Pre prints.org

Article Not peer-reviewed version

Wheat Yield Estimation Using Machine
Learning Method Based on UAV Remote
Sensing Data

Shurong_Yang, Lei Li, Shuaipeng_Fei, Mengjiao Yang , Zhigiang Tao, Yaxiong_Meng : , Yonggui Xiao i

Posted Date: 7 May 2024
doi: 10.20944/preprints202405.0402.v1

Keywords: Machine learning; Yield prediction; Data fusion; Wheat; Phenotyping

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3539286
https://sciprofiles.com/profile/1351993
https://sciprofiles.com/profile/600823
https://sciprofiles.com/profile/2250230
https://sciprofiles.com/profile/1225121
https://sciprofiles.com/profile/421118

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0402.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Wheat Yield Estimation using Machine Learning

Method Based on UAV Remote Sensing Data

Shurong Yang 123+, Lei Li 3, Shuaipeng Fei *4, Mengjiao Yang 5, Zhiqiang Tao 3, Yaxiong Meng 12*
and Yonggui Xiao 3*

! Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University,
Lanzhou 730070, China; yangshurong2018@163.com (5.Y.); yxmengl@163.com (Y.M.)

2 State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement &
Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China;
yangshurong2018@163.com (5.Y.); yxmeng1@163.com (Y.M.)

3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
yangshurong2018@163.com (S.Y.); lileicaas@qq.com (L.L.); feishuaipeng@163.com (S. F.);
taozhigiang@caas.cn (Z.T.); xiaoyonggui@caas.cn (Y.X.)

4 College of Land Science and Technology, China Agricultural University, Beijing 100193, China;
feishuaipeng@163.com

5 Xinjiang Agricultural Vocational Technical College, Changji 831100, China; yangmengjiao000@163.com

* Correspondence: yxmengl@163.com; xiaoyonggui@caas.cn

Abstract: Accurate forecasting of crop yields holds paramount importance in guiding decision-
making processes related to breeding efforts. This study focused on the application of multi-sensor
data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat
yield prediction. Five machine learning (ML) algorithms namely random forest (RF), partial least
squares (PLS), ridge regression (RR), K-Nearest Neighbor (KNN) and eXtreme Gradient Boosting
Decision Tree (XGboost) were utilized for multi-sensor data fusion, and three ensemble methods
including the second-level ensemble methods (stacking and feature-weighted) and the third-level
ensemble method (simple average) for wheat yield prediction. The 270 wheat hybrids were used as
planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV
platform, equipped with red—green-blue (RGB), multispectral (MS), and thermal infrared (TIR)
sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm
exhibited outstanding performance in multi-sensor data fusion, with the RGB+MS+Texture+TIR
combination demonstrating the highest fusion performance (R2=0.660, RMSE= 0.754). Compared
with the single ML model, the employment of three ensemble methods significantly enhanced the
prediction accuracy of wheat yield. Notably, the third-layer simple average ensemble method
demonstrated superior performance (R2 =0.733, RMSE= 0.668 t ha-1). It significantly outperformed
both the second-layer ensemble methods of Stacking (R2= 0.668, RMSE= 0.673 t ha-1) and feature-
weighted (R2= 0.667, RMSE= 0.674 t ha-1), thereby exhibiting superior predictive capabilities. This
finding demonstrated that the third-layer ensemble method not only augments the predictive ability
of the model but also fine-tuned the accuracy of wheat yield prediction through the employment of
simple average ensemble learning. Consequently, it offers a novel perspective for crop yield
prediction and breeding selection.

Keywords: machine learning; yield prediction; data fusion; wheat; phenotyping

1. Introduction

Wheat stands as one of the most vital crops globally, with approximately 35%-40% of the world's
population relying on it as a primary food source. It contributes approximately 21% of food energy
and 20% of protein intake. Given the backdrop of population growth and climate change, the early
and accurate estimation of wheat yield holds utmost importance for safeguarding national food
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security and maintaining people's living standards (Sun et al., 2020; Zhou et al., 2017).
Conventionally, the yield prediction method has primarily been dependent on field observation and
investigation, which is not only a time-consuming and laborious process but also susceptible to
subjective biases, and can even result in crop damage (Bian, et al., 2022). In recent years, remote
sensing technology has gained widespread application in the domain of agricultural monitoring. This
technology enables the effective acquisition of canopy spectral data from aerial sources, thereby
facilitating the estimation of crop yields (Xu et al., 2021; Thenkabail et al., 2011). Furthermore,
unmanned aerial vehicle (UAV)-based remote sensing technology has witnessed rapid development,
owing to its distinctive advantages of flexibility and high resolution (Li et al., 2012).

