Pre prints.org

Article Not peer-reviewed version

Development and Implementation of a
Smart Charging System for Electric
Vehicles based on the ISO 15118
Standard

Joni Buchinho Santos * , André Mendes Botelho Francisco, Cristiano Lourenco Cabrita , Janio Monteiro i ,
André Pacheco, Pedro Jorge Sequeira Cardoso

Posted Date: 7 May 2024
doi: 10.20944/preprints202405.0340v1

Keywords: Electric Vehicles; Smart Charging; Demand Response; ISO 15118; Smart Grids; Renewable Energy
Sources

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3550238
https://sciprofiles.com/profile/3550270
https://sciprofiles.com/profile/3550546
https://sciprofiles.com/profile/2622008
https://sciprofiles.com/profile/645189
https://sciprofiles.com/profile/1149335

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Development and Implementation of a Smart
Charging System for Electric Vehicles based on the
ISO 15118 Standard

Joni Santos ¥, André M.B. Francisco 2, Cristiano Cabrita 23, Janio Monteiro 23*,
André Pacheco ! and Pedro J.S. Cardoso 34

1 CIMA, Universidade do Algarve, Faro, Portugal

2 CISCA, Universidade do Algarve, Faro, Portugal

3 ISE, Universidade do Algarve, Faro, Portugal

4+ NOVA LINCS, Universidade do Algarve, Faro, Portugal; jmmontei@ualg.pt
* Correspondence: jnsantos@ualg.pt; jmmontei@ualg.pt

Abstract. There is currently an exponential growth in the electric vehicle market, which will require
an increase in the electrical grid capacity to meet the demand of charging. If, on the one hand, the
introduction of energy generation from renewable sources can be used to meet that requirement,
the intermittent nature of some of these sources poses challenges to the required real time
equilibrium between generation and consumption. The impossibility of controlling generation from
some of these sources leads to the attempt of controlling and manage the consumption of electricity,
according with the levels of generation. In this context, the emergence of smart grids has introduced
mechanisms that guarantee a balance between consumption and generation of electricity. One of
these mechanisms is the smart charging of electric vehicles. Effective smart charging relies on
communication between the supply equipment and the electric vehicle, enabling the adjustment of
the energy transfer according with the generation levels. Thus, there is a necessity for a standardised
system that guarantees this communication. In this context, the ISO 15118 standard, allows high
level communication mechanisms, much beyond the basic control solutions offered by the IEC
61851-1 specification. In this context, this paper presents the development of a charge emulation
system, based on the ISO 15118 communication protocol and discusses its application for demand
response purposes.

Keywords: electric vehicles; smart charging; demand response; iso 15118; smart grids; renewable
energy sources

1 Introduction

Introduced as a clean energy initiative due to its COz emissions (relatively low or null) [1],
electric vehicles (EVs) support a new paradigm of sustainable mobility. At a global level, taking into
account the average carbon emissions used for electricity generation (518 grams of carbon dioxide
equivalent per kilowatt-hour [518 g CO2-eq / kWh]) [2], an EV emits a smaller amount of greenhouse
gases than the average internal combustion vehicles. In 2022 the global market share of EVs reached
14% (more than 26 million EVs around the globe) [3], however, the uncontrolled charging
requirements of this growing fleet represent a major challenge for the electrical grid, especially if the
charging demand from EVs coincides with the peak consumption periods already existing in the grid,
which can lead to its overload [4][6].

The two main solutions to this challenge could be, on the one hand, to introduce Renewable
Energy Sources (RES), and particularly those that are generated at the distribution level, reducing the
need for conventional energy sources, and, on the other hand, the introduction of demand response
mechanisms, that allow adjusting the charging power of EVs according with the power output from

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.0340.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

2

these RES. Through this mechanism, known as Smart Charing, EVs can minimise the requirements
they place to electrical grids, by shaping their demand pattern, by varying the intensity and charging
periods [4][6]. At this level, EVs can be thought as an additional storage unit, either for the sole
purpose of mobility, but also to support vehicle-to-grid (V2G) energy transfers [2]. In both cases,
interoperability mechanisms between the EV and the Electric Vehicle Supply Equipment (EVSE) are
needed. One of the challenges associated with the implementation of grid-to-vehicle (G2V) and V2G
energy transfers is the limited capacity for exchanging information between the EV and the EVSE.
Currently, most of this information exchange is performed by low-level control mechanisms (IEC
61851-1), through the control pilot and proximity pilot signalling pins. Mostly used in the Alternating
Current (AC) power transfer mode, the signalling carried out through these pins only indicates when
the EV is connected to the EVSE and what is the available electrical current that the supply equipment
can supply to the vehicle. That reduced set of control options limits the implementation of smart
charging solutions [1,5,6].

