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Abstract: Pragmatic trials aim toassess intervention efficacy in real-world settings, contrasting with
explanatory trials conducted in controlled conditions. In aging research, pragmatic trials are important designs
for the obtention of real-world evidence in elderly populations, often underrepresented in trials. In this review,
we discuss statistical considerations from a frequentist approach to the design and analysis of pragmatic trials.
Cluster randomization necessitates careful consideration of sample size calculation and analysis methods,
especially regarding missing data and outcome variables. Mixed effects models and Generalized Estimating
Equations (GEE) are both recommended for analysis, with tools available for sample size estimation. Multi-
arm studies pose challenges in sample size calculation, requiring adjustment for design effects and
consideration of multiple comparison correction methods. Secondary analyses are common but require caution
due to reduced statistical power. Safety data collection methods should balance pragmatism and data quality.
Overall, understanding statistical considerations is crucial for designing rigorous pragmatic trials evaluating
interventions in elderly populations under real-world conditions.

Keywords: pragmatic clinical trials; aged; statistical analysis; geroscience; sample size; secondary
data analysis

1. Introduction

Pragmatic randomized controlled trials differ from explanatory randomized controlled trials in
that the objective of pragmatic trials is to evaluate efficacy, usually in the context of usual patient
care, whereas explanatory trials seek to assess the efficacy of an intervention, often under controlled
conditions[1]. Despite observational studies being commonly used to approximate the effectiveness
of an intervention, pragmatic trials are better at reliably answering questions of effectiveness since
they can minimize confounding through randomization [2].

Although the distinction between explanatory trials and pragmatic trials could suggest there
exists a dichotomy between these types of trials, in practice clinical trials can incorporate both
explanatory and pragmatic elements. Therefore, the PRECIS-2 tool [3] aids the evaluation and design
of elements in the pragmatic-explanatory continuum of trials. In Figure 1, we provide an example of
two different hypothetical trials in aging research with varying degrees of pragmatism, with an
explanation of the design choices and PRECIS-2 scores provided in the Supplementary Materials.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. PRECIS-2 scores of two hypothetical pragmatic trials in aging research.

Figure 1 Trial 1 (mean PRECIS-2 score = 1.6) refers to the situation in which a primary healthcare
practitioner who is also a researcher at an academic research center wants to assess if a new drug is
safe and capable of preventing secondary cardiovascular events in older adults after recovering from
acute myocardial infarction, whereas trial 2 (mean PRECIS-2 = 4.7) was designed after stakeholders
commissioned a study to evaluate if implementing a new drug in all primary healthcare clinics of
their jurisdiction will prevent secondary cardiovascular events under real-world conditions.

Pragmatic randomized controlled trials are increasingly being used in the aging research field
due to the need of obtaining high-quality real-world evidence for interventions in the elderly who
tend to have low representation in trials [4] .Additionally, geriatric interventions are often complex
in nature, reason why pragmatic trials are useful designs for the evaluation of interventions [5]
.Furthermore, pragmatic trials allow investigations in the context of regular clinical practice, with the
advantages of being more accessible, less resource intensive, and placing minimal additional burden
on participants [6].

Despite the multiple advantages of pragmatic trials for the obtention of evidence for complex
interventions in the elderly, there are several choices in the design of pragmatic trials that have
important implications on the ability to obtain high quality evidence, while minimizing costs.
Guidance on such design choices is provided by the GetReal trial tool [7,8]. Despite the existence of
such tools, guidance, and explanations on the rationale for the design and analysis of pragmatic trials
from a biostatistician’s perspective remains scarce. Therefore, we sought to review the statistical
considerations for the design and analysis of pragmatic trials, including available resources for the
sample size calculation and analysis of pragmatic trials. In this review we only cover statistical
considerations from a frequentist approach.