The vegetation index (VI) derived from UAV images has demonstrated its effectiveness in
predicting crop yields. Spectral, structural, thermal infrared (TIR), and texture features extracted
from UAV-collected datasets through sensors can be utilized to assess various plant traits and
structures (Maimaitijiang et al., 2020). For instance, low-altitude UAVs were employed to capture
RGB imaging data of potato canopies at two distinct growth stages, to predict yields (Li et al., 2020).
The use of a multispectral (MS) UAV platform for swift monitoring of the normalized vegetation
index (NDVI) during the wheat filling stage exhibited a strong correlation with wheat grain yield
(Hassan et al., 2019). Texture information extracted from UAV images can effectively reflect the
spatial variations in pixel intensity, thereby emphasizing the structural and geometric characteristics
of the plant canopy (De et al., 2009). The potential of UAV TIR imaging technology for assessing crop
water stress and predicting wheat kernel yield in different wheat varieties has also been thoroughly
validated (Das et al., 2020). However, the majority of studies solely rely on data from a single sensor
to estimate crop yields, overlooking the advantages of combining multiple sensors. For example, by
combining the features derived from MS, RGB, and TIR imaging, the accuracy of soybean yield
prediction can be significantly improved (Maimaitijiang et al., 2020). The combination of canopy TIR
information with spectral and structural characteristics can improve the robustness of crop yield
prediction across diverse climatic conditions and developmental stages (Rischbeck et al., 2016). In
particular, the application of machine learning (ML) techniques to the analysis of multi-sensor data
collected by UAVs can significantly enhance the accuracy of crop yield predictions (Fei et al., 2022).
On this basis, to fully harness the potential of ML algorithms, the machine learning technology is
combined with the VIs extracted from the spectral image of the sensor to build a yield prediction
model, which provides strong support for the relevant practices of precision agriculture (Liakos et
al., 2016; Ramos et al., 2020).

At present, a variety of machine learning methods have been applied to yield prediction, such
as random forest (RF) (Han et al., 2020), partial least squares (PLS) (Maimaitijiang et al., 2017), ridge
regression (RR) (Ahmed et al., 2022), K-Nearest Neighbor (KNN) (Lontsi et al., 2022) and eXtreme
Gradient Boosting Decision Tree (XGboost) (Sarijaloo et al., 2021). However, the predictions of the
same model may vary significantly across different crops and environments, primarily due to the
quality of data, the representation of the model, and the dependencies between input and target
variables within the collected dataset (Chlingaryan et al., 2018). If the data is biased or if the chosen
model exhibits overfitting to the respective dataset, the model will fail to demonstrate accurate
performance (Van der Laan et al., 2007). Ensemble learning, a research hotspot, is proposed to address
these challenges. Its objective is to integrate data fusion, data modeling, and data mining into a
cohesive framework (Dong et al., 2019). the ensemble learning paradigm known as stacked regression
involves linearly combining various predictors to enhance prediction accuracy (Leo et al.,, 1996;
Zhang et al., 2015). The feature-weighted ensemble method assigns weights according to the
correlation of features and estimates the degree of correlation between each feature and the extracted
output model (Wei et al., 2015; Kelly et al., 1991; Raymer et al., 2000; Daszykowski et al., 2007). In this
study, we employ a feature-weighted ensemble learning approach that assigns weights to the training
dataset generated by the primary learner, based on the prediction accuracy of each individual learner.
Subsequently, utilizing these weighted data, the meta-learner is trained to enhance the overall
model's learning efficiency. To further refine the model performance, we introduce an innovative
third-layer ensemble method, specifically the simple average ensemble method. To further optimize
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the model performance, we introduce a novel ensemble method in the third layer, specifically the
simple average ensemble method. The method calculates the average values of the predictions of the
stacking ensemble method and the feature-weighted ensemble method on the test set and compares
them with the actual measured values to realize the effect of the third-layer ensemble learning.

The primary objective of this study was to explore the utilization of UAV-based remote sensing
data obtained 21 days after wheat flowering to predict wheat yield. It includes: (1) evaluation and
data fusion of UAV yield prediction methods based on RGB, MS, Texture and TIR; (2) Compare the
accuracy of the basic learner (RF, PLS, RR, KNN and XGboost) and three ensemble methods (stacking,
feature-weighted and simple average) for yield prediction, and then select the optimal approach.

2. Materials and Methods

2.1. Experiment Location and Design

Two hundred and seventy RILs from cross Zhongmai 578/Jimai 22 were planted at the research
site of Chinese Academy of Agriculture Sciences (35°18'0"N, 113°52'0"E) in Xinxiang, Henan
province, China during the 2021-2022 growing season. This experiment used randomized complete
blocks with three replications under full and limited irrigation treatments. Two irrigations at the
seedling and overwintering stages were poured for both treatments, the full irrigation treatment was
flooded at the greening jointing and early grain filling stages. A plot area was 3.6 m? (1.2 mx3 m). It
was designed in 6 lines, with a line spacing of 0.20 m. The planting density was maintained at 270
plants/m?, and agricultural management was performed according to local conditions. After
maturity, the harvest was conducted using a combine harvester. The seeds were weighed after drying
to a moisture content of less than 12.5%.

