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Abstract: Pragmatic trials aim toassess intervention efficacy in real-world settings, contrasting with 

explanatory trials conducted in controlled conditions. In aging research, pragmatic trials are important designs 

for the obtention of real-world evidence in elderly populations, often underrepresented in trials. In this review, 

we discuss statistical considerations from a frequentist approach to the design and analysis of pragmatic trials. 

Cluster randomization necessitates careful consideration of sample size calculation and analysis methods, 

especially regarding missing data and outcome variables. Mixed effects models and Generalized Estimating 

Equations (GEE) are both recommended for analysis, with tools available for sample size estimation. Multi-

arm studies pose challenges in sample size calculation, requiring adjustment for design effects and 

consideration of multiple comparison correction methods. Secondary analyses are common but require caution 

due to reduced statistical power. Safety data collection methods should balance pragmatism and data quality. 

Overall, understanding statistical considerations is crucial for designing rigorous pragmatic trials evaluating 

interventions in elderly populations under real-world conditions. 

Keywords: pragmatic clinical trials; aged; statistical analysis; geroscience; sample size; secondary 

data analysis 

 

1. Introduction 

Pragmatic randomized controlled trials differ from explanatory randomized controlled trials in 

that the objective of pragmatic trials is to evaluate efficacy, usually in the context of usual patient 

care, whereas explanatory trials seek to assess the efficacy of an intervention, often under controlled 

conditions[1]. Despite observational studies being commonly used to approximate the effectiveness 

of an intervention, pragmatic trials are better at reliably answering questions of effectiveness since 

they can minimize confounding through randomization [2]. 

Although the distinction between explanatory trials and pragmatic trials could suggest there 

exists a dichotomy between these types of trials, in practice clinical trials can incorporate both 

explanatory and pragmatic elements. Therefore, the PRECIS-2 tool [3] aids the evaluation and design 

of elements in the pragmatic-explanatory continuum of trials. In Figure 1, we provide an example of 

two different hypothetical trials in aging research with varying degrees of pragmatism, with an 

explanation of the design choices and PRECIS-2 scores provided in the Supplementary Materials. 
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Figure 1. PRECIS-2 scores of two hypothetical pragmatic trials in aging research. 

Figure 1 Trial 1 (mean PRECIS-2 score = 1.6) refers to the situation in which a primary healthcare 

practitioner who is also a researcher at an academic research center wants to assess if a new drug is 

safe and capable of preventing secondary cardiovascular events in older adults after recovering from 

acute myocardial infarction, whereas trial 2 (mean PRECIS-2 = 4.7) was designed after stakeholders 

commissioned a study to evaluate if implementing a new drug in all primary healthcare clinics of 

their jurisdiction will prevent secondary cardiovascular events under real-world conditions. 

Pragmatic randomized controlled trials are increasingly being used in the aging research field 

due to the need of obtaining high-quality real-world evidence for interventions in the elderly who 

tend to have low representation in trials [4] .Additionally, geriatric interventions are often complex 

in nature, reason why pragmatic trials are useful designs for the evaluation of interventions [5] 

.Furthermore, pragmatic trials allow investigations in the context of regular clinical practice, with the 

advantages of being more accessible, less resource intensive, and placing minimal additional burden 

on participants [6].  

Despite the multiple advantages of pragmatic trials for the obtention of evidence for complex 

interventions in the elderly, there are several choices in the design of pragmatic trials that have 

important implications on the ability to obtain high quality evidence, while minimizing costs. 

Guidance on such design choices is provided by the GetReal trial tool [7,8]. Despite the existence of 

such tools, guidance, and explanations on the rationale for the design and analysis of pragmatic trials 

from a biostatistician’s perspective remains scarce. Therefore, we sought to review the statistical 

considerations for the design and analysis of pragmatic trials, including available resources for the 

sample size calculation and analysis of pragmatic trials. In this review we only cover statistical 

considerations from a frequentist approach.  

