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Abstract: Accurate and reliable mid-long runoff prediction (MLTRP) is of great importance in water 

resources management. However the MLTRP is not suitable in each basin and how to evaluate the 

applicability of MLTRP is still a question. Therefore, the total mutual information (TMI) index is 

developed in this study based on the predictor selection method using mutual information (MI) and 

partial MI (PMI). The relationship between the TMI and the predictive performance of five AI 

models is analyzed by applying five models in 222 forecasting scenarios in Australia. The results 

over 222 forecasting scenarios demonstrate that, compared with the MI, the developed TMI index 

can better represent the available information in the predictors, and has more significant negative 

correlation with the RRMSE with the correlation coefficient between -0.62 and -0.85. This means the 

model’s predictive performance will become better along with the increase of TMI, and therefore 

the developed TMI index can be used to evaluate the applicability of MLTRP. When TMI is more 

than 0.1, the available information in the predictors can support the construction of MLTRP models. 

In addition, the TMI can be used to partly explain the difference of predictive performance among 

five models. In general, the complex models, which can better utilize the contained information, are 

more sensitive to the TMI, and have more significant improvement in terms of predictive 

performance along with the increase of TMI. 

Keywords: mid-long term runoff prediction; total mutual information; applicability evaluation; 

artificial intelligence models; available information 

 

1. Introduction 

Driven by both the climate change and human activities, the mechanism of runoff generation 

and confluence is undergoing significant changes, leading to a more uncertain water resources 

evolution trend [1–4]. Meanwhile, some changing socio-economic factors, such as growing 

population and urbanization processes, will cause more and more water supply demand [5–8]. Under 

this background, mid-long term runoff prediction (MLTRP), which can support valuable information 

on future runoff, is of great importance in water resources management and comprehensive 

utilization, and received more and more attention in the research and practice fields [9–12]. 

In order to obtain good predictive performance, many models have been developed and applied 

in MLTRP, and support the comprehensive management of water resources [9–16]. These models can 
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be broadly divided into two groups: 1) physical-based models; and 2) data-based models [12,17–20]. 

In general, the physical-based models require large amount of data for model construction and 

validation, such as rainfall data, characteristics data of basins, geographic data and climate data, and 

therefore these models cannot obtain good predictive performance in data-sparse basins [18,21,22]. 

On the other hand, along with the development of computer science and data science, there are more 

and more hydrological data and climate data, and the data-based models are more and more popular 

in many fields including the MLTRP [23–26]. In addition, due to the lack of reliable and accurate 

meteorological forecasts with same forecast horizon, the application of physical-based models are 

limited, and therefore the data-based models are widely used to generate mid-long term runoff 

predictions by establishing teleconnection relationship between future runoff and climate factors, 

such as sea surface temperature anomalies (SSTA), atmospheric circulation factors [13,17,27–29]. 

Aiming to improve the predictive skills of the data-driven mid-long term runoff predictions, 

many studies have been done in the three aspects: 1) the model improvement, 2) the post-processing 

of model outputs and 3) the selection of predictors. Among these studies, most studies focus on the 

improvement of models and many artificial intelligent (AI) models, including the support vector 

regression (SVR), artificial neural networks (ANN), gated recurrent unit neural network (GRU) and 

so on, have been proposed in place of the simple linear models and obtain better predictive 

performance [18,30–33]. In addition, many hybrid models based on the connection of different 

models have been applied and perform better than base models [17,25,34]. However, the same model 

may have different predictive performance in different basins, and a single AI model often generate 

deterministic predictions and cannot reflect the uncertainties of future runoff, and therefore the post-

processing methods are needed to improve the predictive accuracy and reliability [16,35]. For 

example, the model fusion methods are used to combine the forecasting results to improve model 

reliability [35–37]. And some studies focus on generating probabilistic predictions to reflect the 

forecasting uncertainties better [16,38]. For example, Liang et al. (2018) makes probabilistic 

predictions by applying hydrological uncertainty processor to post-process the deterministic 

predictions obtained by the SVR model [16]. 