2.2. Multi-Sensor Image Acquisition and Processing Based on UAV

Data acquisition for all traits was done by a UAV platform M210 (SZ DJI Technology Co.,
Shenzhen, China). An RGB and TIR were the same sensor (Zenmuse XT2 camera, SZ DJI Technology
Co., Shenzhen, China) with lens pixels of 4000x3000 and 640x512, respectively. MS sensor (Red-Edge
MX camera, MicaSense, Seattle, USA) captures same pixel images (1280x960) in five bands including
blue, green, red, red edge and near infrared (NIR) with wavelength were 475 nm, 560 nm, 668 nm,
717 nm and 842 nm, respectively. The aerial surveys were carried out at the 21 days post-anthesis due
to the proven high accuracy of yield predictions during this period (Fei et al., 2022). All flight tasks
were carried out from 10:00 to 14:00 in clear skies, using D]I Pilot software to set route parameters as
follows: the forward and side overlap were 90% and 85%, respectively, and the flight altitude was 30
meters.

In this study, the Pix4D Mapper Pro 4.5.6 software (Pix4D, Lausanne, Switzerland) was used to
perform radiometric correction and image stitching on RGB, TIR and MS images of UAV, and the
visible, TIR orthophoto image and five-band orthophoto reflectance map were obtained. The
obtained images with spectral reflectance were imported into ArcGIS 10.8.1 (Environmental Systems
Research Institute, Inc., Redlands, USA) software for image cropping, each cell was selected as the
area of interest, the features were extracted and to calculate the different VIs used in this study. The
detailed process is shown in Figure 1. To minimize the noise impact on the images and enhance the
efficiency of subsequent processing steps, it was necessary to exclude non-target areas from the
acquired MS images. The Pix4D Mapper software was utilized to perform image stitching, shading
correction, and digital number (DN) processing on the filtered MS data, ultimately converting it into
a TIFF image format with spectral reflectivity. Radiation calibration was conducted prior to and
following each flight using a dedicated calibration plate. Subsequently, the TIR data was calibrated
based on the blackbody reference to determine the temperature corresponding to each pixel value in
the TIR imagery.
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Figure 1. Processing of UAV-based data.

2.3. Extraction of Vegetation and Texture Index

As a metric for evaluating physiological parameters of crops, VIs could effectively reflect the
real-time growth level of crops (Xue et al., 2017). Ten color index and eleven MS VIs were selected as
shown in Table 1.

In addition to spectral information, texture features as another important remote sensing
information were less susceptible to external environmental factors. They reflected the grayscale
nature of the image and its spatial relationships, thereby enhancing the inversion accuracy of single
spectral information sources that may suffer from saturation issues. Furthermore, texture features
enhanced the potential for inverting physicochemical parameters to a certain extent (Humeau-
Heurtier, 2019). In ENVI 5.3, the widely utilized gray level co-occurrence matrix (GLCM) was used
to extract 40 texture features for the RGB-based R, G, B bands and MS based red-edge, NIR bands.
Then, the region of interest was delimited for the texture feature images of each band in ArcGIS 10.8.1
(Figure 1).

Principal component analysis (PCA) was a data mining technique in multivariate statistics. It
transformed convert high-dimensional data into low-dimensional data through dimensionality
reduction, while preserving the majority of the information within the data without compromising
its integrity (Abdi et al., 2010). Through principal component analysis, we transformed the initial 40
texture features into 3 new principal components, which were linear combinations of the original
features. Each principal component encapsulated a portion of the information from the original
features. By utilizing these principal components, we effectively represented the original data in a
lower-dimensional space while preserving as much of the data's variance as possible. Consequently,
these three principal components could be regarded as representative of the most significant texture
features within the dataset (Figure 1).
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Table 1. Vegetation index formula for UAV images.
Spectral Indices Equation References
Red Green Blue Vegetation Index RGBVI=(G2-B * RAG2+ B * R) Jietal. (2023)
Plant Pigment Ratio PPR= (G - B)/(G +B) Pefiuelas et al. (1994)
Green Leaf Algorithm GLA=(2*G-R-B)/(2*G+R+B) Louhaichi et al. (2001)

Excess Green Index

Colour Index of Vegetation Extraction

Visible Atmospherically Resistant Index

Kawashima Index
Woebbecke Index
Green Blue Ratio Index
Red Blue Ratio Index
Green-NDVI

MERIS Terrestrial Chlorophyll Index
Normalized Difference Vegetation Index

Ratio Vegetation Index
Ratio Vegetation Index

Modifed Simple Ratio Index
Re-normalized Difference Vegetation

Index

Structure Insensitive Pigment Index

Colour Index

Generalized Soil-adjusted Vegetation

Index

Plant Senescence Refectance Index

ExG=2*G-R-B
CIVE=0.441*R-
0.881*G+0.3856*B+18.78745
VARI=(G-R)/(G+R-B)
IKAW=(R-B)/(R+B)
WI=(G-B)/(R-G)
GBRI=G/B
RBRI=R/B
GNDVI=(NIR-G)/(NIR+G)
MTCI=(NIR-R)/(RE-R)
NDVI=(NIR-R)/(NIR+R)
RVI1=NIR/R
RVI2=NIR/G
MSRI=(NIR/R-1)/(NIR/R+1)**0.5

RDVI=(NIR-R)/(NIR+R)**0.5

SIPI = (NIR-B)/(NIR+B)
CI=NIR/G-1

GOSAVI=(NIR-G)/(NIR+G+0.16)
PSRI=(R-B)/NIR

Woebbecke et al. (1995)
Guijarro et al. (2011)

