23.08 +17.91 (1.48 -
AIDR 3D 30.83 +5.86 (3.52 - 35.27) 1545.35 + 1191.68 (106 — 6778) 3.08 101 27)( 8
1235.53 + 873.67 (145.89 — 18.45+13.16 (2.04 -
DLIR 24.67 + 61.01 (3.45 - 355.42
67:+61.01(345-35542) 4528.42) 67.93)

Table 4. Image Quality Results. * Indicates a P value < 0.05 compared to DLIR. FBP = filtered back
projection, ADMIRE = Advanced Modeled Iterative Reconstruction model-based iterative
reconstruction algorithm; AIDR 3D = Adaptive Iterative Dose Reduction 3D - hybrid iterative
reconstruction algorithm; DLIR = deep learning image reconstruction.

Algorithm Noise HU Mean + SD (Range) SNR HU Mean * SD (Range)
FBP 14.85+2.73 (11.50 — 18.94) * 3.99+1.23(2.37-6.15) *
ADMIRE 14.77 +32.77 (7.33 - 105.50) * 5.84+2.74 (0.21 -8.71) *
AIDR 3D 11.17 £32.77 (7.33 — 105.50) * 3.58+2.74(0.21-8.71) *
DLIR 8.45+3.24 (4.29 - 18.19) 11.53 +9.28 (6.55 — 30.30)

4. Discussion

Radiation ED in CT is determined by technical parameters (kV, mA, collimation, and pitch)
employed in the in the acquisition phase. Reconstruction algorithms do not directly reduce the
radiation dose but may compensate image quality loss due to reduction of radiation dose or may
improve image quality by maintaining constant the radiation dose. In our study, we found that DLIR
reduced radiation ED and improved SNR compared to FBP, whereas DLIR improved SNR compared
to both the FBP and IR algorithms in ICU patients. DLIR is a recently introduced CT image-
reconstruction algorithm based on deep learning. CNN handle millions of parameters trained with
thousands of paired high-quality, high-dose radiation, and low-noise ground-truth CT images
obtained from a large number of phantoms and patients. After training, a low-dose sinogram is
provided to the CNN, and a final image with a very low noise level is obtained by comparing the
output image to a ground truth image across multiple parameters such as image noise, low contrast
resolution, low contrast detectability, and noise texture. The backpropagation operation reports the
differences to the network, which then strengthens some equations and weakens others, and the
process is repeated until there is a proximity between the output and ground-truth images.
Commercially available DLIR algorithms include direct algorithms that use ground-truth images
reconstructed by FBP and sinogram data directly fed into a CNN — True Fidelity (GE Healthcare) and
Precise Image (Philips Healthcare) and indirect algorithms that use ground-truth images
reconstructed by model-based IR algorithms (AiCE, Canon Medical System). The DLIR strengths of
the FBP and IR algorithms can be selected by the operator as low (DLIR-L), medium (DLIR-M), or
high (DLIR-H). In our study, we employed high DLIR strength according to the default settings of
the CT equipment.

ICU patients are generally exposed to high radiation doses due to frequent and extended chest
and/or abdominal CT scans, especially in patients who undergo major surgery or organ transplant,
and in patients with prolonged hospitalization time, as in the ICU patients included in our study.
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Therefore, we focused on the ICU patient cohort because our aim was to analyze the major
advantages of DLIR in terms of radiation dose exposure and CT image quality under extreme clinical
conditions, which justified the use of repeated CT scans over a relatively restricted period.

Our study confirmed that DLIR reconstruction for CT images provides significant benefits in
terms of dose reduction and image quality over FBP and improves image quality in comparison to
both IR algorithms we used in ICU patients, both in terms of image noise and SNR, which emphasizes
the advantage of the DLIR approach and its potential in daily clinical practice in keeping with
previously published papers [14-16].

In our study, DLIR did not show any reduction in radiation ED compared to both IR algorithms
included in our study. This was due to the selected CT technical acquisition factors, including the
tube voltage and, automatic tube current modulation grade according to the selected noise level,
which were similar between the different CT scanners. Consequently, the radiation ED did not
change significantly, with the advantage of reduced CT image noise, owing to the use of the DLIR
algorithm. Most likely, DLIR may provide a reduction in the radiation dose, even when compared to
IR algorithms, provided that a similar image quality in terms of both the noise level and SNR between
the DLIR and IR algorithms would have been preliminarily planned. In this case, a comparable SNR
between CT images produced by CT scanners employing DLIR vs those scanners employing IR
algorithms would imply a higher patient radiation ED in CT scanners using IR, which is related to
the higher tube current required to reduce noise. This reflects the generally higher attention paid to
CT image quality than to patient radiation exposure in general clinical practice, even if repeated CT
scans are required over a limited temporal range to strictly monitor clinical evolution, as in ICU
patients.

DLIR provided a marked reduction in radiation ED in ICU patients who were frequently
examined using different X-ray imaging modalities, including plain X-ray film and CT scans. CT
scans provide the highest dose from medical exposure, although they are often penalized by low
image quality in ICU critical patients. The main result is that all the advantages provided by DLIR
algorithms translate into safer imaging practices, higher diagnostic confidence and more accurate
diagnosis from radiologists, and ultimately, better patient care. Considering this increase, it is
reasonable to expect a wider implementation of DLIR algorithms in the future given the increasing
computational power of CT scanners. However, further evaluation is needed to investigate the
potential differences between DLIR and IR algorithms, even in other anatomical locations such as the
head or limbs, or in specific diseases, and to assess whether the improved image quality provided by
DLIR may significantly affect subjective CT image quality, CT workflow, and efficiency in terms of
the time needed to assess CT images or to achieve the correct diagnosis by a radiologist.

The first limitation of the present study includes the approximate approach we used for
estimating radiation ED based on the DLP obtained by multiplying the CTDIvol by the scan length
by the body region— specific conversion coefficient k [10,11]. Monte Carlo (MC) simulation is
generally considered the most accurate method for estimating radiation ED, owing to its ability to
provide an effective and realistic model of the physical interactions between radiation and tissues,
considering the CT source, filtration, tube current, and scanner geometry [10,11]. Moreover, size
specific dose estimate (SSDE) would have been useful in patient dose comparison, provided that
patient lateral and anteroposterior diameter are known, although SSDE does not take the organs in
the CT scan’s field of view into account and is not a measure of ED. SSDE is a better estimate of
patient radiation dose from CT than CTDIvol in systems that use automated exposure control [17].

The second limitation of this study corresponds to the wide variation in CT scanner
characteristics and technical features related to the use of different CT image reconstruction
algorithms, detector designs and configurations, dose modulation algorithms, and patient
positioning/handling which may affect the outcomes of the study.

Other limitations are the retrospective nature of the study, and the wide patient population with
very different clinical features.
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5. Conclusions

In conclusion, CT scanners employing DLIR reduced radiation ED and improved SNR compared
to CT scanners using FBP, whereas CT scanners using DLIR improved SNR compared to CT scanners
using FBP or IR algorithms in ICU patients.
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