In order to optimise charge management, an improved interoperability between the EVSE and
EV is necessary. Information such as the State of Charge (SoC) and its power limits are crucial to
perform charge scheduling. Thus, there is a clear need for bidirectional communication between
them, much beyond the control level solutions offered by IEC 61851-1.

In this context, this work describes the development of a system that emulates a charging process
between an EV and the EVSE according with the ISO 15118 digital communication protocol. The
development process involves a comprehensive analysis of the ISO 15118 protocol, culminating in
the design and implementation of the charging emulation system. Key steps include: (1)
characterisation of system parameters; (2) architectural design; and (3) development of Human-
Machine Interfaces (HMI) for both EVs and EVSE (these interfaces play an important role in the
process to demonstrating the system implemented). The system involves the use of two
microcomputers to emulate the communication between the Supply Equipment Communication
Controller (SECC) and the Electric Vehicle Communication Controller (EVCC). Communication
controllers were implemented to establish dynamic communication sessions, and they were
performed through the open-source library RISE V2G [9]. Each machine (EVSE and EV) will
implement a respective program code that will manage all its operations, related to charging
emulations while task scheduling algorithms ensure synchronised information exchange between
EVs and EVSE. The system's performance was validated through emulator based testing,
demonstrating its efficacy in demand response scenarios.

The rest of this work is structured as follows. Section 2 describes the ISO 15118 standard and of
the RISE V2G library. In Section 3 a description is made of development of the charging emulator
system, including its characterization, architecture and description of the task scheduling algorithms.
Section 4 presents the obtained system and evaluation. Finally, Section 5 concludes this work,
discussing future developments.

2 Related Work

In this section we start by describing the ISO 15118 standard with some examples of message
exchanges between SECC and EVCC. Then in section 2.2 we describe the RISE V2G library, used to
implement the emulation system described in Section 3.

2.1 ISO 15118 V2G Messages

The ISO 15118 standard defines general information about the charging infrastructure,
describing communication protocols used by the EV and EVSE during the charging process. Its
architecture defines two endpoints of communication called SECC and EVCC. When an EV connects
to an EVSE, the controllers establish communication via a data link that allows the exchange of high-
level messages. The purpose of this communication link is to exchange information between them
including the start and end of charging, authentications and security protocols [10].

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024

d0i:10.20944/preprints202405.0340.v1

Communication controllers are responsible for the high-level communication, which controls
the charging process. Communication in the ISO 15118 standard is performed in the client-server
model, through request-response message pairs shown in Figure 1.

Request

Response

Figure 1. ISO 15118 client-server communication model between the Supply Equipment
Communication Controller (SECC) and the Electric Vehicle Communication Controller. , and for each
type of V2G message, the client, on the EVCC side, sends a request message, to which the server, on
the SECC side, interacts with a response message The EVCC (client), on the Electric Vehicle (EV) side,
made the requests. The SECC (server), on the Electric Vehicle Supply Equipment (EVSE) side,
provides the response to the EVCC request.

Each V2G message contains detailed information that depend on its type, in order to satisfy its
own purpose. In Table 1 it is possible to observe all types of V2G messages, their associated actions
and for which power transfer mode they are applied, i.e., AC or Direct Current (DC). These message
types are defined in the ISO 15118 standard for conductive charging, and can be exchanged by the
EVCC and SECC during a V2G communication session [11,12]. Figure 2 illustrates how the different
types of V2G messages are used during a communication session.

Table 1. ISO 15118 different V2G message types and its associated action.

SessionSetup) o)
Establish the V2G communication session;
[AC & D(C]
ServiceDiscovery EVSE makes available all its services to EV (e.g., Charge
[AC & DC(C] Services and Payment Options);
ServiceDetail EV gets more information about an additional EVSE
[AC & D(C] service;
PaymentServiceSelection EV chooses which services to use, as provided by EVSE
[AC & DC] previously;
PaymentDetails Exchange details when certificates are chosen as a payment
[AC & DC] option (e.g., E-Mobility Account Identifier);
Authorization EVSE allows, or not, the EV to have access to its energy,
[AC & DC] depending on the validation of the payment option;
ChargeParameterDiscovery EV and EVSE negotiate charging parameters (e.g., Current,
[AC & DC] Voltage and Power Limits);
PowerDelivery EVSE supplies power to its outlet terminals so the EV can
[AC & DC] charge its battery;
CertificateUpdate