In terms of the selection of predictors, many previous studies focus on the auto-correlation in 

the runoff time series and many auto-regressive models, such as autoregressive moving average 

model and its variant models, have been used and have good performance [21,39,40]. However, when 

only the auto-correlated factors are used, the predictive performance is determined by the statistical 

characteristics of the runoff time series [27]. And many studies demonstrated that the number and 

selection process of predictors will influence the predictive performance significantly [21,41,42]. 

Therefore, considering the teleconnection between the hydrological factors and climate factors (SSTA, 

atmospheric circulation factors), many studies select climate factors as predictors and obtain more 

accurate predictions with longer forecast lead time [43–45]. In order to select more suitable predictors 

form numerous climate factors, many selection methods have been used, such as correlation analysis, 

sensitivity analysis, least absolute shrinkage and selection operator, mutual information and 

principal component analysis [10,16,37,44,46,47]. Among these methods, the mutual information (MI), 

which can reflect nonlinear relationship between variables, has been widely used in many fields [48–

50]. 

Based on the studies on selecting predictors, improving models, and post-processing, the mid-

long term runoff predictive performance have been significantly improved. But there are some 

questions needing to be investigated. Firstly, in some forecasting scenarios, the forecasting results 

obtained by data-based models may be worse than results obtained by averaging the runoff time 

series, and the difference of predictive performance among different basins may be larger than that 

among different models [31,33,51]. But how to explain the difference among different basins and 

evaluate if a basin is suitable for making mid-long term runoff predictions? Secondly, many indexes, 

e.g., the mutual information, are used in the predictor selection process to evaluate the nonlinear 

correlation between the predictors and predictand (i.e., the runoff), which is closely related with the 

predictive performance [27]. But the relationship between the predictive performance and the 

indexes, which are used in predictor selection process, is not further discussed. Therefore, the 
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objectives of this study are (1) to find an index which can reflect the relationship between all 

predictors and runoff; (2) to evaluate the relationship between the index and the predictive 

performance; and (3) to identify if the index can be used in assessing the applicability of MLTRP in a 

specific forecasting scenario. 

The remaining sections of this paper are organized as follows. The data, case studies and 

methods are introduced in section 2. The results will be demonstrated in section 3 and discussed in 

section 4. Finally, the main conclusions will be summarized in section 5. 

2. Materials and Methods 

2.1. The Predictor Selection and Total Mutual Information 

2.1.1. The Predictor Selection Method 

The predictor selection is a process applied to recognize most valuable predictors from 

numerous candidate predictors to reduce the model complexity and improve model accuracy [49,52]. 

Among many predictor selection methods, the MI can reflect the nonlinear relationship and is used 

in this study. The selection method based on MI is briefly described as follows, and the details can be 

found in other studies [48,53,54]. 

For the predictand Y and candidate predictors X, the MI is defined as follow: 

�(�; �) = ���(�, �) log
�(�, �)

�(�)�(�)
�� �� (1) 

where �(�) and �(�) represents the marginal probability density functions (pdfs) of X and Y, and 

�(�, �) is the joint pdf. In the application, the MI can be obtained by a numerical approximation as 

follows: 

�(�; �) =
1

�
�log

�(��, ��)

�(��)�(��)

�

���

 (2) 

where f denotes the estimated density based on a sample of n observations of (x, y), and can be 

estimate by the kernel density estimation (KDE): 

��(�) =
1

�
���(� − ��)

�

���

 (3) 

where ��(�) denotes the estimate of the pdf at �; �� denote the ith observation of X; and �� is some 

kernel function and a common choice is the Gaussian kernel. 

