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Abstract: Accurate forecasting of crop yields holds paramount importance in guiding decision-
making processes related to breeding efforts. This study focused on the application of multi-sensor 
data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat 
yield prediction. Five machine learning (ML) algorithms namely random forest (RF), partial least 
squares (PLS), ridge regression (RR), K-Nearest Neighbor (KNN) and eXtreme Gradient Boosting 
Decision Tree (XGboost) were utilized for multi-sensor data fusion, and three ensemble methods 
including the second-level ensemble methods (stacking and feature-weighted) and the third-level 
ensemble method (simple average) for wheat yield prediction. The 270 wheat hybrids were used as 
planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV 
platform, equipped with red–green–blue (RGB), multispectral (MS), and thermal infrared (TIR) 
sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm 
exhibited outstanding performance in multi-sensor data fusion, with the RGB+MS+Texture+TIR 
combination demonstrating the highest fusion performance (R2=0.660, RMSE= 0.754). Compared 
with the single ML model, the employment of three ensemble methods significantly enhanced the 
prediction accuracy of wheat yield. Notably, the third-layer simple average ensemble method 
demonstrated superior performance (R2 = 0.733, RMSE= 0.668 t ha-1). It significantly outperformed 
both the second-layer ensemble methods of Stacking (R2= 0.668, RMSE= 0.673 t ha-1) and feature-
weighted (R2= 0.667, RMSE= 0.674 t ha-1), thereby exhibiting superior predictive capabilities. This 
finding demonstrated that the third-layer ensemble method not only augments the predictive ability 
of the model but also fine-tuned the accuracy of wheat yield prediction through the employment of 
simple average ensemble learning. Consequently, it offers a novel perspective for crop yield 
prediction and breeding selection. 

Keywords: machine learning; yield prediction; data fusion; wheat; phenotyping 
 

1. Introduction 

Wheat stands as one of the most vital crops globally, with approximately 35%-40% of the world's 
population relying on it as a primary food source. It contributes approximately 21% of food energy 
and 20% of protein intake. Given the backdrop of population growth and climate change, the early 
and accurate estimation of wheat yield holds utmost importance for safeguarding national food 
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security and maintaining people's living standards (Sun et al., 2020; Zhou et al., 2017). 
Conventionally, the yield prediction method has primarily been dependent on field observation and 
investigation, which is not only a time-consuming and laborious process but also susceptible to 
subjective biases, and can even result in crop damage (Bian, et al., 2022). In recent years, remote 
sensing technology has gained widespread application in the domain of agricultural monitoring. This 
technology enables the effective acquisition of canopy spectral data from aerial sources, thereby 
facilitating the estimation of crop yields (Xu et al., 2021; Thenkabail et al., 2011). Furthermore, 
unmanned aerial vehicle (UAV)-based remote sensing technology has witnessed rapid development, 
owing to its distinctive advantages of flexibility and high resolution (Li et al., 2012).  

The vegetation index (VI) derived from UAV images has demonstrated its effectiveness in 
predicting crop yields. Spectral, structural, thermal infrared (TIR), and texture features extracted 
from UAV-collected datasets through sensors can be utilized to assess various plant traits and 
structures (Maimaitijiang et al., 2020). For instance, low-altitude UAVs were employed to capture 
RGB imaging data of potato canopies at two distinct growth stages, to predict yields (Li et al., 2020). 
The use of a multispectral (MS) UAV platform for swift monitoring of the normalized vegetation 
index (NDVI) during the wheat filling stage exhibited a strong correlation with wheat grain yield 
(Hassan et al., 2019). Texture information extracted from UAV images can effectively reflect the 
spatial variations in pixel intensity, thereby emphasizing the structural and geometric characteristics 
of the plant canopy (De et al., 2009). The potential of UAV TIR imaging technology for assessing crop 
water stress and predicting wheat kernel yield in different wheat varieties has also been thoroughly 
validated (Das et al., 2020). However, the majority of studies solely rely on data from a single sensor 
to estimate crop yields, overlooking the advantages of combining multiple sensors. For example, by 
combining the features derived from MS, RGB, and TIR imaging, the accuracy of soybean yield 
prediction can be significantly improved (Maimaitijiang et al., 2020). The combination of canopy TIR 
information with spectral and structural characteristics can improve the robustness of crop yield 
prediction across diverse climatic conditions and developmental stages (Rischbeck et al., 2016). In 
particular, the application of machine learning (ML) techniques to the analysis of multi-sensor data 
collected by UAVs can significantly enhance the accuracy of crop yield predictions (Fei et al., 2022). 
On this basis, to fully harness the potential of ML algorithms, the machine learning technology is 
combined with the VIs extracted from the spectral image of the sensor to build a yield prediction 
model, which provides strong support for the relevant practices of precision agriculture (Liakos et 
al., 2016; Ramos et al., 2020).  

