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Article 
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Department of Radiology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 

*  Correspondence: emilio.quaia@unipd.it; Tel.: +39‐049‐8212375; Fax: +39‐049‐8212375 

Abstract: Deep  learning  image  reconstruction  (DLIR)  algorithms  employs  convolutional  neural 

networks (CNNs) for CT image reconstruction to produce CT images with a very low noise level, 

even at low radiation dose. The aim of this study was to assess whether the DLIR algorithm reduces 

the  CT  effective  dose  (ED)  and  improves  CT  image  quality  in  comparison with  filtered  back 

projection (FBP) and iterative reconstruction (IR) algorithms in intensive care unit (ICU) patients. 

We  identified all consecutive patients referred  to  the ICU of a single hospital who underwent at 

least two consecutive chest and/or abdominal contrast‐enhanced CT scans within a time period of 

30  days  using  DLIR  and  subsequently  FBP  or  IR  algorithm  (Advanced  Modeled  Iterative 

Reconstruction model‐based algorithm [ADMIRE], or Adaptive Iterative Dose Reduction 3D [AIDR 

3D])  for CT  image reconstruction. The  radiation ED, noise  level, and signal‐to‐noise  ratio  (SNR) 

were compared between the different CT scanners. The non‐parametric Wilcoxon test was used for 

statistical comparison. Statistical significance was set at p < 0.05. A total of 83 patients (mean age, 59 

± 15 years [standard deviation]; 56 men) were included. DLIR vs FBP reduced ED (18.45 ± 13.16 mSv 

vs 22.06 ± 9.55 mSv, P < 0.05), while DLIR vs FBP and vs ADMIRE and AIDR 3D  IR algorithms 

reduced image noise (8.45 ± 3.24 vs 14.85 ± 2.73 vs 14.77 ± 32.77 and 11.17 ± 32.77\, P < 0.05) and 

increased SNR  (11.53 ± 9.28 vs 3.99 ± 1.23 vs 5.84 ± 2.74 and 3.58 ± 2.74, P < 0.05). CT  scanners 

employing DLIR reduced radiation ED and improved SNR compared to CT scanners using FBP, 

whereas  CT  scanners  using  DLIR  improved  SNR  compared  to  CT  scanners  using  FBP  or  IR 

algorithms in ICU patients. 
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1. Introduction 

CT image reconstruction has evolved from the original filtered back projection (FBP) to hybrid 

and model‐based iterative reconstruction (IR) algorithms, with a significant decrease in the radiation 

dose  [1].  The main  advantage  of  FBP  is  its  computational  efficiency, whereas  its  disadvantages 

include  significant  noise  at  low  radiation  doses  and  limited  artifact  reduction  [1].  Iterative 

reconstruction (IR) algorithms are widely employed in CT image reconstruction to preserve image 

quality, even in low‐dose CT acquisitions, with reduced image noise and artifacts. [1,2]. Hybrid‐IR 

algorithms employ both FBP and IR algorithms (ranging from 50% to 90% with complementary levels 

of  FBP),  and  allow  fast  CT  image  reconstruction  with  a  reduction  in  image  noise  [1]  and  an 

improvement  in  image quality  at  lower  radiation doses. Model‐based  IR  algorithms  are  fully  IR 

algorithms that use forward and backward reconstruction steps from the sinogram domain to the 

image domain [1]. The main advantage of model‐based IR is the maintenance of CT image quality 

with  low noise, even at  low doses; however,  its disadvantage  is  the need  for high computational 

power and low capability in the detection rate of low‐contrast structures on low‐dose CT images [1–

4]. 
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In  recent  years,  there  has  been  growing  interest  in  the  application  of  deep  learning  image 

reconstruction  (DLIR)  algorithms, which  employ  convolutional  neural  networks  (CNNs)  for CT 

image reconstruction to produce CT images with a very low noise level, even at low radiation doses 

[4]. The performance of DLIR algorithms for CT image reconstruction relies mainly on the quality 

and quantity of the training data and high quality reference ground‐truth CT images [5,6]. 