Gitelson et al. (2002)
Kawashima (1998)
Woebbecke et al. (1995)
Sellaro et al. (2010)
Sellaro et al. (2010)
Gitelson et al. (1996)
Zhang et al. (2014)
Gitelson et al. (2002)
Pinter et al. (2003)
Xue et al. (2004)
Chen (1996)

Roujean and Breon. (1995)

Penuelas et al. (1995)
Gitelson et al. (2003)

Gilabert et al. (2002)
Merzlyak et al. (1999)

2.3. Ensemble Learning Framework

In ML, each algorithm possesses its distinct strengths. Ensemble learning achieves superior
generalization performance by harnessing the combined advantages of various machine learning
algorithms (Dong et al., 2020). This study proposed three methods in total. The first method was
stacking regression, which was a heterogeneous ensemble learning model first introduced by
WOLPERT in 1992 (Quinlan, 1992). The objective of this study was to integrate the predictive
strengths of five fundamental models: RF, PLS, RR, KNN and XGboost. Initially, the training dataset
was partitioned into an 80% training subset and a 20% testing subset. Each base model was then
trained independently on the training subset, utilizing a 10-fold cross-validation approach, and their
respective predictions were generated for the testing subset. Subsequently, these prediction results
were employed as input features for the meta-model. RR served as the regression algorithm for the
meta-model, tasked with learning to effectively integrate the learning algorithms of the various basic
models in order to generate a final ensemble prediction. Throughout the training process, cross-
validation techniques were employed to meticulously fine-tune the hyperparameters of the meta-
model, with the ultimate goal of bolstering its generalization capabilities. Upon completion of the
training phase, the refined stacking model was then utilized to predict outcomes for the test set,
subsequently enabling a thorough evaluation of the model's overall performance (Figure 2).

The second approach was feature-weighted ensemble learning. Its essence laied in assigning
distinct weights to each base learner depending on their predictive prowess. Each base model
underwent training on the training set, and the coefficient of determination (R?) for each base model
was computed using the testing set. Subsequently, the R? values served as the foundation for
allocating weights (Figure 2).

The third approach proposed in this study was simple average ensemble learning, where the
predictions obtained from Stacking regression and the feature-weighted ensemble method on the
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testing set were averaged. Then, the R? score was computed between the averaged predictions and
the true values of the testing set (Figure 2).
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Figure 2. Modeling construction and assessment.

2.4. Model Performance Evaluation

In this study, the selection R?, root-mean-square error (RMSE) and normalized root-mean-square
error (NRMSE) were selected as the indexes to evaluate the prediction accuracy of the base learner.
The formula is as follows:

R2=1-— I (?i‘yi)z (1)
S, 0-9)°
N (5._v2
RMSE = [2=10020 )
NRMSE = R“;SE «100% 3)

Where y; and J; are measured and predicted values of wheat yield, respectively, y is the
mean value of measured yield and n is the sample size.
The weight allocation formula is as follows:

ER1
= 4
wi ST Ern 4)

Where w; is the weight of the [ primary learner, [ =1, 2, ..., T; T is the number of primary
learners; Ey, isthe R? of the | primary learner; Er, isthe R? of the h primary learner.

This formula transforms the R? scores of each base model into weights and ensures that the sum
of all weights equals 1. Thus, the stronger predictive performance of each base model is assigned a
higher weight, leading to a larger proportion in the ensemble prediction.
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3. Results

3.1. Principal Component Analysis of Texture Features

In analysing the initial value, variance contribution rate and cumulative variance contribution
rate of the texture eigenprincipal components (Table 2), we observed that the initial eigenvalues of
the first, second, and third principal components exceed 1, specifically 19.72, 11.13 and 3.09,
respectively. The variance contribution rates were 49.30%, 27.80% and 7.70%, respectively, and the
cumulative variance contribution rate amounted to 84.90%. This indicated that the first three
principal components were capable of retaining 84.90% of the information from the original data.
Consequently, the first three components were extracted as the principal components for the
comprehensive evaluation of texture features.

Table 2. Initial eigenvalues, contribution rates of variance and cumulative contribution rates of
variance of texture feature principal components.

Initial Eigenvalues

Principal Component Eigenvalue Variance Contribution Ratio (%) Cumulative Varl.ance Contribution
Ratio (%)
1 19.72 49.30 49.30
2 11.13 27.80 77.10
3 3.09 7.70 84.90
4 1.93 4.80 89.70
5 1.54 3.80 93.50
6 0.74 1.90 95.40
7 0.66 1.70 97.00
8 0.38 0.90 98.00
9 0.28 0.70 98.70
10 0.22 0.60 99.20
11 0.15 0.40 99.60
12 0.06 0.10 100.00

G B B3
QR

G RIREB3 =02
G RERBB4RGBE B4/

Figure 3. Principal component analysis loading plots for different texture features.

Figure 3 displayed the loadings of the principal component analysis for the 40 texture features.
The variance contributions of the first (PC1), second (PC2), and third (PC3) principal components
were represented on the X-, Y- and Z-axes, respectively. It was evident that the larger the absolute
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value of a variable's coefficient on a particular principal component, the greater its contribution to
that component.