At present, a variety of machine learning methods have been applied to yield prediction, such 
as random forest (RF) (Han et al., 2020), partial least squares (PLS) (Maimaitijiang et al., 2017), ridge 
regression (RR) (Ahmed et al., 2022), K-Nearest Neighbor (KNN) (Lontsi et al., 2022) and eXtreme 
Gradient Boosting Decision Tree (XGboost) (Sarijaloo et al., 2021). However, the predictions of the 
same model may vary significantly across different crops and environments, primarily due to the 
quality of data, the representation of the model, and the dependencies between input and target 
variables within the collected dataset (Chlingaryan et al., 2018). If the data is biased or if the chosen 
model exhibits overfitting to the respective dataset, the model will fail to demonstrate accurate 
performance (Van der Laan et al., 2007). Ensemble learning, a research hotspot, is proposed to address 
these challenges. Its objective is to integrate data fusion, data modeling, and data mining into a 
cohesive framework (Dong et al., 2019). the ensemble learning paradigm known as stacked regression 
involves linearly combining various predictors to enhance prediction accuracy (Leo et al., 1996; 
Zhang et al., 2015). The feature-weighted ensemble method assigns weights according to the 
correlation of features and estimates the degree of correlation between each feature and the extracted 
output model (Wei et al., 2015; Kelly et al., 1991; Raymer et al., 2000; Daszykowski et al., 2007). In this 
study, we employ a feature-weighted ensemble learning approach that assigns weights to the training 
dataset generated by the primary learner, based on the prediction accuracy of each individual learner. 
Subsequently, utilizing these weighted data, the meta-learner is trained to enhance the overall 
model's learning efficiency. To further refine the model performance, we introduce an innovative 
third-layer ensemble method, specifically the simple average ensemble method. To further optimize 
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the model performance, we introduce a novel ensemble method in the third layer, specifically the 
simple average ensemble method. The method calculates the average values of the predictions of the 
stacking ensemble method and the feature-weighted ensemble method on the test set and compares 
them with the actual measured values to realize the effect of the third-layer ensemble learning. 

The primary objective of this study was to explore the utilization of UAV-based remote sensing 
data obtained 21 days after wheat flowering to predict wheat yield. It includes: (1) evaluation and 
data fusion of UAV yield prediction methods based on RGB, MS, Texture and TIR; (2) Compare the 
accuracy of the basic learner (RF, PLS, RR, KNN and XGboost) and three ensemble methods (stacking, 
feature-weighted and simple average) for yield prediction, and then select the optimal approach. 

2. Materials and Methods 

2.1. Experiment Location and Design 

Two hundred and seventy RILs from cross Zhongmai 578/Jimai 22 were planted at the research 
site of Chinese Academy of Agriculture Sciences (35°18′0″N, 113°52′0″E) in Xinxiang, Henan 
province, China during the 2021-2022 growing season. This experiment used randomized complete 
blocks with three replications under full and limited irrigation treatments. Two irrigations at the 
seedling and overwintering stages were poured for both treatments, the full irrigation treatment was 
flooded at the greening jointing and early grain filling stages. A plot area was 3.6 m2（1.2 m×3 m). It 
was designed in 6 lines, with a line spacing of 0.20 m. The planting density was maintained at 270 
plants/m2, and agricultural management was performed according to local conditions. After 
maturity, the harvest was conducted using a combine harvester. The seeds were weighed after drying 
to a moisture content of less than 12.5%.  

2.2. Multi-Sensor Image Acquisition and Processing Based on UAV 

Data acquisition for all traits was done by a UAV platform M210 (SZ DJI Technology Co., 
Shenzhen, China). An RGB and TIR were the same sensor (Zenmuse XT2 camera, SZ DJI Technology 
Co., Shenzhen, China) with lens pixels of 4000×3000 and 640×512, respectively. MS sensor (Red-Edge 
MX camera, MicaSense, Seattle, USA) captures same pixel images (1280×960) in five bands including 
blue, green, red, red edge and near infrared (NIR) with wavelength were 475 nm, 560 nm, 668 nm, 
717 nm and 842 nm, respectively. The aerial surveys were carried out at the 21 days post-anthesis due 
to the proven high accuracy of yield predictions during this period (Fei et al., 2022). All flight tasks 
were carried out from 10:00 to 14:00 in clear skies, using DJI Pilot software to set route parameters as 
follows: the forward and side overlap were 90% and 85%, respectively, and the flight altitude was 30 
meters. 

In this study, the Pix4D Mapper Pro 4.5.6 software (Pix4D, Lausanne, Switzerland) was used to 
perform radiometric correction and image stitching on RGB, TIR and MS images of UAV, and the 
visible, TIR orthophoto image and five-band orthophoto reflectance map were obtained. The 
obtained images with spectral reflectance were imported into ArcGIS 10.8.1 (Environmental Systems 
Research Institute, Inc., Redlands, USA) software for image cropping, each cell was selected as the 
area of interest, the features were extracted and to calculate the different VIs used in this study. The 
detailed process is shown in Figure 1. To minimize the noise impact on the images and enhance the 
efficiency of subsequent processing steps, it was necessary to exclude non-target areas from the 
acquired MS images. The Pix4D Mapper software was utilized to perform image stitching, shading 
correction, and digital number (DN) processing on the filtered MS data, ultimately converting it into 
a TIFF image format with spectral reflectivity. Radiation calibration was conducted prior to and 
following each flight using a dedicated calibration plate. Subsequently, the TIR data was calibrated 
based on the blackbody reference to determine the temperature corresponding to each pixel value in 
the TIR imagery. 
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Figure 1. Processing of UAV-based data. 