A marked reduction in radiation ED is particularly required in ICU patients who are exposed to 

high radiation exposure,  frequently higher  than 100 mSv during a single hospital admission, and 

particularly in those patients with prolonged hospitalization time [7,8], due to the extremely frequent 

use of X‐ray imaging modalities. In particular, ICU patients undergo frequent CT scans, often with 

extended scanning lengths, hampered by low image quality and artifacts due to external or internal 

medical devices and patient arms placed along the body. No previous study has provided an intra‐

patient comparison between hybrid IR/FBP and DLIR CT reconstruction algorithms implemented in 

different CT scanners in terms of the radiation dose and image quality in ICU patients. 

The aim of  the present study was  to assess whether  the DLIR algorithm may  reduce  the CT 

effective  dose  (ED)  and  improve  CT  image  quality  in  comparison  with  FBP  and  iterative 

reconstruction (IR) algorithms in ICU patients. 

2. Materials and Methods 

2.1. Patients 

The study was conducted in accordance with the Declaration of Helsinki, and approved by the 

Ethics Committee of our hospital (Prot. n. 0000569 approved on january 4th 2023). Patient informed 

consent was waived due to retrospective nature of the study. We initially identified all consecutive 

patients referred to the ICU of our hospital because of their severe clinical status, major traumas, or 

even recent thoracic or abdominal major surgery (extended tumor resection or liver, cardiac, or lung 

transplant)  between  October  1,  2021,  and  February  28,  2023.  Subsequently,  we  retrospectively 

selected only those patients who underwent at least two subsequent chest and/or abdominal contrast‐

enhanced CT scans with comparable scan lengths covering the same body region (chest, abdomen, 

or both chest and abdomen) during the same hospital admission. DLIR algorithm was used in the 

first CT scan for CT  image reconstruction, whereas FBP or Adaptive  Iterative Dose Reduction 3D 

(AIDR3D) hybrid or even Advanced Modeled Iterative Reconstruction (ADMIRE) model‐based IR 

algorithms were used in the second CT scan. To ensure that significant physical changes in patient 

features, including body mass index, occurred between the two CT scans, only those obtained within 

a limited timeframe of 30 days were included. 

2.2. CT Scanning Protocols 

Because it was not possible to use different CT image reconstruction algorithms on the same raw 

data obtained from the same patients owing to the different CT acquisition technical settings related 

to the subsequent CT image reconstruction algorithm (DLIR) applied to CT scans acquired with a 

lower  tube  kV  and  current  than  IR  or  FBP, we  compared  different CT  scanners  equipped with 

different CT  image reconstruction algorithms, according  to  the manufacturer’s  technical solutions 

(Table 1). 

Table  1.  CT  scanning  parameters.  FBP  =  filtered  back  projection;  DLIR  =  deep  learning  image 

reconstruction;  ADMIRE  =  Advanced  Modeled  Iterative  Reconstruction  model‐based  iterative 

reconstruction  algorithm;  AIDR  3D  =  Adaptive  Iterative  Dose  Reduction  3D  ‐  hybrid  iterative 

reconstruction algorithm. 

System (Vendor)  Reconstruction Algorithm  Pitch 

Somatom Sensation 64   

(Siemens Healthineers) 
FBP  0.8 

Somatom Definition Edge   

(Siemens Healthineers) 
ADMIRE  0.6 
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Aquilion ONE   

(Canon Medical Systems) 
AIDR 3D  0.81 

Revolution Evo   

(GE Healthcare) 
DLIR  0.51 

In every patient, CT was performed craniocaudally with a scan range from the lower neck to the 

costophrenic angle level on chest CT and from the diaphragm level to the pelvis on abdominal CT 

before  and  after  iodinated  contrast  agent  injection  (ioexol  350  mgI/mL;  Omnipaque  350,  GE 

HealthCare, Barrington, Illinois) or iodixanol 270 mg/mL (Visipaque 270, GE Healthcare, Barrington, 