The MI can be used to evaluate the correlation between predictand and predictors, but it cannot 

identify the internal relation among the predictors and may cause the redundant information in the 

predictors [54]. Therefore, the partial mutual information (PMI), which quantifies the nonlinear 

dependence of Y on candidate predictors Z that is not accounted for by the selected predictors X, is 

introduced. The PMI is calculated by first filtering both Y and Z via regression on X to obtain residuals 

u and v respectively: 

� = � −�� �(�) (4) 

� = � −�� �(�) (5) 

where the �� �(�) and �� �(�) represents the estimators for the regression of Y and Z on X. Based 

on the KDE, the �� �(�) can be written as: 

�� �(�) = �[�|� = �] =
1

�

∑ ����(� − ��)
�
���

∑ ��(� − ��)
�
���

 (6) 

Then, the PMI can be calculated by: 

��(�; �|�) = �(�; �) (7) 

Based on the previous equations, the process of the predictor selection method based on the MI 

and PMI, named PMIS, is showed in Figure 1. The �ℎ��  and �ℎ����  are sated thresholds. 
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Figure 1. The process of PMIS method. 

2.1.2. Total Mutual Information 

The PMIS can be proposed to select suitable predictors from numerous candidate variables, but 

the PMI cannot reflect the relation between the whole predictor set and the predictand, and the MI 

cannot reflect the internal relationship among the predictor set. Therefore, the total mutual 

information (TMI) is developed based on the PMIS method to reflect the relation between the whole 

predictor set and the predictand. The TMI can be calculated by the following equation: 

TMI =���PMI�

�

���

 (8) 

where � is the number of selected predictors; � is the order of selecting the predictor; ��  and PMI� 

are the weight and PMI value of the ith selected predictor. 

The ��  can be determined by calculating the information gain after introducing the specific 

predictor. Considering the residual shown in equation (4) can represent the uncertainty in the 

predictand to some degree, the difference between standard deviation of the residual is used to 

represent the information gain. Then the ��  can be calculated as follows: 

�� = std �� −�� �(�
���)� − std �� −�� �(�

�)� (8) 

where ��  represent the predictor set after introducing the ith predictor; std denote the standard 

deviation. 

2.2. Case Study and Data Preparing 

In order to analyze the relationship between TMI and the predictive performance of MLTRP, the 

predictions are generated in 37 hydrologic reference stations in Australia. The 37 hydrologic reference 

stations are selected from 221 stations with the best data quality and available data length. All stations 

are located in catchments with minimal anthropogenic interruptions. The 37 stations and 

corresponding catchments are shown in Figure 2. 
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Figure 2. Locations of the catchments and hydrologic reference stations. 

The monthly runoff data of the 37 selected stations can be obtained from the website of Bureau 

of Meteorology, Australia (http://www.bom.gov.au/water/hrs/). The available runoff records all end 

in December 2014 and the start months of different stations are between January 1951 and July 1982. 

In order to process the skewness in runoff data, the runoff data are preprocessed by a widely used 

log-sinh data transformation method [51,55,56]. And it should be noted that the following results are 

demonstrated and discussed based on the transformed data in order to compare the model’s 

predictive performance among different basins. 

The other data used in this study include the rainfall and 130 climate factors. The grid rainfall 

data with 0.05 °  resolution are obtained through Australian Water Availability Project 

(http://www.auscover.org.au/purl/australian-gridded-climate-data) and processed to monthly area 

rainfall. The 130 climate factors data are obtained from the website of National Climate Center, China 

Meteorological Administration (http://cmdp.ncc-cma.net/en/). The climate data are normalized by: 

������,����� =
�����,����� − �������

������

 (8) 
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where � is the original data, �� is the transformed data, year and month represent time, �� is mean 

value and � is standard deviation. 

2.3. Forecasting Models and Model Development Process 

2.3.1. Forecasting Models 

Five AI models are used to generate mid-long term runoff predictions in this study. The five 

models are multilayer perceptron (MLP) model, block-based MLP (MB) model, Bayesian SVR (BSVR) 

model, coupled model of BSVR and ARD kernel (BSVRARD), and long short-term memory (LSTM) 

model. Because these five models have been widely used in many fields, the details of these five 

models are not introduced in this study and can be found in other previous studies [24,49,57–60]. The 

features of these five models are briefly summarized in Table 1. In general, the MLP, BSVR and 

BSVRARD more focus on the point information and the inputs of these models are simple point 

structure [49]. The MB and LSTM more focus on the time series information and the inputs of these 

two models are time series structure [49]. 