2.3. Extraction of Vegetation and Texture Index 

As a metric for evaluating physiological parameters of crops, VIs could effectively reflect the 
real-time growth level of crops (Xue et al., 2017). Ten color index and eleven MS VIs were selected as 
shown in Table 1.  

In addition to spectral information, texture features as another important remote sensing 
information were less susceptible to external environmental factors. They reflected the grayscale 
nature of the image and its spatial relationships, thereby enhancing the inversion accuracy of single 
spectral information sources that may suffer from saturation issues. Furthermore, texture features 
enhanced the potential for inverting physicochemical parameters to a certain extent (Humeau-
Heurtier, 2019). In ENVI 5.3, the widely utilized gray level co-occurrence matrix (GLCM) was used 
to extract 40 texture features for the RGB-based R, G, B bands and MS based red-edge, NIR bands. 
Then, the region of interest was delimited for the texture feature images of each band in ArcGIS 10.8.1 
(Figure 1). 

Principal component analysis (PCA) was a data mining technique in multivariate statistics. It 
transformed convert high-dimensional data into low-dimensional data through dimensionality 
reduction, while preserving the majority of the information within the data without compromising 
its integrity (Abdi et al., 2010). Through principal component analysis, we transformed the initial 40 
texture features into 3 new principal components, which were linear combinations of the original 
features. Each principal component encapsulated a portion of the information from the original 
features. By utilizing these principal components, we effectively represented the original data in a 
lower-dimensional space while preserving as much of the data's variance as possible. Consequently, 
these three principal components could be regarded as representative of the most significant texture 
features within the dataset (Figure 1). 
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Table 1. Vegetation index formula for UAV images. 

Sensor Spectral Indices Equation References 
RGB Red Green Blue Vegetation Index RGBVI=(G2 − B ∗ R)⁄(G2 + B ∗ R) Ji et al. (2023) 

 Plant Pigment Ratio PPR= (G – B)/(G + B) Peñuelas et al. (1994) 
 Green Leaf Algorithm GLA=(2*G-R-B)/(2*G+R+B) Louhaichi et al. (2001) 
 Excess Green Index ExG=2*G-R-B Woebbecke et al. (1995) 

 Colour Index of Vegetation Extraction CIVE=0.441*R-
0.881*G+0.3856*B+18.78745 

Guijarro et al. (2011) 

 Visible Atmospherically Resistant Index VARI=(G-R)/(G+R-B) Gitelson et al. (2002) 
 Kawashima Index IKAW=(R-B)/(R+B) Kawashima (1998) 
 Woebbecke Index WI=(G-B)/(R-G) Woebbecke et al. (1995) 
 Green Blue Ratio Index GBRI=G/B Sellaro et al. (2010) 
 Red Blue Ratio Index RBRI=R/B Sellaro et al. (2010) 

MS Green-NDVI GNDVI=(NIR-G)/(NIR+G) Gitelson et al. (1996) 
 MERIS Terrestrial Chlorophyll Index MTCI=(NIR-R)/(RE-R) Zhang et al. (2014) 
 Normalized Difference Vegetation Index NDVI=(NIR-R)/(NIR+R) Gitelson et al. (2002) 
 Ratio Vegetation Index RVI1=NIR/R Pinter et al. (2003) 
 Ratio Vegetation Index RVI2=NIR/G Xue et al. (2004) 
 Modifed Simple Ratio Index MSRI=(NIR/R-1)/(NIR/R+1)**0.5 Chen (1996) 

 Re-normalized Difference Vegetation 
Index 

RDVI=(NIR-R)/(NIR+R)**0.5 Roujean and Breon. (1995) 

 Structure Insensitive Pigment Index SIPI = (NIR-B)⁄(NIR+B) Penuelas et al. (1995) 
 Colour Index CI=NIR/G-1 Gitelson et al. (2003) 

 
Generalized Soil-adjusted Vegetation 

Index GOSAVI=(NIR-G)/(NIR+G+0.16) Gilabert et al. (2002) 

 Plant Senescence Refectance Index PSRI=(R-B)/NIR Merzlyak et al. (1999) 

2.3. Ensemble Learning Framework 

In ML, each algorithm possesses its distinct strengths. Ensemble learning achieves superior 
generalization performance by harnessing the combined advantages of various machine learning 
algorithms (Dong et al., 2020). This study proposed three methods in total. The first method was 
stacking regression, which was a heterogeneous ensemble learning model first introduced by 
WOLPERT in 1992 (Quinlan, 1992). The objective of this study was to integrate the predictive 
strengths of five fundamental models: RF, PLS, RR, KNN and XGboost. Initially, the training dataset 
was partitioned into an 80% training subset and a 20% testing subset. Each base model was then 
trained independently on the training subset, utilizing a 10-fold cross-validation approach, and their 
respective predictions were generated for the testing subset. Subsequently, these prediction results 
were employed as input features for the meta-model. RR served as the regression algorithm for the 
meta-model, tasked with learning to effectively integrate the learning algorithms of the various basic 
models in order to generate a final ensemble prediction. Throughout the training process, cross-
validation techniques were employed to meticulously fine-tune the hyperparameters of the meta-
model, with the ultimate goal of bolstering its generalization capabilities. Upon completion of the 
training phase, the refined stacking model was then utilized to predict outcomes for the test set, 
subsequently enabling a thorough evaluation of the model's overall performance (Figure 2). 