3.2. Correlation Analysis of Cl, V1, Texture Features and TIR with Wheat Yield

The Pearson’s correlation coefficient (r) analysis of vegetation index including 10 CIs and 11 VIs,
3 texture features and thermal infrared index were shown in Figure 4. The absolute correlation
between CI and wheat yield ranged from r = 0.13 to r = 0.72. Among these, the highest correlation
was observed with VARI (r = 0.72), while the lowest correlations were with PPR and GBRI (r = 0.13).
The remaining 6 indices, IKAW, ExG, RGBVI, GLA, CIVE, RBRI and VAR], all exhibited correlations
of 0.6 and above (r > 0.60). The absolute correlation between VIs and wheat yield consistently
approached 0.70, with RDVI and GOSAV showing the highest correlation (r = 0.70). The lowest
correlation was observed with MTCI (r = 0.68). The texture features were primarily consisted of
component analysis. In the correlation analysis between TIR and wheat yield, it was found that the
absolute correlation value of PC1 was the highest (r = 0.69), whereas the remaining indices exhibited
lower correlations. Notably, TIR demonstrated a relatively higher correlation (r = 0.68).

—

GY | GY 065 0.63 0.68 0.13 031 013 0.70 -0.60 -0.65 0.72 GY |GY 0.69 0.69 0.67 -0.68 0,69 069 069 .69 0.69 0.70 0.70
IKAW IKAW-0.72 076 025 033 025 081 0.69 100 093] [ | 0.8 RVI1 RVIL099 096 -100 099 10 099 10 0.99 099 099 - 0.8
ExG ExG| 090 | 037 |-045| 037 090 090 0.72| 0.8 - 0.6 RVI2 RVIZ0.95 -099 L0 0.99 10 0.9 10 0.97 0.99 - 0.6
RGBVI RGBVIOAL -0.42 0.41 100 -0.85 -0.76 0.92 - 0.4 MTCI JUTCHA96098|0.96| 098] 0.06| 092 | 0.93 836 - 0.4
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Figure 4. Pearson’s correlation coefficient (r) between CI, VI, Texture features, TIR and wheat yield.

(a) CIs; (b) VIs; (c) Texture features and TIR.

3.3. Wheat Yield Estimation for Optimal Sensor

In this study, five regression algorithms (RF, PLS, RR, KNN, and XGboost) were employed,
alongside three ensemble learning algorithms, to forecast wheat yield. These predictions were based
on features extracted from three distinct types of sensors (RGB, MS, and TIR) and their various
combinations, as depicted in Table 3 and Figure 5. Among the predicted results from the single data
source, the fusion of two data sources, the fusion of three data sources and the fusion of four data
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sources across eight machine learning algorithms, the highest R? values were observed for Texture
(R2=4.773), Texture+TIR (R? = 4.934), RGB+Texture+TIR (R?=5.153) and RGB+MS+Texture+TIR (R? =
5.238). Additionally, the prediction error value based on the RGB+MS+Texture+TIR data fusion
model was also the lowest, with RMSE = 5.546 t ha?! and NRMSE = 55.733%. Therefore, the
RGB+MS+Texture+TIR data fusion yielded the most accurate predictions for wheat yield, surpassing
single, dual and triple data source fusion. Specifically, it achieved a higher overall R? value, ranging
from 9.74% to 33.48%, 6.17% t0 19.61% and 1.64% to 8.88%, respectively, compared to the other fusion
strategies. Furthermore, it demonstrated a lower total RMSE, decreasing by 7.53%-17.72%, 5.12%-
16.07% and 3.23%-6.97%, respectively. Similarly, the total NRMSE was reduced by 7.54%-17.73%,
5.13%-16.06% and 3.31%-6.98%, respectively. In conclusion, the RGB+MS+Texture+TIR data fusion
emerged as the most precise in estimating wheat yield.

Table 3. Test accuracy statistics of different models for wheat yield prediction.

Sensor Metric Base learner Secondary learner Thirdary
learner

RF PLS RR KNN XGboost StRR En_FW En_Mean
R? 0492 0501 0517 0465 0514 0.525 0.524 0.612
RGB RMSE (tha') 0.848 0.841 0.827 0.871  0.830 0.820 0.821 0.818
NRMSE (%) 8520 8449 8310 8750 8.339 8.241 8.247 8.172
R? 0.513 0534 0.534 0507 0.528 0.542 0.548 0.625
MS RMSE (tha') 0.853 0.834 0.834 0.858 0.839 0.827 0.821 0.822
NRMSE (%) 8.565 8378 8.383 8.619 8433 8.304 8.249 8.243
R? 0579 0592 0592 0539 0.593 0.605 0.596 0.678
Texture RMSE (tha') 0.758 0.746 0.746 0.793  0.745 0.734 0.743 0.733
NRMSE (%) 7.617 7498 7498 7.963  7.487 7.374 7.459 7.384
R? 0434 0490 049 0439 0482 0.500 0.495 0.594
TIR RMSE (that) 0.879 0.834 0.834 0.875 0.840 0.826 0.830 0.823
NRMSE (%) 8.825 8.382 8382 8791 8443 8.295 8.335 8.292
R? 0.540 0506 0.545 0503 0.537 0.561 0.552 0.636
RGB+MS RMSE (tha') 0.825 0.854 0.820 0.857 0.827 0.806 0.814 0.805
NRMSE (%) 8.285 8580 8.241 8.611 8.307 8.096 8.173 8.107
R? 0.604 0577 0577 0569 0.605 0.619 0.614 0.687
RGB+Texture RMSE (that) 0.747 0772 0772 0.779 0.746 0.733 0.737 0.733
NRMSE (%) 7.506 7.754 7.758 7.828 7.491 7.360 7.407 7.314