Table 1. Brief introduction of five models applied in this study. 

Model Introduction 

MLP Commonly used three layers neural networks. 

MB 
Based on the MLP, a block data structure is used to incorporate the time 

series information. The details of this method can be found in [49] 

BSVR 
A model in which the Bayesian inference framework is used to optimize 

the parameters of SVR. The details can be found in [57–59]. 

BSVRARD 
A model integrated the BSVR and ARD kernel. The details can be found 

in [57–59]. 

LSTM 
Commonly used deep learning neural network which is suitable for time 

series forecasting. The details of LSTM can be found in [60]. 

2.3.2. Model Development Process 

The commonly used model development process introduced in [49,50] is proposed and modified 

in this study. Firstly, the PMIS method is used to select predictors and organized to meet the input 

format requirement of the five models. Meanwhile, the TMI and MI are calculated along with the 

PMIS process. Secondly, the leave-one-year-out cross validation is applied in this study to generate 

predictions in whole dataset of each station. Thirdly, the five models are constructed and validated. 

The validation metrics include: 1) root mean square error (RMSE) and 2) relative root mean 

square error (RRMSE). The two metrics can be calculated according to the following equations. 

���� = �
�

�
∑ ���� − ���

��
���     ∈ [0, +∞) (9) 

����� =
����

��
            ∈ [0, +∞) (10) 

where ��� and �� are the predicted and observed value respectively, � is the number of validation 

data, �� is the standard error. 

Because the �� can represent the predictive performance of a model using the average value as 

predictions (named average model), the RRMSE, which is the ratio of the RMSE of a specific model 

to ��, can represent the forecasting model’s applicability to some degree. A RRMSE value larger than 

1 means that the model’s predictive performance is worse than the average model and cannot 

generate valuable predictions.  

2.4. Experiment Setup 

In order to examine the ability of TMI in evaluating the applicability of MLTRP, two experiments 

are implemented in this study and summarized in Table 2. The main difference of the two 

experiments is the candidate predictor set. In experiment 1 (E1), the candidate predictions include 
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130 climate factors and transformed runoff in the previous 12 months. In experiment 2 (E2), the 

candidate predictors include those in the E1 and area rainfall in the previous 12 months and future 

FLT (forecast lead time) months. Based on the candidate predictors, five AI models are used to predict 

runoff of the 37 stations in the future 1-6 months (37*6=222 forecasting scenarios), and the RMSE and 

RRMSE are used to evaluate the predictive performance. Meanwhile, the MI and TMI are calculated. 

Finally, the relationships of RMSE-TMI, RRMSE-TMI and RRMSE-MI are analyzed. In addition, the 

TMI and predictive performance are further compared between the two experiments. 

Table 2. Experiment Setup. 

Experiment 
Candidate 

Predictors 
Predictand 

Validation 

Metrics 

Evaluation 

Indexes 
Analysis 

Experiment 1 

(E1) 

130 climate 

factors and 

transformed 

runoff in the 

previous 12 

months. 

Runoff of the 37 

stations in the 

future 1-6 

months. In total 

37*6=222 

forecasting 

scenarios. 

RMSE, RRMSE. MI and TMI. 

The 

relationships of 

RMSE-TMI, 

RRMSE-TMI, 

and RRMSE-MI. 

Experiment 2 

(E2) 

The candidate 

predictors in E1 

and rainfall in 

the previous 12 

months and 

future FLT 

(forecast laed 

time) months. 

Runoff of the 37 

stations in the 

future 1-6 

months. In total 

37*6=222 

forecasting 

scenarios. 

RMSE, RRMSE. MI and TMI. 

The 

relationships of 

RMSE-TMI, 

RRMSE-TMI, 

and RRMSE-MI. 