2. Study unit and Randomization

Although the individuals are the ultimate unit of interest in both explanatory trials and
pragmatic trials, clusters are commonly used in pragmatic trials as the unit of randomization. A
cluster refers to any level of aggrupation of individuals (i.e., patients who receive care from one single
practitioner, a clinic or hospital, a jurisdiction, etc.). Cluster randomized trials allow to estimate the
broad population effects of an intervention [9] . Randomization by clusters is also attractive in the
context of pragmatic trials since they can allow to overcome logistical challenges of interventions
delivered at very large number of patients, among other reasons.

A parallel cluster study in which different groups of individuals are assigned to receive an
intervention or the comparator (i.e., placebo) without random assignment would be considered a
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quasi-experimental study and would have many sources of latent potential confounding.
Fortunately, different randomization strategies have been envisioned and successfully applied:
parallel randomized clusters, parallel randomized clusters with a baseline period, and stepped
wedge cluster randomized studies [10].

From a causal research perspective, the reason randomization is important in a conventional
individual-level randomized study is that it allows for comparability of the prognosis of participants
allocated to treatment groups [11]. Confounders are said to be randomly distributed between groups.
Thus, the group to which participants are assigned serves as an instrumental variable [12] that can
be used to approximate the effect of an intervention (assuming compliance with it).This is the
principle of the intention-to-treat [13] and the reason why the method of analysis should be
Randomization-Based Inference [14], meaning that the principle of intention-to-treat should be
followed. In this approach, subjects are evaluated considering the original group to which they were
randomly assigned, and data elimination due to lack of information, treatment changes, use of other
medications, or lack of adherence should be strongly avoided|3,15].

In pragmatic clinical trials, cluster randomization is recommended over individual
randomization. Therefore, the number of clusters or the number of subjects per cluster should be
determined a priori [16]. It is common to assume an equal number of subjects in each cluster (cluster
size), leading to statistical analysis using hypothesis testing for comparison of means or proportions,
depending on the type of dependent variable chosen. However, when cluster sizes are not equitable,
the use of mixed effects models (also called random effects models) or generalized estimating
equations (GEE) is suggested[17].

The evaluation of missing data should beimperative to detect the presence of non-random
patterns of missing data. The use of imputation techniques may or may not be warranted, but it is
imperative to assess if missing data exhibit a specific pattern, as non-random patterns could bias the
interpretation of results [18].

3. The Dependent Variable

The type of dependent variable in pragmatic clinical trials will guide the statistical treatment,
i.e, whether the variable is a continuous quantitative outcome or a dichotomous or ordinal
qualitative outcome. The choice of outcome variable should be made with caution because a variable
that requires strict follow-up or subsequent clinic or hospital visits could interfere with "usual care"
if the visit frequency differs from routine clinical care [15]. The chosen outcome variable should align
with the pragmatic concept, reflecting usual clinical practice. Therefore, a continuous outcome
(reduction in HbAlc, decrease in serum lipids, fewer hospitalization days) can be commonly used to
evaluate intervention effectiveness, as can a dichotomous outcome (achieving <7 units of HbAlc,
having an LDL <150 mg/dL, recovery from illness)[15]. It must be ensured that the choice of outcome
represents the objective for which the usual treatment is utilized.

The most common study designs in pragmatic clinical trials or cluster trials are parallel designs.
In these designs, the use of independent statistical tests (two-sample t-test, ANOVA, x? test) is
standard practice, while in crossover designs or designs where matching between clusters or
individuals has been used, paired analyses (paired t-test, Friedman test, McNemar test) should be
employed [17].

Since maintaining homogeneous cluster sizes is not always feasible, even in explanatory cluster-
crossover trials [19], the use of mixed models and GEE is highly recommended. However, their use
is not as widespread as expected, leading to heterogeneity in the types of statistical analyses[20].
Mixed effects models and GEE are longitudinal data analyses that allow estimation of the effect of an
intervention on the outcome, but they differ in how they generate an estimation of an effect.