The second approach was feature-weighted ensemble learning. Its essence laied in assigning 
distinct weights to each base learner depending on their predictive prowess. Each base model 
underwent training on the training set, and the coefficient of determination (R2) for each base model 
was computed using the testing set. Subsequently, the R2 values served as the foundation for 
allocating weights (Figure 2). 

The third approach proposed in this study was simple average ensemble learning, where the 
predictions obtained from Stacking regression and the feature-weighted ensemble method on the 
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testing set were averaged. Then, the R² score was computed between the averaged predictions and 
the true values of the testing set (Figure 2). 

 
Figure 2. Modeling construction and assessment. 

2.4. Model Performance Evaluation 

In this study, the selection R2, root-mean-square error (RMSE) and normalized root-mean-square 
error (NRMSE) were selected as the indexes to evaluate the prediction accuracy of the base learner. 
The formula is as follows: 

𝑅𝑅2 = 1 − ∑  �𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
∑  �𝑦𝑦𝑖𝑖−𝑦𝑦��

2𝑛𝑛
𝑖𝑖=1

                         (1) 

RMSE = �∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                          (2) 

NRMSE = RMSE
y�

∗ 100%                        (3) 

Where 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖  are measured and predicted values of wheat yield, respectively, 𝑦𝑦� is the 
mean value of measured yield and n is the sample size. 

The weight allocation formula is as follows: 
 𝑤𝑤𝑙𝑙 = 𝐸𝐸𝑅𝑅,𝑙𝑙

∑ 𝐸𝐸𝑅𝑅,ℎ
𝑇𝑇
ℎ=1

                              (4) 

Where 𝑤𝑤𝑙𝑙 is the weight of the 𝑙𝑙 primary learner, 𝑙𝑙 = 1, 2, ... , T; T is the number of primary 
learners; 𝐸𝐸𝑅𝑅,𝑙𝑙 is the R2 of the 𝑙𝑙 primary learner; 𝐸𝐸𝑅𝑅,ℎ is the R2 of the ℎ primary learner. 

This formula transforms the R² scores of each base model into weights and ensures that the sum 
of all weights equals 1. Thus, the stronger predictive performance of each base model is assigned a 
higher weight, leading to a larger proportion in the ensemble prediction. 
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3. Results 

3.1. Principal Component Analysis of Texture Features 

In analysing the initial value, variance contribution rate and cumulative variance contribution 
rate of the texture eigenprincipal components (Table 2), we observed that the initial eigenvalues of 
the first, second, and third principal components exceed 1, specifically 19.72, 11.13 and 3.09, 
respectively. The variance contribution rates were 49.30%, 27.80% and 7.70%, respectively, and the 
cumulative variance contribution rate amounted to 84.90%. This indicated that the first three 
principal components were capable of retaining 84.90% of the information from the original data. 
Consequently, the first three components were extracted as the principal components for the 
comprehensive evaluation of texture features. 

Table 2. Initial eigenvalues, contribution rates of variance and cumulative contribution rates of 
variance of texture feature principal components. 

Principal Component 
Initial Eigenvalues 

Eigenvalue Variance Contribution Ratio (%) 
Cumulative Variance Contribution 

Ratio (%) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

19.72 
11.13 
3.09 
1.93 
1.54 
0.74 
0.66 
0.38 
0.28 
0.22 
0.15 
0.06 

49.30 
27.80 
7.70 
4.80 
3.80 
1.90 
1.70 
0.90 
0.70 
0.60 
0.40 
0.10 

49.30 
77.10 
84.90 
89.70 
93.50 
95.40 
97.00 
98.00 
98.70 
99.20 
99.60 

100.00 

 

Figure 3. Principal component analysis loading plots for different texture features. 

Figure 3 displayed the loadings of the principal component analysis for the 40 texture features. 
The variance contributions of the first (PC1), second (PC2), and third (PC3) principal components 
were represented on the X-, Y- and Z-axes, respectively. It was evident that the larger the absolute 
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value of a variable's coefficient on a particular principal component, the greater its contribution to 
that component. 