Illinois, USA), iopromide 370 mgI/mL (Ultravist 370, Bayer, Leverkusen, Germany), or iomeprol 400 

mgI/mL (Iomeron 400, Bracco, Milan, Italy). Patients were scanned with their arms placed along the 

body owing to their critical clinical status. The volume of contrast medium was calculated based on 

the patient’s lean body weight (LBW) which was estimated from the patient’s weight, height, and 

gender using Boer’s equation  [9]. The arterial phase was  triggered by placing a region‐of‐interest 

(ROI) over the abdominal CT scan at the level of the second lumbar vertebral body and starting the 

scan when the density level achieves 100HU. The portal venous and late phases were obtained at 70 

and 180 s after iodinated contrast injection. The contrast agent was injected into the antecubital vein 

(total contrast volume and injection speed adjusted by the patient’s body weight to 3‐4 mL/sec) and 

saline push (10 s at the same rate). The following CT parameters were used: tube voltage, 100‐120 

kVp; automatic tube current modulation; gantry rotation period, 280 ms; detector collimation, 0.625 

mm; and detector pitch, 1.53. The CT dataset was then reconstructed at 1.25 mm section thicknesses 

with 512×512 matrices, using standard kernels for soft tissues. 

Although the same scanning protocol was generally used in both the first and second CT scans, 

a mismatch in scanning length, presence or absence of unenhanced CT scans, or even the number of 

contrast‐enhanced dynamic phases (arterial, portal venous, or delayed phases) was possible between 

the  two subsequent  thoracic and/or abdominal CT scans. Therefore,  these patients were excluded 

from analysis. In patients who underwent more than two repeated CT scans, only the two closest CT 

scans reconstructed using the DLIR and FBP or IR algorithms were considered for analysis. 

Generally, the same iodinated contrast agent dosage and concentration were used in both the 

first and second CT scans unless the use of a different iodinated contrast agent type is required (e.g., 

suspicion of bleeding after major surgery, change in iodinated contrast type and/or injected contrast 

volume due to anaphylactoid reaction or incoming acute kidney injury, even suspicious pulmonary 

embolism). Patients in whom the iodinated contrast agent type, injected volume, and/or iodine dose 

was changed or modified were excluded from the analysis. 

2.3. CT Reconstruction Algorithms 

Different CT  image  reconstruction algorithms were employed according  to  the  available CT 

equipment: Revolution Evo (GE Healthcare) CT with True Fidelity DLIR algorithm in the first CT 

scan; Somatom Sensation 64 (Siemens Healthineers) with Filtered Back Projection (FBP) or Aquilion 

ONE  (Canon Medical  Systems)  with  Adaptive  Iterative  Dose  Reduction  (AIDR  3D)  IR  hybrid 

reconstruction algorithm, or even Somatom Definition Edge (Siemens Healthineers) with Advanced 

Modeled Iterative Reconstruction (ADMIRE) IR hybrid reconstruction algorithm in the second CT 

scan (Table 1).CT images were reconstructed at 3mm and 512x512 pixel matrix. DLIR strength was 

set to the highest level (DLIR‐H), according to the manufacturer’s default settings. 

2.4. Radiation Effective Dose Analysis 

The CT dose index volume (CTDIvol) and dose‐length product (DLP) were obtained from CT 

dose reporting produced automatically by the CT equipment at the end of the scan and archived on 

the  PACS.  The  radiation  ED was  calculated  by multiplying  the DLP  by.  body  region–  specific 

conversion coefficient, k, according to the ICRP recommendations [10,11]. 
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2.5. Visual Image Quality Analysis 

Two radiologists with 3 and 10 years of experience performed subjective analyses of the three 

groups of images. The radiologists were blinded to the image reconstruction techniques and patient 

characteristics. The images are displayed in random order in a preset window, displaying a sequence 

at a time. The radiologists were able to scroll through the image and adjust the window width and 

position randomly. We used a 5‐point scale to evaluate the subjective image quality of the soft and 

lung tissues. The scoring standard for soft tissue was as follows: 1 = poor definition of mediastinal / 

abdominal  parenchyma  borders  and  clearly  visible  noise,  unacceptable  image;  2  =  moderate 

definition of mediastinal / abdominal parenchyma borders and moderately visible noise, suboptimal 

image; 3 = moderate definition of mediastinal / abdominal parenchyma borders and barely visible 

noise, acceptable  image; 4 = good definition of mediastinal  / abdominal parenchyma borders and 

barely visible noise, good image; and 5 = excellent definition of mediastinal / abdominal parenchyma 

borders and very low image noise, optimal image. 