2. Study unit and Randomization  

Although the individuals are the ultimate unit of interest in both explanatory trials and 

pragmatic trials, clusters are commonly used in pragmatic trials as the unit of randomization. A 

cluster refers to any level of aggrupation of individuals (i.e., patients who receive care from one single 

practitioner, a clinic or hospital, a jurisdiction, etc.). Cluster randomized trials allow to estimate the 

broad population effects of an intervention [9] . Randomization by clusters is also attractive in the 

context of pragmatic trials since they can allow to overcome logistical challenges of interventions 

delivered at very large number of patients, among other reasons.  

A parallel cluster study in which different groups of individuals are assigned to receive an 

intervention or the comparator (i.e., placebo) without random assignment would be considered a 
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quasi-experimental study and would have many sources of latent potential confounding. 

Fortunately, different randomization strategies have been envisioned and successfully applied: 

parallel randomized clusters, parallel randomized clusters with a baseline period, and stepped 

wedge cluster randomized studies  [10].  

From a causal research perspective, the reason randomization is important in a conventional 

individual-level randomized study is that it allows for comparability of the prognosis of participants 

allocated to treatment groups [11]. Confounders are said to be randomly distributed between groups. 

Thus, the group to which participants are assigned serves as an instrumental variable [12] that can 

be used to approximate the effect of an intervention (assuming compliance with it).This is the 

principle of the intention-to-treat [13] and the reason why the method of analysis should be 

Randomization-Based Inference [14], meaning that the principle of intention-to-treat should be 

followed. In this approach, subjects are evaluated considering the original group to which they were 

randomly assigned, and data elimination due to lack of information, treatment changes, use of other 

medications, or lack of adherence should be strongly avoided[3,15]. 

In pragmatic clinical trials, cluster randomization is recommended over individual 

randomization. Therefore, the number of clusters or the number of subjects per cluster should be 

determined a priori [16]. It is common to assume an equal number of subjects in each cluster (cluster 

size), leading to statistical analysis using hypothesis testing for comparison of means or proportions, 

depending on the type of dependent variable chosen. However, when cluster sizes are not equitable, 

the use of mixed effects models (also called random effects models) or generalized estimating 

equations (GEE) is suggested[17]. 

The evaluation of missing data should beimperative to detect the presence of non-random 

patterns of missing data. The use of imputation techniques may or may not be warranted, but it is 

imperative to assess if missing data exhibit a specific pattern, as non-random patterns could bias the 

interpretation of results [18]. 

3. The Dependent Variable 

The type of dependent variable in pragmatic clinical trials will guide the statistical treatment, 

i.e., whether the variable is a continuous quantitative outcome or a dichotomous or ordinal 

qualitative outcome. The choice of outcome variable should be made with caution because a variable 

that requires strict follow-up or subsequent clinic or hospital visits could interfere with "usual care" 

if the visit frequency differs from routine clinical care [15]. The chosen outcome variable should align 

with the pragmatic concept, reflecting usual clinical practice. Therefore, a continuous outcome 

(reduction in HbA1c, decrease in serum lipids, fewer hospitalization days) can be commonly used to 

evaluate intervention effectiveness, as can a dichotomous outcome (achieving <7 units of HbA1c, 

having an LDL <150 mg/dL, recovery from illness)[15]. It must be ensured that the choice of outcome 

represents the objective for which the usual treatment is utilized. 

The most common study designs in pragmatic clinical trials or cluster trials are parallel designs. 

In these designs, the use of independent statistical tests (two-sample t-test, ANOVA, χ² test) is 

standard practice, while in crossover designs or designs where matching between clusters or 

individuals has been used, paired analyses (paired t-test, Friedman test, McNemar test) should be 

employed [17]. 

Since maintaining homogeneous cluster sizes is not always feasible, even in explanatory cluster-

crossover trials [19], the use of mixed models and GEE is highly recommended. However, their use 

is not as widespread as expected, leading to heterogeneity in the types of statistical analyses[20]. 

Mixed effects models and GEE are longitudinal data analyses that allow estimation of the effect of an 

intervention on the outcome, but they differ in how they generate an estimation of an effect. 

Mixed models allow for modeling the effects of fixed factors, which assume a constant effect, 

and random factors, which presuppose variability among each subject. They are used when 

estimating the effect of an intervention considering the heterogeneity among the clusters to which 

subjects belong, and this heterogeneity can be modeled through a probability distribution. Estimates 
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generated in mixed models are termed conditional estimates as the model provides a conditional 

estimate of the outcome given by the covariates or random effects[21,22]. 