3.2. Correlation Analysis of CI, VI, Texture Features and TIR with Wheat Yield 

The Pearson’s correlation coefficient (r) analysis of vegetation index including 10 CIs and 11 VIs, 
3 texture features and thermal infrared index were shown in Figure 4. The absolute correlation 
between CI and wheat yield ranged from r = 0.13 to r = 0.72. Among these, the highest correlation 
was observed with VARI (r = 0.72), while the lowest correlations were with PPR and GBRI (r = 0.13). 
The remaining 6 indices, IKAW, ExG, RGBVI, GLA, CIVE, RBRI and VARI, all exhibited correlations 
of 0.6 and above (r ≥ 0.60). The absolute correlation between VIs and wheat yield consistently 
approached 0.70, with RDVI and GOSAV showing the highest correlation (r = 0.70). The lowest 
correlation was observed with MTCI (r = 0.68). The texture features were primarily consisted of 
component analysis. In the correlation analysis between TIR and wheat yield, it was found that the 
absolute correlation value of PC1 was the highest (r = 0.69), whereas the remaining indices exhibited 
lower correlations. Notably, TIR demonstrated a relatively higher correlation (r = 0.68). 

 

Figure 4. Pearson’s correlation coefficient (r) between CI, VI, Texture features, TIR and wheat yield. 
(a) CIs; (b) VIs; (c) Texture features and TIR. 

3.3. Wheat Yield Estimation for Optimal Sensor 

In this study, five regression algorithms (RF, PLS, RR, KNN, and XGboost) were employed, 
alongside three ensemble learning algorithms, to forecast wheat yield. These predictions were based 
on features extracted from three distinct types of sensors (RGB, MS, and TIR) and their various 
combinations, as depicted in Table 3 and Figure 5. Among the predicted results from the single data 
source, the fusion of two data sources, the fusion of three data sources and the fusion of four data 
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sources across eight machine learning algorithms, the highest R² values were observed for Texture 
(R² = 4.773), Texture+TIR (R² = 4.934), RGB+Texture+TIR (R² = 5.153) and RGB+MS+Texture+TIR (R² = 
5.238). Additionally, the prediction error value based on the RGB+MS+Texture+TIR data fusion 
model was also the lowest, with RMSE = 5.546 t ha⁻¹ and NRMSE = 55.733%. Therefore, the 
RGB+MS+Texture+TIR data fusion yielded the most accurate predictions for wheat yield, surpassing 
single, dual and triple data source fusion. Specifically, it achieved a higher overall R² value, ranging 
from 9.74% to 33.48%, 6.17% to 19.61% and 1.64% to 8.88%, respectively, compared to the other fusion 
strategies. Furthermore, it demonstrated a lower total RMSE, decreasing by 7.53%-17.72%, 5.12%-
16.07% and 3.23%-6.97%, respectively. Similarly, the total NRMSE was reduced by 7.54%-17.73%, 
5.13%-16.06% and 3.31%-6.98%, respectively. In conclusion, the RGB+MS+Texture+TIR data fusion 
emerged as the most precise in estimating wheat yield. 

Table 3. Test accuracy statistics of different models for wheat yield prediction. 

Sensor Metric Base learner Secondary learner 
Thirdary 
learner 

    RF PLS RR KNN XGboost StRR En_FW En_Mean 

RGB 
R2 0.492  0.501  0.517  0.465  0.514  0.525  0.524  0.612 

RMSE (t ha-1) 0.848  0.841  0.827  0.871  0.830  0.820  0.821  0.818 
NRMSE (%) 8.520  8.449  8.310  8.750  8.339  8.241  8.247  8.172 

MS 
R2 0.513  0.534  0.534  0.507  0.528  0.542  0.548  0.625 

RMSE (t ha-1) 0.853  0.834  0.834  0.858  0.839  0.827  0.821  0.822 
NRMSE (%) 8.565  8.378  8.383  8.619  8.433  8.304  8.249  8.243 

Texture 
R2 0.579  0.592  0.592  0.539  0.593  0.605  0.596  0.678 

RMSE (t ha-1) 0.758  0.746  0.746  0.793  0.745  0.734  0.743  0.733 
NRMSE (%) 7.617  7.498  7.498  7.963  7.487  7.374  7.459  7.384 

TIR 
R2 0.434  0.490  0.490  0.439  0.482  0.500  0.495  0.594 

RMSE (t ha-1) 0.879  0.834  0.834  0.875  0.840  0.826  0.830  0.823 
NRMSE (%) 8.825  8.382  8.382  8.791  8.443  8.295  8.335  8.292 

RGB+MS 
R2 0.540  0.506  0.545  0.503  0.537  0.561  0.552  0.636 

RMSE (t ha-1) 0.825  0.854  0.820  0.857  0.827  0.806  0.814  0.805 
NRMSE (%) 8.285  8.580  8.241  8.611  8.307  8.096  8.173  8.107 

RGB+Texture 
R2 0.604  0.577  0.577  0.569  0.605  0.619  0.614  0.687 

RMSE (t ha-1) 0.747  0.772  0.772  0.779  0.746  0.733  0.737  0.733 
NRMSE (%) 7.506  7.754  7.758  7.828  7.491  7.360  7.407  7.314 