Mixed models allow for modeling the effects of fixed factors, which assume a constant effect,
and random factors, which presuppose variability among each subject. They are used when
estimating the effect of an intervention considering the heterogeneity among the clusters to which
subjects belong, and this heterogeneity can be modeled through a probability distribution. Estimates
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generated in mixed models are termed conditional estimates as the model provides a conditional
estimate of the outcome given by the covariates or random effects[21,22].

4. Types of Statistical Model for Pragmatics Designs

Generalized Estimating Equations (GEE) allow for estimating the average effect of a predictor
variable across the entire study population, hence termed population average models or marginal
models. GEE estimates the intervention effect averaged across all clusters, making them suitable for
estimating the effect of a predictor variable when the effects of random factors are not of interest to
the researcher. Therefore, GEE do not require assumptions about the distribution of data but
necessitate larger sample sizes for precise estimations[22,23].

The use of mixed models is more widespread for cluster randomized trials due to their ability
to model different random effects. In Table 1, the main mixed models are presented, considering the
intercept or slope as a random factor in the model. A brief description of their use in CRT, as well as
the statistical model and its code in R software, are provided, considering the dependent variable as
dichotomous, following previous recommendations regarding the use of dichotomous variables in
pragmatic studies [24].

Table 1. Types of mixed models.

Type of model Use in CRT Statistical model Basic R code
Vij = Bo + B1Xjj + bgj + €

Model 1<- glmer(y ~ x +
Where: (1lcluster), family =
yij: is the dependent ~ binomial, data = data)

It is useful for modeling a
heterogeneous initial effect
(intercept) among clusters

. . iable f bject iand
or subjects, but with a varnable for subject tan

Model with random groupj (1lcluster): Indicates the
. . homogeneous effect of the . ] :
intercept and fixed . Bo: is the fixed intercept random slope for each
independent variable. It . A o .
slope . B1: is the fixed coefficient ~ observation of the
serves when assuming that . .
of the variable x variable x and the
members of a cluster have . )

. o . by;: is the random random intercept for
different initial values in t : t effect f each cluster or subject
the dependent variable. mtercepte ;C or group ject

e;j: is the error
Vij = Bo + B1Xij + byjx;;
+ ei]‘
It is useful for modeling ) Model 2<_, glme%‘(y X !
Where: (x11), family = binomial,
that the effect of a is the d d
d dent variable will be Yy 15 the dependent data = data)
Model with fixed § Por variable for subject iand
. heterogeneous among the . .
intercept and random ) groupj (x11): Indicates the
clusters or subjects, but . . .
slope ] Bo: is the fixed intercept random slope for each
that all subjects or clusters , . . . .
o [;: is the fixed coefficient  observation of the
have similar values at the . .
beeinni f the stud of the variable x variable x.
cginmng of the study. by;: is the random slope
effect for groupj
ejj: is the error
This model, known as a Model 3<- glmer(y ~ x +
random effects model, is yj; = Bo + B1Xij + by (xIcluster), family =
Model with random used to model the initial + byjXjj binomial, data = data)
intercept and random differences in the values of + €
slope the dependent variable (x| cluster): Indicates the
among clusters or subjects Where: random slope for each

as well as the observation of the
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5
heterogeneous effect of the yj;: is the dependent variable x and the
independent variable  variable for subject iand random intercept for
among clusters or subjects. groupj each cluster or subject.

Bo: is the fixed intercept
[3;: is the fixed coefficient
of the variable x
by;: is the random
intercept effect for group

)
by;: is the random slope

effect for groupj
ejj: is the error

It is important to consider that the type of dependent variable, whether quantitative or
dichotomous, can be modeled using linear mixed models (LMM) or generalized linear mixed models
(GLMM). GLMMSs, which depend on the distribution of the dependent variable, are modeled with
different link functions (binomial, logit, Poisson, log-log, etc.). Regardless of the data modeling
approach, it is important to verify the statistical assumptions of the models and compare between
models using information criteria (AIC, BIC) when constructing models incorporating various
variables [21].