4. Types of Statistical Model for Pragmatics Designs  

Generalized Estimating Equations (GEE) allow for estimating the average effect of a predictor 

variable across the entire study population, hence termed population average models or marginal 

models. GEE estimates the intervention effect averaged across all clusters, making them suitable for 

estimating the effect of a predictor variable when the effects of random factors are not of interest to 

the researcher. Therefore, GEE do not require assumptions about the distribution of data but 

necessitate larger sample sizes for precise estimations[22,23]. 

The use of mixed models is more widespread for cluster randomized trials due to their ability 

to model different random effects. In Table 1, the main mixed models are presented, considering the 

intercept or slope as a random factor in the model. A brief description of their use in CRT, as well as 

the statistical model and its code in R software, are provided, considering the dependent variable as 

dichotomous, following previous recommendations regarding the use of dichotomous variables in 

pragmatic studies [24]. 

Table 1. Types of mixed models. 

Type of model Use in CRT Statistical model Basic R code 

Model with random 

intercept and fixed 

slope 

It is useful for modeling a 

heterogeneous initial effect 

(intercept) among clusters 

or subjects, but with a 

homogeneous effect of the 

independent variable. It 

serves when assuming that 

members of a cluster have 

different initial values in 

the dependent variable. 

yij = β0 + β1xij + b0j + eij 

 

Where: 

𝑦𝑖𝑗: is the dependent 

variable for subject 𝑖and 

group𝑗 

𝛽0: is the fixed intercept 

𝛽1: is the fixed coefficient 

of the variable 𝑥 

𝑏0𝑗: is the random 

intercept effect for group 
𝑗 

𝑒𝑖𝑗: is the error 

Model 1<- glmer(y ~ x + 

(1|cluster), family = 

binomial, data = data) 

 

(1|cluster): Indicates the 

random slope for each 

observation of the 

variable x and the 

random intercept for 

each cluster or subject. 

 

Model with fixed 

intercept and random 

slope 

It is useful for modeling 

that the effect of a 

dependent variable will be 

heterogeneous among the 

clusters or subjects, but 

that all subjects or clusters 

have similar values at the 

beginning of the study. 

yij = β0 + β1xij + b1jxij
+ eij 

 

Where: 

yij: is the dependent 

variable for subject iand 

groupj 

β0: is the fixed intercept 

β1: is the fixed coefficient 

of the variable x 

b1j: is the random slope 

effect for groupj 

eij: is the error 

Model 2<- glmer(y ~ x + 

(x|1), family = binomial, 

data = data) 

 

(x|1): Indicates the 

random slope for each 

observation of the 

variable x. 

 

Model with random 

intercept and random 

slope 

This model, known as a 

random effects model, is 

used to model the initial 

differences in the values of 

the dependent variable 

among clusters or subjects 

as well as the 

yij = β0 + β1xij + b0j
+ b1jxij
+ eij 

 

Where: 

Model 3<- glmer(y ~ x + 

(x|cluster), family = 

binomial, data = data) 

 

(x|cluster): Indicates the 

random slope for each 

observation of the 
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heterogeneous effect of the 

independent variable 

among clusters or subjects. 

yij: is the dependent 

variable for subject iand 

groupj 

β0: is the fixed intercept 

β1: is the fixed coefficient 

of the variable x 

b0j: is the random 

intercept effect for group 
j 

b1j: is the random slope 

effect for groupj 

eij: is the error 

variable x and the 

random intercept for 

each cluster or subject. 

It is important to consider that the type of dependent variable, whether quantitative or 

dichotomous, can be modeled using linear mixed models (LMM) or generalized linear mixed models 

(GLMM). GLMMs, which depend on the distribution of the dependent variable, are modeled with 

different link functions (binomial, logit, Poisson, log-log, etc.). Regardless of the data modeling 

approach, it is important to verify the statistical assumptions of the models and compare between 

models using information criteria (AIC, BIC) when constructing models incorporating various 

variables [21]. 