Sensor Metric Base learner
RF PLS RR KNN StRR  En FW

R? 0.554 0557 0560 0.548 0.561 0.575 0.580 0.657
RGB+TIR RMSE (that) 0.780 0.777 0.775 0.785 0.774 0.762 0.757 0.756
NRMSE (%) 7.839 7.806 7.786 7.889 7.772 7.650 7.602 7.620
R? 0.598 0.604 0.601 0551 0.617 0.623 0.619 0.694
MS+Texture RMSE (tha') 0.741 0735 0.738 0.782  0.723 0.718 0.721 0.714
NRMSE (%) 7.443 7.389 7410 7.859 7.263 7.208 7.246 7.198
R? 0.569 0.561 0563 0536 0.566 0.581 0.571 0.656
MS+TIR RMSE (that) 0772 0780 0.778 0.801 0.775 0.762 0.770 0.763
NRMSE (%) 7.760 7.833 7.811 8.049 7.789 7.654 7.739 7.660
R? 0.607 0.607 0.607 0555 0.614 0.628 0.620 0.697
Texture+TIR RMSE (tha') 0.732 0.732 0.733 0.780 0.726 0.713 0.720 0.710
NRMSE (%) 7.357 7358 7359 7.831 7.290 7.161 7.235 7.157
R? 0.615 0590 0.614 0577 0.613 0.639 0.627 0.702
RGB+MS+Texture RMSE (tha') 0.736 0.760 0.738 0.772  0.739 0.713 0.725 0.716
NRMSE (%) 7.396 7.638 7.412 7755 7.421 7.163 7.281 7.146
RGB+MS+TIR R? 0.588 0.582 0.602 0547 0.591 0.603 0.612 0.686
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RMSE (tha') 0750 0755 0737 0786 0747 073 0728 0.723
NRMSE (%) 7532 7589 7405 7.897 7508  7.389  7.310 7.287
Sensor Metric Base learner Thirdary learner
RE PLS RR KNN XGboost StRR En FW  En_Mean
R? 0636 0614 0620 0615 0647 0652 065 0717
RGB+Texture+TIR RMSE (thal) 0718 0739 0733 0738 0707 0702  0.698 0.696
NRMSE (%) 7210 7424 7367 7415 7098 7051  7.014 7.061
R? 0627 0616 0620 0568 0.641 0643  0.645 0711
MS+Texture+TIR ~ RMSE (that) 0720 0730 0726 0774 0706 0704 0702 0.699
NRMSE (%) 7.234 7.336 7296 7777 7090 7072  7.049 7.046
R? 0640 0631 0649 0589 0660 0668  0.667 0733
RGB+MS+Texture+TI
G +MS+ReXture+ RMSE (that) 0701 0709 0692 0748 0681  0.673  0.674 0.668
NRMSE (%) 7.038 7127 6949 7519 6842 6760 6771 6.727

MS multi-spectral features, TIR thermal infrared features, RF random forest, PLS partial least squares, RR ridge
regression, KNN k-nearest neighbor, XGboost extreme gradient boosting decision tree, StRR stacking ensemble
using ridge regression as a secondary learner, En_FW feature-weighted ensemble as a secondary learner,
En_Mean simple mean ensemble as a thirdary learner.
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Figure 5. Comparison of the estimation accuracies of models for different sensors and their
combinations.
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3.4. Optimal Machine Learning Algorithm For Wheat Yield Estimation

Based on the results above, the fusion data of RGB+MS+Texture+TIR demonstrated high
accuracy in predicting wheat yield. Among the five base models, the RR model performed the best
when using RGB data (R? = 0.517) and TIR data (R? = 0.490) as single data sources. Conversely, PLS
exhibited the highest predictive value for MS data (R? = 0.534), while XGboost showed the highest
predictive value for Texture data (R? = 0.593). After the fusion of multi-sensor data, the prediction
accuracy of most machine learning models was notably enhanced. The findings indicated that
XGboost emerged as the top-performing predictive machine learning model, achieving an R? value
of 0.660 (Table 3). The analysis results of the models on different data combinations are depicted in
Figure 6. The R? value of XGboost was observed to be 0.011, 0.014, 0.0053, and 0.044 higher than RF,
PLS, RR, and KNN, respectively. Furthermore, the XGboost model exhibited smaller errors in terms
of RMSE and NRMSE. Specifically, its RMSE was lower than the other four models by 0.010, 0.013,
0.005, and 0.040, respectively, while the NRMSE was lower than 0.104, 0.131, 0.053, and 0.399,
respectively. These findings further confirm the superiority of XGboost in wheat yield prediction,

followed by RR.
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Figure 6. Comparison of the estimation accuracies of different ML algorithms.