The way variability in modeled in the experiment can take various forms. In thismini-review,
we provide methodological guidance for the statistical design of a pragmatic clinical trial. Therefore,
we suggest readers explore forums and delve into deeper literature concerning the application of
such models across different software platforms. Additionally, it is important to understand the
requirements for data capture in data matrices, which differ from the conventional data matrices
format where each row represents a different subject. Li F et al. [14] provide a comprehensive
compilation of packages for developing such models in software like R, Stata, and SAS.

5. Sample Size Estimation

The sample size calculation for pragmatic studies will depend on the chosen study designs,
specificallywhether randomization of interventions is performed at the individual or cluster level.
Sample size calculations have been described in multiple publications, and online calculators are
available to estimate the required number of subjects based on whether the dependent variable is
continuous or dichotomous [25]. However, in the case of cluster-based studies, an adjustment must
be made for a correction factor known as the "variance inflation ratio" or "design effect.” This factor
represents the multiplier by which the calculated sample size for individual randomization should
be multiplied [19]. This design effect is calculated as follows: D = 1 + (m — 1)p, where mis the
number of subjects per cluster and g is the intracluster correlation coefficient (s2/sZ + s2,), defined as
the ratio of the variance of means between clusters (s2) to the sum of the variance of subjects within
the same cluster (s%) and between clusters [26]. The calculation of the design effect in designs
comparing two means uses g, while in designs comparing two proportions, the calculation of the
cluster concordance index (k) is employed [27]. It is important to mention that the calculation of the
design effect assumes a homogeneous distribution of the number of subjects per cluster. Therefore, it
may be considered to adjust the sample size calculation assuming unequal cluster sizes through the
calculation of the "coefficient of variation of cluster size" (cv), which can be done by various methods
explained in depth by Eldridge SM et al. [19].

As mentioned in the "dependent variable" section, equitable cluster sizes are not always
estimated in pragmatic studies, and there is a desire to control for the effect of variation within
clusters and between subjects. Hence, mixed models or GEE are used, although these models serve
to describe an effect size based on a different coefficient B different from the classic effect sizes with
mean or proportion differences, which are typically employed in classic sample size calculations.
These more complex statistical models can be used even if the sample size calculation was based on
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a difference in statistics; however, it is preferable to calculate the sample size based on the estimation
of a conditional (LMM-GLMM) or marginal (GEE) model. Therefore, the design effect should also be
specific to these models. Li F et al. [14]compiles various packages for sample size calculation in
specific situations for different software (R, SAS, STATA) for sample size calculations for various
types of CRT.On the other hand, Hemming K et al. [28] developed an online app for calculating
sample sizes and statistical power for various CRT designs.In Table 2 you will find links to online
calculators for sample size calculations for various situations.

Table 2. Links to online resources for sample size calculation.

Type of sample size Link to the resource

Sample size and power calculator for

cluster clinical trials: https://douyang.shinyapps.io/swcrtcalculator/

Sample size calculator for multi-arm https://mjgrayling.shinyapps.io/multiarm/.

trials:
Sample size calculator for non-inferiority https://search.r-
studies with binary outcomes: project.org/CRAN/refmans/dani/html/sample.size. NLhtml
Sample size calculator for non-inferiority https://search.r-
studies with continuous outcomes: project.org/CRAN/refmans/epiR/html/epi.ssninfc.html