3. Results 

The results of the five forecasting models without and with rainfall in candidate predictors (i.e., 

E1 and E2) are presented in terms of the RMSE and RRMSE in section 3.1 and section 3.2 respectively. 

3.1. The Predictive Performance of Five Models without Rainfall in Predictors 

The cross-validated predictive performance of the five AI models (i.e., MLP, LSTM, MB, BSVR 

and BSVRARD) are examined using the root mean square error (RMSE) and relative root mean 

square error (RRMSE) obtained over the validation data, as shown in Figure 2. In the figure, the x-

axis and y-axis represent the FLT and station ID, and the color represents the RMSE and RRMSE 

values. The difference of predictive performance results from the difference among basins, FLTs and 

models. It can be seen from the Figure 2 that the difference of predictive performance caused by the 

difference of basins is most significant. In addition, the basins with smaller RMSE values and the 

basins with smaller RRMSE values are different due to the characteristics of the transformed runoff 

time series. In terms of the influence of the FLT, it can be seen that the all model will obtain best 

predictive performance, which will become worse along with the increase of FLT. In general, it is 

obvious that the difference of predictive performance caused by the difference of forecasting 

scenarios (different basins and different FLTs) is more significant than that caused by the models. 
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(a) (b) 

Figure 2. The RMSE and RRMSE values over the validation data for predicting in the future 1-6 

months in the 37 stations without observed rainfall as predictors (E1). (a) RMSE; (b) RRMSE. 

3.2. The Predictive Performance of Five Models with Rainfall in Predictors 

The cross-validated predictive performance of the five AI models are examined using the RMSE 

and RRMSE obtained over the validation data with rainfall as predictors, as shown in Figure 3. It can 

be seen that RMSE values of the 222 forecasting scenarios (37 stations * 6 FLTs) is within 0.4-2.3 and 

significantly decrease compared with those obtained in experiment 1 (E1, without rainfall as 

predictors) shown in Figure 2. And the RRMSE values decrease from 0.35-1.25 (Figure 2) to 0.2-0.85 

(Figure 3). In addition, the difference of predictive performance among different basins is still 

significant. In terms of the influence of FLTs on predictive performance, different models show 

different features, which can be seen from Figure 4. In E2, where the observed rainfall is included in 

predictors, the predictive performance becomes worse significantly for the MLP, BSVR and 

BSVRARD models (i.e., point models) along with the increase of FLTs. But the predictive 

performance of the time series models (i.e., MB and LSTM) are steadier among different FLTs. In E1, 

the predictive performance of all models shows similar trend with the increase of FLT. Though the 

LSTM and MB models perform worse in E1, the two models have better performance after the 

incorporation of rainfall (E2). In addition, the advantages of the time series models (MB and LSTM) 

compared with the point models (MLP, BSVR and BSVRARD) are more obvious along with the 

increase of FLT.  

(a) (b) 
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Figure 3. The RMSE and RRMSE values over the validation data for predicting in the future 1-6 

months in the 37 stations with observed rainfall as predictors (E2). (a) RMSE; (b) RRMSE. 

 

Figure 4. The RMSE values in No.37 station of different models with 6 FLTs. The ‘-OR’ means that the 

observed rainfall is included in the predictors and ‘-NR’ means that the rainfall is not included. 

4. Discussion 

The results are discussed in this section. First, the five models are compared in terms of the 

predictive performance in section 4.1. Second, the relationship between the total mutual information 

(TMI) and the predictive performance of five models is analyzed in section 4.2. Finally, the influence 

of the incorporation of rainfall on the predictive performance is discussed in section 4.3. 