Compared with the basic model, three ensemble methods were used in this study, including two
second-layer ensemble methods (stacking and feature-weighted methods) and one third-layer
ensemble method (simple average method). The analysis results were shown in Table 3. All three
ensemble methods demonstrated higher model prediction accuracy compared to the single ML
model. When compared to the single ML model that performed best on single sensor data, stacking,
feature-weighted and simple average ensemble learning increased the R? values of the single sensor
by 1.53% -2.16%, 0.50%-2.67% and 14.33%-21.26%, respectively. Additionally, RMSE was reduced by
0.81%-1.48%, 0.33%-1.55% and 1.10%-1.65%, respectively, while NRMSE was reduced by 0.83%-
1.51%, 0.37%-1.54% and 1.08%-1.66%, respectively.

Compared with the single ML models exhibiting the best performance in the optimal
combination of multi-source data fusion (RGB+MS+Texture+TIR), the prediction accuracy of the three
ensemble learning methods was also superior, surpassing each single model by 1.23%, 1.07% and
11.01%, respectively. Additionally, the RMSE was reduced by 1.19%, 1.03% and 1.97%, respectively,
while NRMSE decreased by 1.20%, 1.04% and 1.68%, respectively. The ensemble learning model
consistently achieved higher estimation accuracy in average R?, RMSE and NRMSE compared to all
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the base models, which confirmed the effectiveness of the ensemble learning model. In addition, it
can be seen from Figure 6 that the R? of the simple average ensemble model was significantly higher
than the stacking ensemble and the feature-weighted ensemble model, surpassing them by 1.121 and
1.157, respectively. Moreover, both RMSE and NRMSE were lower in the simple average ensemble
model compared to the other two ensemble models. Therefore, it can be inferred that the simple
average ensemble model was more accurate for wheat yield prediction.
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Figure 7. Comparison of ensemble learning estimated and measured yields.

By comparing the correlation and linear fit between the estimated yield and measured yield of
different integration methods under the optimal combination of RGB+MS+Texture+TIR (Figure 7); it
was observed that the prediction result of the simple average ensemble method exhibited a closer
correspondence with the actual tested yield. This observation confirms that the simple average
ensemble method was the most accurate for wheat yield prediction

4. Discussion

4.1. Estimation of Wheat Yield from Single Sensor Data and Multi-Sensor Fusion Data

In this study, through the analysis of the single sensor prediction results, it was found that the
wheat yield prediction accuracy ranked as follows: Texture > MS > RGB > TIR. Among them, texture
features exhibited superior performance in wheat yield prediction accuracy, with R? values ranging
from 0.539 to 0.593. This has been consistently demonstrated in studies across various sites and crops.
The utilization of PCA in maize yield prediction effectively reduced the standard deviation of the
prediction performance, thereby enhancing the accuracy of yield forecasts (Croci et al., 2013).

In Vietnam, the rice yield prediction model utilizing PCA-ML exhibited an average
improvement of 18.5-45.0% compared to using ML alone. This outcome fully underscores the
reliability and effectiveness of the combined model (Pham et al., 2022). This indicates that the method
combining PCA and ML effectively handles redundant data in multi-channel texture features,
consequently leading to a significant enhancement in the accuracy of yield prediction.

The wheat yield prediction results from MS data were superior to those from RGB data,
primarily due to its capability to capture spectral information across multiple bands from visible light
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to near infrared. Particularly, the near-infrared band provides the opportunity to accurately calculate
Vis such as NDVI, which in turn can be utilized to better assess wheat yield. Furthermore, the stability
of MS cameras across varying lighting conditions minimizes the influence of environmental
fluctuations on prediction accuracy, ensuring the provision of reliable data for yield estimation (Soria
et al,, 2017; Cao et al., 2021). The performance of TIR information extracted by TIR sensors was not
satisfactory, with R? values ranging from 0.434 to 0.490. This finding aligns with the results reported
by Luz and Elarab (Luz et al., 2010; Elarab et al., 2015). The possible explanation for this could be that
canopy heat information is intricately linked to factors such as leaf water content, pigment
concentration and canopy structural characteristics. If these factors are not appropriately controlled
or corrected for during data processing, they can significantly impact the accuracy of yield
predictions (Beatriz et al., 2007; Maimaitijiang et al., 2020).

Multi-sensor fusion (RGB+MS+Texture+TIR) demonstrated clear advantages over single sensor
prediction. By harnessing the capabilities of multiple sensors and integrating data from different
sources, it provided a more comprehensive overview of crop growth information, thereby enhancing
forecast accuracy (Fei et al., 2022).

However, it also poses challenges in terms of data processing and algorithm optimization.
Future research efforts should focus on streamlining the fusion process and enhancing algorithm
efficiency to achieve more reliable wheat yield prediction.