2.6. Quantitative Image Quality Analysis 

CT image noise was calculated off‐site on a dedicated PC using MATLAB (MATLAB version: 

9.13.  0  (R2022b), Natick, Massachusetts: The MathWorks  Inc.;  2022) with  the Global Noise Level 

(GNL)  algorithm  for  automatic  noise  measurement  [12,13]  by  a  medical  student  with  specific 

competence in CT image quantitation software analysis over 4 years. The GN algorithm was used to 

analyze  only  the  selected  slice  images. Observers  selected  similar  slice  locations,  and  therefore, 

approximately similar noise, by using anatomical landmarks for slice selection. This assumption was 

tested  by measuring  the  variation  in  the  selected  slice  locations  across  the  observers.  The  slice 

locations selected by the observers were averaged, and the slice image closest to this location was 

selected for GN analysis. 

To objectively compare image quality, the signal‐to‐noise ratio (SNR) was measured for different 

reconstruction algorithms. For thoracic evaluation, the SD of the values in Hounsfield units (HU) was 

measured in regions of interest (ROIs) measuring ≥ 1 cm2 drawn in the bilateral abdominal fat (SDax1 

and SDax2) and the average HU values were measured in the bilateral paraspinal muscles (HUPSM1 

and HUPSM2). The noise and SNR for each scan were calculated using the following equations. 

Noise=(SDax1+SDax2)/2 

SNR=(HUPSM1+HUPSM2)/(SDax1+SDax2) 

2.7. Statistical Data Analyses 

Statistical data  analyses were  performed  using  SciPy  1.11.2,  an  open‐source  software  using 

Python 3.12 programming  language, by a medical  student with  specific  competence  in  statistical 

software analysis over 4 years. After the Shapiro‐Wilk test failed to show a normal distribution, the 

Wilcoxon signed‐rank test for paired data was used to assess the differences between the FBP, IR, 

and DLIR effective doses and image quality. Cohen’s kappa statistic was calculated for an agreement 

on the independent scoring of the image quality between the two radiologists. A kappa statistic of 

0.81~1.00 implies an excellent agreement; 0.61~0.80, a substantial agreement; 0.41~0.60, a moderate 

agreement; 0.21~0.40, a fair agreement; and 0.00~0.20, a poor agreement. For all statistical tests, a P 

value <0.05 was set to indicate a statistically significant difference. 
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3. Results 

3.1. Patients 

Figure 1 show patient flow chart. 

 

Figure 1. Patient flow chart. 

Initially, we  identified  14,431  patients who were  admitted  to  the  ICU. We  excluded  13,417 

patients due to a temporal distance of >30 days between the two subsequent CT scans; 860 patients 

due to a mismatch  in the scanning  length between the two CT scans (n=350), or differences  in CT 

scanning  protocols  (n=251),  including  the  absence  of  an  unenhanced  scan,  different  numbers  of 

dynamic  phases,  or  even  changes  in  contrast  agent  type  and/or  contrast  volume  administration 

(n=259); and 71 patients due to CT scans that did not include the chest and/or abdomen (e.g., brain 

and limb). The total hospitalization period was 10 – 45 days (mean ± SD, 22 ± 10 days). 

Finally, we included 83 patients (Table 2) who underwent CT scans of the chest (n=14; 5 patients 

were scanned on unenhanced CT and during  the arterial phase, while 9 patients underwent both 

unenhanced CT and contrast‐enhanced CT on arterial and portal venous phases), abdomen (n=51; 32 

patients scanned on unenhanced CT and arterial phase, and 19 patients scanned both on unenhanced 

CT and arterial and portal venous phases), and both chest and abdomen (n=18; 12 patients scanned 

on unenhanced CT and arterial phases, and 6 patients scanned both on unenhanced CT and arterial 

and portal venous phases). The  timeframe between  the  two CT scans considered  for quantitative 

analysis was 10.8 ± 8.6 days (range, 1 – 30 days). 