Sensor Metric Base learner 
    RF PLS RR KNN StRR En_FW  

RGB+TIR 
R2 0.554  0.557  0.560  0.548  0.561  0.575  0.580  0.657  

RMSE (t ha-1) 0.780  0.777  0.775  0.785  0.774  0.762  0.757  0.756  
NRMSE (%) 7.839  7.806  7.786  7.889  7.772  7.650  7.602  7.620  

MS+Texture 
R2 0.598  0.604  0.601  0.551  0.617  0.623  0.619  0.694  

RMSE (t ha-1) 0.741  0.735  0.738  0.782  0.723  0.718  0.721  0.714  
NRMSE (%) 7.443  7.389  7.410  7.859  7.263  7.208  7.246  7.198  

MS+TIR 
R2 0.569  0.561  0.563  0.536  0.566  0.581  0.571  0.656  

RMSE (t ha-1) 0.772  0.780  0.778  0.801  0.775  0.762  0.770  0.763  
NRMSE (%) 7.760  7.833  7.811  8.049  7.789  7.654  7.739  7.660  

Texture+TIR 
R2 0.607  0.607  0.607  0.555  0.614  0.628  0.620  0.697  

RMSE (t ha-1) 0.732  0.732  0.733  0.780  0.726  0.713  0.720  0.710  
NRMSE (%) 7.357  7.358  7.359  7.831  7.290  7.161  7.235  7.157  

RGB+MS+Texture 
R2 0.615  0.590  0.614  0.577  0.613  0.639  0.627  0.702  

RMSE (t ha-1) 0.736  0.760  0.738  0.772  0.739  0.713  0.725  0.716  
NRMSE (%) 7.396  7.638  7.412  7.755  7.421  7.163  7.281  7.146  

RGB+MS+TIR R2 0.588  0.582  0.602  0.547  0.591  0.603  0.612  0.686  
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RMSE (t ha-1) 0.750  0.755  0.737  0.786  0.747  0.736  0.728  0.723  
NRMSE (%) 7.532  7.589  7.405  7.897  7.508  7.389  7.310  7.287 

          
Sensor Metric Base learner Thirdary learner 

    RF PLS RR KNN XGboost StRR En_FW En_Mean 

RGB+Texture+TIR 
R2 0.636  0.614  0.620  0.615  0.647  0.652  0.655  0.717  

RMSE (t ha-1) 0.718  0.739  0.733  0.738  0.707  0.702  0.698  0.696  
NRMSE (%) 7.210  7.424  7.367  7.415  7.098  7.051  7.014  7.061  

MS+Texture+TIR 
R2 0.627  0.616  0.620  0.568  0.641  0.643  0.645  0.711  

RMSE (t ha-1) 0.720  0.730  0.726  0.774  0.706  0.704  0.702  0.699  
NRMSE (%) 7.234  7.336  7.296  7.777  7.090  7.072  7.049  7.046  

RGB+MS+Texture+TI
R 

R2 0.640  0.631  0.649  0.589  0.660  0.668  0.667  0.733  
RMSE (t ha-1) 0.701  0.709  0.692  0.748  0.681  0.673  0.674  0.668  
NRMSE (%) 7.038  7.127  6.949  7.519  6.842  6.760  6.771  6.727  

MS multi-spectral features, TIR thermal infrared features, RF random forest, PLS partial least squares, RR ridge 
regression, KNN k-nearest neighbor, XGboost extreme gradient boosting decision tree, StRR stacking ensemble 
using ridge regression as a secondary learner, En_FW feature-weighted ensemble as a secondary learner, 
En_Mean simple mean ensemble as a thirdary learner. 

 
Figure 5. Comparison of the estimation accuracies of models for different sensors and their 
combinations. 
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3.4. Optimal Machine Learning Algorithm For Wheat Yield Estimation 

Based on the results above, the fusion data of RGB+MS+Texture+TIR demonstrated high 
accuracy in predicting wheat yield. Among the five base models, the RR model performed the best 
when using RGB data (R² = 0.517) and TIR data (R² = 0.490) as single data sources. Conversely, PLS 
exhibited the highest predictive value for MS data (R² = 0.534), while XGboost showed the highest 
predictive value for Texture data (R² = 0.593). After the fusion of multi-sensor data, the prediction 
accuracy of most machine learning models was notably enhanced. The findings indicated that 
XGboost emerged as the top-performing predictive machine learning model, achieving an R² value 
of 0.660 (Table 3). The analysis results of the models on different data combinations are depicted in 
Figure 6. The R² value of XGboost was observed to be 0.011, 0.014, 0.0053, and 0.044 higher than RF, 
PLS, RR, and KNN, respectively. Furthermore, the XGboost model exhibited smaller errors in terms 
of RMSE and NRMSE. Specifically, its RMSE was lower than the other four models by 0.010, 0.013, 
0.005, and 0.040, respectively, while the NRMSE was lower than 0.104, 0.131, 0.053, and 0.399, 
respectively. These findings further confirm the superiority of XGboost in wheat yield prediction, 
followed by RR. 

 

Figure 6. Comparison of the estimation accuracies of different ML algorithms. 