4.2. Application of Basic Model in Wheat Yield Estimation

Five basic models were employed for wheat yield forecasting. XGboost, as a novel ML algorithm,
has demonstrated superior predictive capabilities compared to other models, such as RF (Bolén-
Canedo et al., 2019). RF has been favored by many researchers due to its capability of removing
redundant information from spectral data and achieving higher inversion accuracy through a smaller
set of spectral characteristic variables (Bolén-Canedo et al., 2019; Huang et al., 2022). Indeed, the
XGboost model exhibited exceptional performance in the wheat yield prediction task. This was
primarily attributed to its innovative algorithm design and optimization strategy, which effectively
minimized overfitting and reduced computational demands. Consequently, the model's
generalization ability was significantly enhanced, leading to more accurate predictions (Nagaraju,
2021). This research result has been corroborated by Li et al., who confirmed that the XGboost model
outperforms other models in soybean yield prediction when utilizing the same input data (Li et al.,
2023). Furthermore, in the prediction of winter wheat yield, the XGboost model not only marginally
exceeded the RF model in terms of prediction accuracy but also demonstrated significant superiority
in computational efficiency in most scenarios. Notably, it requires less time, making it a more efficient
and practical choice for yield prediction (Joshi et al., 2023). These results underscore the advantages
of XGboost in processing large-scale agricultural data, particularly in situations where swift and
efficient output predictions are imperative. The model's superior performance in terms of both
accuracy and computational efficiency demonstrates its potential as a valuable tool for agricultural
yield forecasting.

The PLS model exhibited the poorest performance in wheat yield prediction, both in single-
sensor and multi-sensor data fusion scenarios. Although PLS is capable of addressing the issue of
multicollinearity among independent variables, as the number of potential variables increases, the
training model tends to overfit. This overfitting phenomenon adversely impacts the model's
performance on new test data, limiting its accuracy and reliability for yield prediction tasks (Aguate
et al., 2017; Zeng et al., 2018).

4.3. Performance of Ensemble Learning in Wheat Yield Prediction

Despite the recent significant advancements in ML methods and their successful applications
across various fields, the pure data-driven approach in utilizing ML technology still poses some
fundamental limitations. The accuracy and uncertainty of predictions generated by ML algorithms
heavily depend on several factors. These include the quality of the data, the representativeness of the
chosen model, and the dependencies between the input and target variables within the collected
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dataset (Wei et al., 2015). Data that contains high levels of noise, erroneous information, outliers,
biases, and incompleteness can significantly diminish the predictive capabilities of a machine
learning model (Chlingaryan et al., 2018). For this reason, this study incorporates three ensemble
methods: stacking, feature-weighted and simple average ensemble. In comparison to a single model,
the ensemble model demonstrates higher precision. This finding aligns with the outcomes of
previous research (Fei et al., 2022; Ji et al., 2023). The R? values of the stacking ensemble method,
which served as the second layer, were closely comparable to those of the feature-weighted ensemble
learning approach. The primary advantage of the stacking ensemble method lies in its ability to learn
and capitalize on the complementarities among diverse base learners, thereby enhancing the accuracy
of predictions (Li et al., 2021). However, since the performance of each primary learner varies, the
presence of large output errors in some primary learners can introduce significant error features into
the training process of the meta-learner. This, in turn, can negatively impact the prediction accuracy
of the entire model (Pavlyshenko et al., 2018). Another feature-weighted ensemble learning method
involves correcting the prediction error of each primary learner. By doing so, it addresses the issue
of poor prediction performance of individual models to some extent, generating a dataset that is more
conducive to learner training (Wei et al., 2015). Therefore, when there is variation in the correlation
among features within the data, it is a prudent choice to select ensemble methods tailored to the
specific characteristics of the dataset (Anh et al., 2017). In summary, the prediction accuracy of both
stacking and feature-weighted methods was comparable, likely due to the unique advantages each
approach offers. Notably, the novel layer 3 simple average ensemble method exhibited the highest R?
value. This superior performance may be attributed to its ability to effectively integrate prediction
results from diverse methods, mitigating potential issues such as model disparities, variations in
sample distribution, and inaccuracies in feature weights, ultimately leading to enhanced prediction
accuracy.

5. Conclusions

This study delved into the capabilities of UAV multi-sensor data fusion and machine learning
algorithms for wheat yield prediction. Three ensemble learning methods of stacking, feature-
weighted and simple average were proposed to improve the performance of the prediction model.
The results demonstrated that these ensemble learning methods enhanced the accuracy of wheat
yield prediction. By synthesizing the strengths of different learners, ensemble learning methods
effectively mitigated the potential risk of overfitting associated with individual models, thereby
bolstering the model's generalization ability. The introduction of the simple average as the third layer
ensemble learning represented a novel concept in wheat yield estimation. This method not only
evaluated and improved the model's forecasting performance in a more robust and comprehensive
manner, but also enhanced its adaptability and flexibility to data variations while maintaining high
predictive accuracy. Therefore, it is anticipated that these ensemble learning methods will find
widespread application in assessing the yield of diverse crops, serving as a scientific foundation and
providing crucial management decision support for the advancement of precision agriculture.
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