The way variability in modeled in the experiment can take various forms. In thismini-review, 

we provide methodological guidance for the statistical design of a pragmatic clinical trial. Therefore, 

we suggest readers explore forums and delve into deeper literature concerning the application of 

such models across different software platforms. Additionally, it is important to understand the 

requirements for data capture in data matrices, which differ from the conventional data matrices 

format where each row represents a different subject. Li F et al. [14] provide a comprehensive 

compilation of packages for developing such models in software like R, Stata, and SAS. 

5. Sample Size Estimation 

The sample size calculation for pragmatic studies will depend on the chosen study designs, 

specificallywhether randomization of interventions is performed at the individual or cluster level. 

Sample size calculations have been described in multiple publications, and online calculators are 

available to estimate the required number of subjects based on whether the dependent variable is 

continuous or dichotomous [25]. However, in the case of cluster-based studies, an adjustment must 

be made for a correction factor known as the "variance inflation ratio" or "design effect." This factor 

represents the multiplier by which the calculated sample size for individual randomization should 

be multiplied [19]. This design effect is calculated as follows: 𝐃 = 𝟏 + (𝐦− 𝟏)𝛒, where 𝐦is the 

number of subjects per cluster and ρ is the intracluster correlation coefficient (𝐬𝐜
𝟐 𝐬𝐜

𝟐 + 𝐬𝐰
𝟐⁄ ), defined as 

the ratio of the variance of means between clusters (𝐬𝐜
𝟐) to the sum of the variance of subjects within 

the same cluster (𝐬𝐰
𝟐 ) and between clusters [26]. The calculation of the design effect in designs 

comparing two means uses ρ, while in designs comparing two proportions, the calculation of the 

cluster concordance index (κ) is employed [27]. It is important to mention that the calculation of the 

design effect assumes a homogeneous distribution of the number of subjects per cluster. Therefore, it 

may be considered to adjust the sample size calculation assuming unequal cluster sizes through the 

calculation of the "coefficient of variation of cluster size" (cv), which can be done by various methods 

explained in depth by Eldridge SM et al. [19]. 

As mentioned in the "dependent variable" section, equitable cluster sizes are not always 

estimated in pragmatic studies, and there is a desire to control for the effect of variation within 

clusters and between subjects. Hence, mixed models or GEE are used, although these models serve 

to describe an effect size based on a different coefficient B different from the classic effect sizes with 

mean or proportion differences, which are typically employed in classic sample size calculations. 

These more complex statistical models can be used even if the sample size calculation was based on 
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a difference in statistics; however, it is preferable to calculate the sample size based on the estimation 

of a conditional (LMM-GLMM) or marginal (GEE) model. Therefore, the design effect should also be 

specific to these models. Li F et al. [14]compiles various packages for sample size calculation in 

specific situations for different software (R, SAS, STATA) for sample size calculations for various 

types of CRT.On the other hand, Hemming K et al. [28] developed an online app for calculating 

sample sizes and statistical power for various CRT designs.In Table 2 you will find links to online 

calculators for sample size calculations for various situations. 

Table 2. Links to online resources for sample size calculation. 

Type of sample size Link to the resource 

Sample size and power calculator for 

cluster clinical trials: 
https://douyang.shinyapps.io/swcrtcalculator/ 

Sample size calculator for multi-arm 

trials: 
https://mjgrayling.shinyapps.io/multiarm/.  

Sample size calculator for non-inferiority 

studies with binary outcomes: 

https://search.r-

project.org/CRAN/refmans/dani/html/sample.size.NI.html  
Sample size calculator for non-inferiority 

studies with continuous outcomes: 

https://search.r-

project.org/CRAN/refmans/epiR/html/epi.ssninfc.html  

6. Multi-Arms Sample Size 

Throughout the development of this paper, we have emphasized that the aim of pragmatic trials 

is to test interventions in real-world situations. In some cases, theremay be more than one usual care, 

multiple promising new treatments, or various waysto implement an intervention. This is where 

multi-arms studies become relevant. The most common form of analysis for multi-arms studies 

involves comparing means between 3 or more groups using a general linear model (ANOVA family). 