Compared with the basic model, three ensemble methods were used in this study, including two 
second-layer ensemble methods (stacking and feature-weighted methods) and one third-layer 
ensemble method (simple average method). The analysis results were shown in Table 3. All three 
ensemble methods demonstrated higher model prediction accuracy compared to the single ML 
model. When compared to the single ML model that performed best on single sensor data, stacking, 
feature-weighted and simple average ensemble learning increased the R² values of the single sensor 
by 1.53% -2.16%, 0.50%-2.67% and 14.33%-21.26%, respectively. Additionally, RMSE was reduced by 
0.81%-1.48%, 0.33%-1.55% and 1.10%-1.65%, respectively, while NRMSE was reduced by 0.83%-
1.51%, 0.37%-1.54% and 1.08%-1.66%, respectively.  

Compared with the single ML models exhibiting the best performance in the optimal 
combination of multi-source data fusion (RGB+MS+Texture+TIR), the prediction accuracy of the three 
ensemble learning methods was also superior, surpassing each single model by 1.23%, 1.07% and 
11.01%, respectively. Additionally, the RMSE was reduced by 1.19%, 1.03% and 1.97%, respectively, 
while NRMSE decreased by 1.20%, 1.04% and 1.68%, respectively. The ensemble learning model 
consistently achieved higher estimation accuracy in average R2, RMSE and NRMSE compared to all 
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the base models, which confirmed the effectiveness of the ensemble learning model. In addition, it 
can be seen from Figure 6 that the R2 of the simple average ensemble model was significantly higher 
than the stacking ensemble and the feature-weighted ensemble model, surpassing them by 1.121 and 
1.157, respectively. Moreover, both RMSE and NRMSE were lower in the simple average ensemble 
model compared to the other two ensemble models. Therefore, it can be inferred that the simple 
average ensemble model was more accurate for wheat yield prediction.  

 
Figure 7. Comparison of ensemble learning estimated and measured yields. 

By comparing the correlation and linear fit between the estimated yield and measured yield of 
different integration methods under the optimal combination of RGB+MS+Texture+TIR (Figure 7); it 
was observed that the prediction result of the simple average ensemble method exhibited a closer 
correspondence with the actual tested yield. This observation confirms that the simple average 
ensemble method was the most accurate for wheat yield prediction 

4. Discussion 

4.1. Estimation of Wheat Yield from Single Sensor Data and Multi-Sensor Fusion Data 

In this study, through the analysis of the single sensor prediction results, it was found that the 
wheat yield prediction accuracy ranked as follows: Texture > MS > RGB > TIR. Among them, texture 
features exhibited superior performance in wheat yield prediction accuracy, with R² values ranging 
from 0.539 to 0.593. This has been consistently demonstrated in studies across various sites and crops. 
The utilization of PCA in maize yield prediction effectively reduced the standard deviation of the 
prediction performance, thereby enhancing the accuracy of yield forecasts (Croci et al., 2013).  

In Vietnam, the rice yield prediction model utilizing PCA-ML exhibited an average 
improvement of 18.5-45.0% compared to using ML alone. This outcome fully underscores the 
reliability and effectiveness of the combined model (Pham et al., 2022). This indicates that the method 
combining PCA and ML effectively handles redundant data in multi-channel texture features, 
consequently leading to a significant enhancement in the accuracy of yield prediction.  

The wheat yield prediction results from MS data were superior to those from RGB data, 
primarily due to its capability to capture spectral information across multiple bands from visible light 
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to near infrared. Particularly, the near-infrared band provides the opportunity to accurately calculate 
Vis such as NDVI, which in turn can be utilized to better assess wheat yield. Furthermore, the stability 
of MS cameras across varying lighting conditions minimizes the influence of environmental 
fluctuations on prediction accuracy, ensuring the provision of reliable data for yield estimation (Soria 
et al., 2017; Cao et al., 2021). The performance of TIR information extracted by TIR sensors was not 
satisfactory, with R² values ranging from 0.434 to 0.490. This finding aligns with the results reported 
by Luz and Elarab (Luz et al., 2010; Elarab et al., 2015). The possible explanation for this could be that 
canopy heat information is intricately linked to factors such as leaf water content, pigment 
concentration and canopy structural characteristics. If these factors are not appropriately controlled 
or corrected for during data processing, they can significantly impact the accuracy of yield 
predictions (Beatriz et al., 2007; Maimaitijiang et al., 2020). 

Multi-sensor fusion (RGB+MS+Texture+TIR) demonstrated clear advantages over single sensor 
prediction. By harnessing the capabilities of multiple sensors and integrating data from different 
sources, it provided a more comprehensive overview of crop growth information, thereby enhancing 
forecast accuracy (Fei et al., 2022).  

However, it also poses challenges in terms of data processing and algorithm optimization. 
Future research efforts should focus on streamlining the fusion process and enhancing algorithm 
efficiency to achieve more reliable wheat yield prediction. 