4.1. The Comparison of Different Models 

The predictive performance of the five models (i.e., MLP, LSTM, MB, BSVR and BSVRARD) in 

terms of the RRMSE in 222 forecasting scenarios (37 stations * 6 FLTs) without rainfall in the 

predictors (E1) is illustrated in Figure 5(a), and that in E2 is illustrated in Figure 5(b). In Figure 5, the 

y-axis shows the values of the RRMSE and the x-axis shows the number of forecasting scenarios with 

RRMSE below specific values. It can be seen from Figure 5(a) that in the three neural network models 

(MLP, LSTM and MB), the MLP model perform best and the LSTM model perform worst. Though 

the LSTM models have better performance than the simple machine learning models in many fields, 

such as flood prediction and rainfall-runoff modelling, some studies also demonstrate that the effect 

of LSTM depends on the available data [23,49,61]. In MLTRP, the data are all monthly runoff and the 

limited data may be not enough to support the application of LSTM model. Furthermore, the LSTM 

are widely used in short term runoff prediction, where the predictand (runoff) has clear physical 

correlation with the predictors (rainfall and temperature). But in this study, the forecasting models 

are constructed based on the teleconnection between monthly runoff and climate factors in E1, where 

the rainfall is not included in predictors. Due to both the limited data and weak connection between 

predictors and predictand in the MLTRP, the most complex LSTM model performs worst and the 

complex MB model is worse than the MLP model. But the opposite comparison result can be obtained 

in E2, as shown in Figure 5(b). It is obvious that the LSTM and MB models are significantly better 

than the other three models (i.e., MLP, BSVR and BSVRARD). The main difference between E1 and 

E2 is that the rainfall is incorporated into the predictors. After the application of rainfall, there is 

strong physical connection between predictors and predictand. This makes the complex models, 

which can use the time series information, perform better. In terms of the comparison among the 

three point models (MLP, BSVR and BSVRARD), the BSVR and BSVRARD models are better than the 
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MLP model, because the uncertainty risks of the model structure and parameters are incorporated in 

the SVR model and the solution of SVR model is globally optimized [62].  

(a) (b) 

Figure 5. Model predictive performance comparison among the five models in E1 and E2. (1) E1; (2) 

E2. 

4.2. The Relationship between Predictive Performance and TMI, MI 

4.2.1. RRMSE and MI in E1 

The RRMSE values of 222 forecasting scenarios and the corresponding MIs are shown in Figure 

6, where the linear regression equation and p values are also illustrated. It can be seen that there is a 

good linear correlation relationship with correlation coefficient around -0.6 and p value less than 

4.53×10-21. This means that there is close connection between the predictive performance and the 

available information in the predictors, which can be represented by the MI. Even if the RRMSE and 

MI values are combined in the Figure 6(f), there is still a good linear correlation relationship. This 

means that the predictive performance difference caused by the model’s difference is not significant 

compared with that caused by the difference among MIs. The overall linear regression equation is 

RRMSE = -0.65*MI + 1.2, which means that the RRMSE is 1.2 showing the model is worse than an 

average model when the MI is zero. Thought the MI can represent the available information in the 

predictors to some degree and there is a good correlation between RRMSE and MI, the correlation is 

not very significant and needs to be further imporved. 
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Figure 6. The relationship between RRMSE values and MI values in the 222 forecasting scenarios. (a) 

MLP model; (b) LSTM model; (c) MB model; (d) BSVR model; (e) BSVRARD model; and (f) all five 

models. 

4.2.2. RMSE, RRMSE and TMI 

The RRMSE and RMSE values of 222 forecasting scenarios and the corresponding TMIs are 

shown in Figure 7 and Figure 8 respectively. It is clear that the RMSE has negative correlation with 

the TMI, and the correlation coefficient is around -0.65 with p value less than 1.48×10-26. However, the 

RMSE in affected by not only the available information in the predictors (TMI or MI) but also the 

statistical characteristics of the transformed runoff time series. Therefore, the RRMSE, which is 

calculated through dividing RMSE by standard deviation of the time series, has a stronger negative 

correlation with the TMI, which can be seen in Figure 7. The correlation coefficients are between -0.8 

and -0.85 with p values less than 1.14×10-50. Compared with the correlation coefficients of RRMSE-MI 

(Figure 6) and RMSE-TMI (Figure 8), the correlation coefficients of RRMSE-TMI are closer to -1. This 

means that the TMI can better represent the available information in the predictors compared with 

the MI. The main difference between MI and TMI is the way to discriminate the predictors. The MI 

is used to evaluate the mutual information between all predictors and predictand, but it cannot 

discriminate the importance of predictors. The TMI is calculated by multiplying the PMIs of 

predictors with weights which represent the information gain after incorporating the predictor. 