Table 2. Patient features. 

Patients  Total 
FBP vs 

DLIR 

ADMIRE vs 

DLIR 

AIDR 3D vs 

DLIR 

Patients included  83  12  59  12 

Male / Female  56 / 27  9 / 3  37 / 22  10 /2 

Age, years mean ± SD (range) 
59 ± 15 (31‐

73) 

64 ± 8 (52‐

64) 
54 ± 16 (34‐73)  50 ± 27 (31‐70) 

CT time interval, days mean ± SD 

(range) 
11 ± 9 (1‐30) 

17 ± 10 (2‐

29) 
9 ± 8 (1‐30)  11 ± 8 (2‐27) 

CT scans         

Chest CT   

(percentage) 
14 / 83 (17%) 4 / 12 (33%)  10 / 59 (17%)  0 / 12 (0%) 

Abdomen CT   

(percentage) 
51 / 83 (61%) 5 / 12 (42%)  35 / 59 (59%)  11 / 12 (92%) 
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Chest and abdomen CT 

(percentage) 
18 / 83 (22%) 3 / 12 (25%)  14 / 59 (24%)  1 / 12 (8%) 

3.2. Visual Analysis 

Visual analysis results showed significant differences in the image quality of soft tissue among 

the three reconstruction methods (all p < 0.05). The image score of DLIR (mean score = 5) was higher 

than that of ADMIRE (mean score = 4) and AIDR 3D (mean score = 3) and FBP (mean score = 3) by 

50%  of  observers.  Both  radiologists  believed  that  DLIR  had  outstanding  noise  reduction.  The 

subjective scores of the two radiologists were consistent (kappa value range: 0.48–0.91) (Figure 2). 

 

Figure 2. a  ‐ f. Visual analysis. Visual differences  in abdominal parenchyma border definition and 

noise among different reconstruction algorithms (a, b) 45‐year‐old male patient after major surgery. 

(c, d)  47‐year‐old male  patient  after  lung  transplant.  (e,  f)  55‐year‐old male  patient  after  cardiac 

transplant. Filtered Back Project (FBP) (a), Advanced Modeled Iterative Reconstruction model‐based 

iterative reconstruction (ADMIRE) (c), and Adaptive Iterative Dose Reduction 3D (AIDR 3D) hybrid 

iterative reconstruction (e) vs. Deep Learning Image Reconstruction (DLIR) (b, d, f). FBP, ADMIRE, 

and AIDR 3D were scored as 2, 4, and 3, respectively, whereas DLIR images were scored as 5 by all 

reviewers. 

3.3. Effective Dose and Quantitative Analysis 

DLIR reduced the effective dose compared to FBP (Table 3) and improved both the image noise 

and  SNR  compared  to  both  the  FBP  and  IR  algorithms  (Tables  3  and  4). Among  IR  algorithms, 

compared  to AIDR 3D, ADMIRE provided  similar exposure data  (Table 3) with  lower noise and 

higher SNR (Table 4). 
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Table 3. Dose analysis results. * Indicates a P value < 0.05, compared with DLIR. FBP = filtered back 

projection;  ADMIRE  =  Advanced  Modeled  Iterative  Reconstruction  model‐based  iterative 

reconstruction  algorithm;  AIDR  3D  =  Adaptive  Iterative  Dose  Reduction  3D  ‐  hybrid  iterative 

reconstruction  algorithm; DLIR  = deep  learning  image  reconstruction; CTDIvol  = CT  dose  index 

volume; DLP = dose‐length product. 