4.2. Application of Basic Model in Wheat Yield Estimation 

Five basic models were employed for wheat yield forecasting. XGboost, as a novel ML algorithm, 
has demonstrated superior predictive capabilities compared to other models, such as RF (Bolón-
Canedo et al., 2019). RF has been favored by many researchers due to its capability of removing 
redundant information from spectral data and achieving higher inversion accuracy through a smaller 
set of spectral characteristic variables (Bolón-Canedo et al., 2019; Huang et al., 2022). Indeed, the 
XGboost model exhibited exceptional performance in the wheat yield prediction task. This was 
primarily attributed to its innovative algorithm design and optimization strategy, which effectively 
minimized overfitting and reduced computational demands. Consequently, the model's 
generalization ability was significantly enhanced, leading to more accurate predictions (Nagaraju, 
2021). This research result has been corroborated by Li et al., who confirmed that the XGboost model 
outperforms other models in soybean yield prediction when utilizing the same input data (Li et al., 
2023). Furthermore, in the prediction of winter wheat yield, the XGboost model not only marginally 
exceeded the RF model in terms of prediction accuracy but also demonstrated significant superiority 
in computational efficiency in most scenarios. Notably, it requires less time, making it a more efficient 
and practical choice for yield prediction (Joshi et al., 2023). These results underscore the advantages 
of XGboost in processing large-scale agricultural data, particularly in situations where swift and 
efficient output predictions are imperative. The model's superior performance in terms of both 
accuracy and computational efficiency demonstrates its potential as a valuable tool for agricultural 
yield forecasting. 

The PLS model exhibited the poorest performance in wheat yield prediction, both in single-
sensor and multi-sensor data fusion scenarios. Although PLS is capable of addressing the issue of 
multicollinearity among independent variables, as the number of potential variables increases, the 
training model tends to overfit. This overfitting phenomenon adversely impacts the model's 
performance on new test data, limiting its accuracy and reliability for yield prediction tasks (Aguate 
et al., 2017; Zeng et al., 2018). 

4.3. Performance of Ensemble Learning in Wheat Yield Prediction 

Despite the recent significant advancements in ML methods and their successful applications 
across various fields, the pure data-driven approach in utilizing ML technology still poses some 
fundamental limitations. The accuracy and uncertainty of predictions generated by ML algorithms 
heavily depend on several factors. These include the quality of the data, the representativeness of the 
chosen model, and the dependencies between the input and target variables within the collected 
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dataset (Wei et al., 2015). Data that contains high levels of noise, erroneous information, outliers, 
biases, and incompleteness can significantly diminish the predictive capabilities of a machine 
learning model (Chlingaryan et al., 2018). For this reason, this study incorporates three ensemble 
methods: stacking, feature-weighted and simple average ensemble. In comparison to a single model, 
the ensemble model demonstrates higher precision. This finding aligns with the outcomes of 
previous research (Fei et al., 2022; Ji et al., 2023). The R² values of the stacking ensemble method, 
which served as the second layer, were closely comparable to those of the feature-weighted ensemble 
learning approach. The primary advantage of the stacking ensemble method lies in its ability to learn 
and capitalize on the complementarities among diverse base learners, thereby enhancing the accuracy 
of predictions (Li et al., 2021). However, since the performance of each primary learner varies, the 
presence of large output errors in some primary learners can introduce significant error features into 
the training process of the meta-learner. This, in turn, can negatively impact the prediction accuracy 
of the entire model (Pavlyshenko et al., 2018). Another feature-weighted ensemble learning method 
involves correcting the prediction error of each primary learner. By doing so, it addresses the issue 
of poor prediction performance of individual models to some extent, generating a dataset that is more 
conducive to learner training (Wei et al., 2015). Therefore, when there is variation in the correlation 
among features within the data, it is a prudent choice to select ensemble methods tailored to the 
specific characteristics of the dataset (Anh et al., 2017). In summary, the prediction accuracy of both 
stacking and feature-weighted methods was comparable, likely due to the unique advantages each 
approach offers. Notably, the novel layer 3 simple average ensemble method exhibited the highest R² 
value. This superior performance may be attributed to its ability to effectively integrate prediction 
results from diverse methods, mitigating potential issues such as model disparities, variations in 
sample distribution, and inaccuracies in feature weights, ultimately leading to enhanced prediction 
accuracy. 

5. Conclusions 

This study delved into the capabilities of UAV multi-sensor data fusion and machine learning 
algorithms for wheat yield prediction. Three ensemble learning methods of stacking, feature-
weighted and simple average were proposed to improve the performance of the prediction model. 
The results demonstrated that these ensemble learning methods enhanced the accuracy of wheat 
yield prediction. By synthesizing the strengths of different learners, ensemble learning methods 
effectively mitigated the potential risk of overfitting associated with individual models, thereby 
bolstering the model's generalization ability. The introduction of the simple average as the third layer 
ensemble learning represented a novel concept in wheat yield estimation. This method not only 
evaluated and improved the model's forecasting performance in a more robust and comprehensive 
manner, but also enhanced its adaptability and flexibility to data variations while maintaining high 
predictive accuracy. Therefore, it is anticipated that these ensemble learning methods will find 
widespread application in assessing the yield of diverse crops, serving as a scientific foundation and 
providing crucial management decision support for the advancement of precision agriculture. 
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