Therefore, the TMI can discriminate the predictors and better represent the available information. 

Because the TMI can represent the available information in the predictors and has strong 

correlation with the predictive performance, the TMI can be used to evaluate the applicability of 

MLTRP in a specific forecasting scenario. If the TMI is smaller, it is inappropriate to make mid-long 

term runoff predictions using data-based models. It can be seen from Figure 7 that the RRMSE values 

of almost all models is less than 1 when the TMI is more than 0.1. This means the model can generate 

valuable forecasting information compared with the average model using average value as 

predictions. When TMI is less than 0.1, the RRMSE may be more than 1 in some forecasting scenarios. 
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In addition, considering the linear regression equation RRMSE = -1.9TMI + 0.97, the corresponding 

RRMSE is 0.78 with TMI equal to 0.1, which means the predictive performance is good. 

In general, the predictive performance shows strong correlation with the TMI which represents 

the available information in the predictors, and therefore the TMI can be used to evaluate the 

applicability of MLTRP. The TMI more than 0.1 may represent the corresponding forecasting scenario 

is suitable for applying data-based model to generate valuable predictions. 

 

Figure 7. The relationship between RRMSE values and TMI values in the 222 forecasting scenarios. 

(a) MLP model; (b) LSTM model; (c) MB model; (d) BSVR model; (e) BSVRARD model; and (f) all five 

models. 
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Figure 8. The relationship between RMSE values and TMI values in the 222 forecasting scenarios. (a) 

MLP model; (b) LSTM model; (c) MB model; (d) BSVR model; (e) BSVRARD model; and (f) all five 

models. 

4.2.3. The Linear Regression Equations between RRMSE and MI, TMI 

The linear regression equations between RRMSE and MI, TMI are shown in Figures 7 and 8 and 

the slopes and intercepts are summarized in Table 3. It can be seen that the intercepts are around 1.2 

when MI is the independent variable and around 1 when TMI is the independent variable. When the 

predictor set is empty, the MI and TMI are 0 and the fitted RRMSE values should be 1.2 and 1 

respectively. Meanwhile, the forecasting results show be the average values of the time series and the 

real RRMSE of forecasting model should be 1. From this perspective, the TMI can represent the 

predictive performance better. 

It can also be seen from Table 3 that the slopes differ among different models. The difference of 

slopes can partly explain the difference of five models. A less slope value (larger absolute value) 

means the model is more sensitive to the available information in the predictors. For the MB and 

LSTM models, the slope is less than the BSVR and BSVRARD model, because these models are more 

able to use the information in the predictors. For the MLP, the model’s predictive performance is also 

sensitive to the TMI because the model may fall in local optima and the model performance is not 

stable.  

Table 3. The slopes and intercepts of linear regression equations between RRMSE and MI, TMI. 

Independent 

Variable 

Model 

MLP LSTM MB BSVR BSVRARD All 

MI 
Slope -0.665  -0.638  -0.681  -0.620  -0.654  -0.652  

Intercept 1.192  1.215  1.240  1.142  1.159  1.190  

TMI 
Slope -1.937  -1.907  -1.976  -1.787  -1.862  -1.894  

Intercept 0.970  1.008  1.011  0.932  0.935  0.972  
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4.3. The Influence of Rainfall on the Predictive Performance and TMI 

In E2, where the rainfall is included in predictors, five models’ predictive performance become 

better significantly, which may be reflected by the change of TMI. Therefore, the RRMSE and TMI 

values in E2 are calculated and shown in Figure 9. It can be seen from the Figure 9 that the TMI values 

are between 0.05 and 0.65 and the RRMSE values are between 0.2 and 0.9 after incorporating the 

rainfall into the predictor set. Compared with the results obtained without rainfall in predictors 

(Figure 7), the TMI values increase 0.01-0.31 and the corresponding RRMSE decrease -0.01-0.69. It can 

also be seen from Figure 9 that the RRMSE levels off when along with the increase of TMI. 