Algorithm 
CTDI (mGy) 

mean ±SD, range 

DLP (mGy x cm) 

mean ±SD, range 

Effective Dose (mSv) 

mean ±SD, range 

FBP  29.5 ± 12.46 (6.41 – 51.79) *  1476.81 ± 626.30 (284 – 2105) * 
22.06 ± 9.55 (3.98 – 

31.57) * 

ADMIRE  29.42 ± 5.86 (3.52 – 35.27)  1472.86 ± 1191.68 (106 – 6778) 
22.19 ± 17.91 (1.48 – 

101.67) 

AIDR 3D  30.83 ± 5.86 (3.52 – 35.27)  1545.35 ± 1191.68 (106 – 6778) 
23.08 ± 17.91 (1.48 – 

101.67) 

DLIR  24.67 ± 61.01 (3.45 – 355.42) 
1235.53 ± 873.67 (145.89 – 

4528.42) 

18.45 ± 13.16 (2.04 – 

67.93) 

Table 4. Image Quality Results. * Indicates a P value < 0.05 compared to DLIR. FBP = filtered back 

projection;  ADMIRE  =  Advanced  Modeled  Iterative  Reconstruction  model‐based  iterative 

reconstruction  algorithm;  AIDR  3D  =  Adaptive  Iterative  Dose  Reduction  3D  ‐  hybrid  iterative 

reconstruction algorithm; DLIR = deep learning image reconstruction. 

Algorithm  Noise HU Mean ± SD (Range)  SNR HU Mean ± SD (Range) 

FBP  14.85 ± 2.73 (11.50 – 18.94) *  3.99 ± 1.23 (2.37 – 6.15) * 

ADMIRE  14.77 ± 32.77 (7.33 – 105.50) *  5.84 ± 2.74 (0.21 – 8.71) * 

AIDR 3D  11.17 ± 32.77 (7.33 – 105.50) *  3.58 ± 2.74 (0.21 – 8.71) * 

DLIR  8.45 ± 3.24 (4.29 – 18.19)  11.53 ± 9.28 (6.55 – 30.30) 

4. Discussion 

Radiation ED  in CT  is determined by  technical parameters  (kV, mA,  collimation, and pitch) 

employed  in  the  in  the  acquisition  phase. Reconstruction  algorithms  do  not  directly  reduce  the 

radiation dose but may compensate  image quality loss due  to reduction of radiation dose or may 

improve image quality by maintaining constant the radiation dose. In our study, we found that DLIR 

reduced radiation ED and improved SNR compared to FBP, whereas DLIR improved SNR compared 

to  both  the  FBP  and  IR  algorithms  in  ICU  patients.  DLIR  is  a  recently  introduced  CT  image‐

reconstruction algorithm based on deep learning. CNN handle millions of parameters trained with 

thousands  of  paired  high‐quality,  high‐dose  radiation,  and  low‐noise  ground‐truth  CT  images 

obtained  from  a  large number of phantoms and patients. After  training, a  low‐dose  sinogram  is 

provided to the CNN, and a final image with a very low noise level is obtained by comparing the 

output image to a ground truth image across multiple parameters such as image noise, low contrast 

resolution, low contrast detectability, and noise texture. The backpropagation operation reports the 

differences  to  the network, which  then  strengthens  some equations and weakens others, and  the 

process  is  repeated  until  there  is  a  proximity  between  the  output  and  ground‐truth  images. 

Commercially available DLIR algorithms  include direct algorithms  that use ground‐truth  images 

reconstructed by FBP and sinogram data directly fed into a CNN – True Fidelity (GE Healthcare) and 

Precise  Image  (Philips  Healthcare)  and  indirect  algorithms  that  use  ground‐truth  images 

reconstructed by model‐based IR algorithms (AiCE, Canon Medical System). The DLIR strengths of 

the FBP and IR algorithms can be selected by the operator as low (DLIR‐L), medium (DLIR‐M), or 

high (DLIR‐H). In our study, we employed high DLIR strength according to the default settings of 

the CT equipment. 

ICU patients are generally exposed to high radiation doses due to frequent and extended chest 

and/or abdominal CT scans, especially in patients who undergo major surgery or organ transplant, 

and in patients with prolonged hospitalization time, as in the ICU patients included in our study. 
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Therefore,  we  focused  on  the  ICU  patient  cohort  because  our  aim  was  to  analyze  the  major 

advantages of DLIR in terms of radiation dose exposure and CT image quality under extreme clinical 

conditions, which justified the use of repeated CT scans over a relatively restricted period. 