For such comparisons, sample size calculation is done considering an expected effect size (η2 or 

Cohen's f) in the ANOVA model, statistical power (1-β), the alpha error probability (confidence level), 

and the number of groups to be included in the study [28]. However, this methodology estimates the 

sample size considering only the null hypothesis of the test (no group mean difference), so it does not 

consider multiple group comparisons (post hoc tests), which ultimately results in a lower statistical 

power of this calculation, leading to a higher risk of type 2 error. Adjusting the alpha error using the 

Holm-Bonferroni method (α / number of pairwise comparisons) can help provide a better estimate 

of the sample size.As previously mentioned, it is more common for the outcome used in usual care 

to be a dichotomous rather thanquantitative, therefore, comparing3 or more proportions can be a 

pragmatic outcome. In this scenario, sample size calculation can be performedusing formulas for 

comparing two proportions and adjusting the alpha error using the Holm-Bonferroni method. 

Grayling MJ et al. [29]. developed a sample size calculator for multi-arm clinical trials for various 

types of variables and sequences andemploying different multiple comparison correction 

methods.Additionally, it is important to note that adjustment for the design effect should also be 

considered if the sample size will be for a CRT, once the multi-arm sample size is calculated. 

The so-called "Adjustment for losses" used in sample size calculations must be justified to avoid 

unnecessarily exposing more subjects to risk, since in pragmatic nature, subjects should be included 

in the analysis regardless of their follow-up losses or incomplete data.Finally, since prior data on 

effect sizes and, in the case of CRT, intracluster correlation, are required to perform any sample size 

calculation, it is highly recommended that researchers report these statistics obtained in their study 

samples to assist future researchers in scaffolding their own sample size calculations. Otherwise, they 

may require conducting pilot studies, which would entail additional effort and expense to the 

pragmatic clinical trial itself. 

7. Secondary or Ancillary Analyses 
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The population included in pragmatic studies can be very heterogeneous, which can lead to the 

desire to compare the results of the primary outcome among subgroups of the sample, thereby 

identifying in which population characteristics the intervention may be more effective [30]. This 

practice is common in secondary analyses of clinical trials where secondary variables are sought to 

be evaluated beyond the original protocol due to possible hypotheses obtained during the main study 

or attempting to evaluate effects among participant subgroups [31]. The issue with secondary or 

subgroup analyses is that they generally have fewer observations and hence less statistical power, 

increasing the risk of not detecting differences (type 2 error) or detecting them only by chance (type 

1 error)[32]. 

Sample size calculation allows us to identify the minimum number of subjects needed to achieve 

sufficient statistical power to detect a difference between study groups on the primary outcome. 

Therefore, the statistical inferences we make in a study regarding secondary outcomes may be biased 

if a sample size was not calculated a priori for such comparison [15]. It is under this premise that 

secondary analyses of clinical trials should be approached with caution, and the possibility of 

committing type 1 and 2 errors should be considered when a proper sample size calculation was not 

performed or when subgroup comparisons are overused [30]. If secondary analyses of a pragmatic 

clinical trial are to be conducted, efforts should prioritize the evaluation of outcomes relevant to 

clinical practice,while the use of surrogate markers is discouraged [15]. 

While the primary focus of a pragmatic clinical trial is always on evaluating the effectiveness of 

an intervention in real-world settings, it is important to note that information on the safety of 

interventions is also collected[33]. Greater care must be taken regarding the method of safety data 

collection, as an excessive burden on healthcare providers can compromise the pragmatism of the 

study. It is suggested to use a combined strategy of data collection present in clinical records, as well 

as case-form reports for serious adverse events [33]. In geriatrics, there is often a scarcity of studies 

dedicated to assessing the safety of medications in older adults, highlighting the imperative need for 

acquiring real-world evidence [34]. 

8. Conclusions 

In this review, we have covered relevant aspects for the design and statistical analysis of 

pragmatic randomized controlled trials from a frequentist approach. The methodological design, the 

distribution of the dependent variable, the correct calculation of sample size, and the choice of the 

number of secondary analyses to be carried out are important statistical considerations that, 

alongside other important choices in the design of pragmatic trials,are of utmost importance for the 

validity of the estimation of the effect of interventions in the elderly, delivered in real-world 

conditions. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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