After the incorporation of rainfall, the five models show different features. For the LSTM and 

MB models, the TMI values are all more than 0.1, and the RRMSE values are less than 0.8. But for the 

MLP, BSVR and BSVRARD models, there still exists 13.5 forecasting scenarios where the TMI is less 

than 0.1 and the RRMSE values are around or more than 0.8. The reason for the difference of TMI 

among the five models is that the time series information is used in the LSTM and MB models. 

It can be seen from Figure 9 that there is still significant negative correlation between the RRMSE 

and TMI. For the three point models (MLP, BSVR and BSVRARD), the correlation coefficients are 

around -0.83. But for the LSTM and MB models, the correlation coefficients are -0.62 and -0.67 

respectively. The difference of five models in terms of the coefficients is caused by the difference 

among the model structure. The LSTM and MB models use time series data as model input. But the 

time series characteristics are not considered in the calculation of PMIS, and therefore the TMI can 

only partly explain the available information in the input time series data. Nevertheless, the overall 

correlation coefficient for all five models is -0.80. 

 

Figure 9. The relationship between RRMSE values and TMI values in the 222 forecasting scenarios 

with rainfall in predictors. (a) MLP model; (b) LSTM model; (c) MB model; (d) BSVR model; (e) 

BSVRARD model; and (f) all five models. 
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5. Conclusions 

In this study, the total mutual information (TMI) index is developed based on the predictor 

selection method named PMIS, which recognize predictors based on the mutual information (MI) 

and partial MI (PMI). In order to examine the relationship between the TMI and the predictive 

performance, five AI models (MLP, LSTM, MB, BSVR, BSVRARD) are applied in 37 hydrological 

stations in Australia to predict monthly runoff in the future 1-6 months, and the RMSE and RRMSE 

are used to evaluate the predictive performance in 222 forecasting scenarios. The relationship of TMI 

and RMSE, RRMSE in two different experiments, the difference of which is the application of the 

rainfall. The main conclusions are as follows: 

(1) The developed TMI index can represent the available information in the predictors better 

than the MI index, and has significant negative correlation with the RRMSE. The correlation 

coefficients are between -0.8 and -0.85 when the rainfall is not included in predictors. And when the 

rainfall is included in predictors, the coefficients are between -0.62 and -0.85. 

(2) The developed TMI index can be used to evaluate the applicability of MLTRP. Along with 

the increase of TMI, the available information increases and the model’s predictive performance 

become better. When TMI is more than 0.1, the available information in the predictors can support 

the construction of MLTRP models and the model can generate valuable predictions. When TMI is 

less than 0.1 and near 0, the MLTRP may be not suitable in the forecasting scenarios. 

(3) The five AI models have significant different performance in different scenarios. When the 

rainfall is not included in the predictors, the complex LSTM and MB models using time series as 

inputs perform worse than the MLP, BSVR and BSVRARD models. After the incorporation of rainfall 

in predictors, the TMI increases significantly and the complex LSTM and MB models, which can 

better utilize the contained information in the predictors, perform better than the other three models.  

(4) The difference of the five models can be partly explained by the developed TMI index. The 

slopes of the linear regression equation between the RRMSE of the LSTM and MB models and the 

TMI are less than those for the BSVR and BSVRARD models. This means the LSTM and MB models 

are more sensitive to the available information in predictors (i.e., TMI), and therefore the change of 

model predictive performance for LSTM and MB models are more significant than that of the BSVR 

and BSVRARD models after the incorporation of rainfall into predictors. 
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