Our study confirmed that DLIR reconstruction for CT  images provides significant benefits  in 

terms of dose reduction and image quality over FBP and improves image quality in comparison to 

both IR algorithms we used in ICU patients, both in terms of image noise and SNR, which emphasizes 

the  advantage  of  the DLIR  approach  and  its  potential  in  daily  clinical  practice  in  keeping with 

previously published papers [14–16]. 

In our study, DLIR did not show any reduction in radiation ED compared to both IR algorithms 

included in our study. This was due to the selected CT technical acquisition factors, including the 

tube voltage and, automatic  tube current modulation grade according  to  the selected noise  level, 

which were  similar  between  the  different CT  scanners. Consequently,  the  radiation  ED  did  not 

change significantly, with the advantage of reduced CT image noise, owing to the use of the DLIR 

algorithm. Most likely, DLIR may provide a reduction in the radiation dose, even when compared to 

IR algorithms, provided that a similar image quality in terms of both the noise level and SNR between 

the DLIR and IR algorithms would have been preliminarily planned. In this case, a comparable SNR 

between CT  images produced by CT  scanners  employing DLIR vs  those  scanners  employing  IR 

algorithms would imply a higher patient radiation ED in CT scanners using IR, which is related to 

the higher tube current required to reduce noise. This reflects the generally higher attention paid to 

CT image quality than to patient radiation exposure in general clinical practice, even if repeated CT 

scans are  required over a  limited  temporal  range  to  strictly monitor clinical evolution, as  in  ICU 

patients. 

DLIR  provided  a marked  reduction  in  radiation  ED  in  ICU  patients who were  frequently 

examined using different X‐ray  imaging modalities,  including plain X‐ray  film and CT scans. CT 

scans provide  the highest dose  from medical exposure, although  they are often penalized by  low 

image quality in ICU critical patients. The main result is that all the advantages provided by DLIR 

algorithms  translate  into safer  imaging practices, higher diagnostic confidence and more accurate 

diagnosis  from  radiologists,  and  ultimately,  better  patient  care.  Considering  this  increase,  it  is 

reasonable to expect a wider implementation of DLIR algorithms in the future given the increasing 

computational  power  of CT  scanners. However,  further  evaluation  is  needed  to  investigate  the 

potential differences between DLIR and IR algorithms, even in other anatomical locations such as the 

head or limbs, or in specific diseases, and to assess whether the improved image quality provided by 

DLIR may significantly affect subjective CT image quality, CT workflow, and efficiency in terms of 

the time needed to assess CT images or to achieve the correct diagnosis by a radiologist. 

The  first  limitation  of  the  present  study  includes  the  approximate  approach  we  used  for 

estimating radiation ED based on the DLP obtained by multiplying the CTDIvol by the scan length 

by  the  body  region–  specific  conversion  coefficient  k  [10,11]. Monte  Carlo  (MC)  simulation  is 

generally considered the most accurate method for estimating radiation ED, owing to its ability to 

provide an effective and realistic model of the physical interactions between radiation and tissues, 

considering  the CT  source,  filtration,  tube  current, and  scanner geometry  [10,11]. Moreover,  size 

specific dose estimate  (SSDE) would have been useful  in patient dose comparison, provided  that 

patient lateral and anteroposterior diameter are known, although SSDE does not take the organs in 

the CT scan’s  field of view  into account and  is not a measure of ED. SSDE  is a better estimate of 

patient radiation dose from CT than CTDIvol in systems that use automated exposure control [17]. 

The  second  limitation  of  this  study  corresponds  to  the  wide  variation  in  CT  scanner 

characteristics  and  technical  features  related  to  the  use  of  different  CT  image  reconstruction 

algorithms,  detector  designs  and  configurations,  dose  modulation  algorithms,  and  patient 

positioning/handling which may affect the outcomes of the study. 

Other limitations are the retrospective nature of the study, and the wide patient population with 

very different clinical features. 
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5. Conclusions 

In conclusion, CT scanners employing DLIR reduced radiation ED and improved SNR compared 

to CT scanners using FBP, whereas CT scanners using DLIR improved SNR compared to CT scanners 

using FBP or IR algorithms in ICU patients. 
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