6. Multi-Arms Sample Size

Throughout the development of this paper, we have emphasized that the aim of pragmatic trials
is to test interventions in real-world situations. In some cases, theremay be more than one usual care,
multiple promising new treatments, or various waysto implement an intervention. This is where
multi-arms studies become relevant. The most common form of analysis for multi-arms studies
involves comparing means between 3 or more groups using a general linear model (ANOVA family).
For such comparisons, sample size calculation is done considering an expected effect size (2 or
Cohen's f) in the ANOV A model, statistical power (1-3), the alpha error probability (confidence level),
and the number of groups to be included in the study [28]. However, this methodology estimates the
sample size considering only the null hypothesis of the test (no group mean difference), so it does not
consider multiple group comparisons (post hoc tests), which ultimately results in a lower statistical
power of this calculation, leading to a higher risk of type 2 error. Adjusting the alpha error using the
Holm-Bonferroni method (a0 / number of pairwise comparisons) can help provide a better estimate
of the sample size.As previously mentioned, it is more common for the outcome used in usual care
to be a dichotomous rather thanquantitative, therefore, comparing3 or more proportions can be a
pragmatic outcome. In this scenario, sample size calculation can be performedusing formulas for
comparing two proportions and adjusting the alpha error using the Holm-Bonferroni method.
Grayling M] et al. [29]. developed a sample size calculator for multi-arm clinical trials for various
types of variables and sequences andemploying different multiple comparison correction
methods.Additionally, it is important to note that adjustment for the design effect should also be
considered if the sample size will be for a CRT, once the multi-arm sample size is calculated.

The so-called "Adjustment for losses" used in sample size calculations must be justified to avoid
unnecessarily exposing more subjects to risk, since in pragmatic nature, subjects should be included
in the analysis regardless of their follow-up losses or incomplete data.Finally, since prior data on
effect sizes and, in the case of CRT, intracluster correlation, are required to perform any sample size
calculation, it is highly recommended that researchers report these statistics obtained in their study
samples to assist future researchers in scaffolding their own sample size calculations. Otherwise, they
may require conducting pilot studies, which would entail additional effort and expense to the
pragmatic clinical trial itself.

7. Secondary or Ancillary Analyses
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The population included in pragmatic studies can be very heterogeneous, which can lead to the
desire to compare the results of the primary outcome among subgroups of the sample, thereby
identifying in which population characteristics the intervention may be more effective [30]. This
practice is common in secondary analyses of clinical trials where secondary variables are sought to
be evaluated beyond the original protocol due to possible hypotheses obtained during the main study
or attempting to evaluate effects among participant subgroups [31]. The issue with secondary or
subgroup analyses is that they generally have fewer observations and hence less statistical power,
increasing the risk of not detecting differences (type 2 error) or detecting them only by chance (type
1 error)[32].

Sample size calculation allows us to identify the minimum number of subjects needed to achieve
sufficient statistical power to detect a difference between study groups on the primary outcome.
Therefore, the statistical inferences we make in a study regarding secondary outcomes may be biased
if a sample size was not calculated a priori for such comparison [15]. It is under this premise that
secondary analyses of clinical trials should be approached with caution, and the possibility of
committing type 1 and 2 errors should be considered when a proper sample size calculation was not
performed or when subgroup comparisons are overused [30]. If secondary analyses of a pragmatic
clinical trial are to be conducted, efforts should prioritize the evaluation of outcomes relevant to
clinical practice,while the use of surrogate markers is discouraged [15].

While the primary focus of a pragmatic clinical trial is always on evaluating the effectiveness of
an intervention in real-world settings, it is important to note that information on the safety of
interventions is also collected[33]. Greater care must be taken regarding the method of safety data
collection, as an excessive burden on healthcare providers can compromise the pragmatism of the
study. It is suggested to use a combined strategy of data collection present in clinical records, as well
as case-form reports for serious adverse events [33]. In geriatrics, there is often a scarcity of studies
dedicated to assessing the safety of medications in older adults, highlighting the imperative need for
acquiring real-world evidence [34].

8. Conclusions

In this review, we have covered relevant aspects for the design and statistical analysis of
pragmatic randomized controlled trials from a frequentist approach. The methodological design, the
distribution of the dependent variable, the correct calculation of sample size, and the choice of the
number of secondary analyses to be carried out are important statistical considerations that,
alongside other important choices in the design of pragmatic trials,are of utmost importance for the
validity of the estimation of the effect of interventions in the elderly, delivered in real-world
conditions.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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