[AC & DC]

EV requests a new certificate when it is about to expire;

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024

CertificateInstallation
[AC & DC(]

SessionStop
[AC & DC]
MeteringReceipt
[AC & DC]
ChargingStatus
[AC]
CableCheck
(DC]
PreCharge
(DC]
CurrentDemand
(DC]
WeldingDetection
(DC]

EV requests a new certificate when it does not have a valid
one. SECC may have to request this certificate from a

secondary actor;
Finish the V2G communication session;

EVSE digitally signs the charging energy metering
information.
Responsible for charging loop in AC power transfer mode.
EV verifies and validates the power consumed by the EVSE;
Checks if the connector is locked and if the EV is ready for

charge;
Adjust EVSE voltage to EV battery voltage;

Responsible for charging loop in DC power transfer mode.
Control parameters are exchanged;
Safety checks the electrical contacts after the power transfer

derived from charging.

d0i:10.20944/preprints202405.0340.v1

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0340.v1

5
Begin of the End of the
fiox b
LABEL Communication Com(nEurj'r:::)ahon
VAS - Value Added Services)
PnC - Plug & Charge [e |
CI - Certificate Installation SECC Discovery] g
CU - Certificate Update ‘
EIM - External Identification Means
DC - Direct Current [SupportedAppProtocol | »
AC - Alternating Current J
Start - Start Charging ‘
Ren - Renegotiate]
Stop - Stop Charging [SessionSetup]
MR - Metering Receipt

PSR I—— R
: VAS
v
[ServiceDetail p ... >
v
{ P . v Jt:ocn‘-:buullj
PnCeCl PnC PnCeCU
[cencatemnstataion |7 | M centoateupame |

4 HEE)
‘ AC: Ren
) TES— 2 e ensecesensssssansssssassssssansssssaResssERRRSSSRRRRSSSSRRSSS S RRRSS S S RRRSS S RRRSS1S N
q FEBITEE l—‘ : AC e Start
DCeStart Y ..Ren./ Stop
{ , | PowerDelivery]‘ H \ 4
J
Ren/Stop A [ChargingStatus] --------- >
CurrentDemand | R [S - 7 N
- 7Y iPnCeMR
iPnCeMR '} H Ren / Stop v
A 4 : Ren / Stop , [MeteringReceipt] N
[MeteringReoeipt] 3 ACe Stop
{ DC e Stop
........... v e
C[WeldingDetection]—b[SessionStop]
J
End of the
Communication

Figure 2. V2G message types flowchart. In this flowchart it is possible to see how the V2G message
types flow depending on the power transfer modes (AC or DC), payment options (Certificates and
EIM), value-added services, metering receipt request and charging progress (‘Start/, Stop’ or
‘Renegotiate”). The black continuous lines represent V2G message flow, implemented in the system
created in this work, during a charging communication session.

As illustrated in Figure 2, to establish the connection for the communication session through
V2G messages, firstly, two types of special messages are used: the SECCDDiscovery and the
Supported AppProtocol. Although these two messages do not belong to the group of the ISO 15118 V2G
message type, it is through them that communication between controllers is initiated. In the
SECCDDiscovery, the communication controllers exchange their respective IPv6 to establish an IP-
based connection. In the SupportedAppProtocol, the controllers exchange information regarding the
protocols supported by both. The connection via this standard is only established if both machines
support the ISO 15118 communication protocol [12]

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024

2.2 RISE V2G Open-Source Library

The RISE V2G library [13] stands out as the standard in terms of the implementation of the
ISO 15118-2 communication protocol. It is an open-source implementation of the communication
protocol between the EVCC and the SECC coded in JAVA language. This code offers the possibility
to change configuration files, from SECC and EVCC, to simulate various implementation scenarios
for digital communication during the charging process between them. These configuration files hold
parameters such as the network interface through which the messages will be exchanged, the
supported power transfer modes for conductive charging (AC and/or DC), and the payment options
allowed, among a list of many others.

Communication controllers can be implemented through this library in two ways. The first one
is using a single machine, allowing two entities (SECC and EVCC), implemented separately, to run
and exchange messages. The second way is to implement SECC and EVCC on separate machines and
still achieve interoperability between them. Further, in the present work communication controllers
are implemented on separate machines.

In a practical charging situation where communication is set via V2G messages, while the EV
is charging, the communication controllers must exchange the V2G messages referring to the
charging loop during a certain period. This period must correspond to the time it takes to the EV
battery to charge. Thus, the communication controllers must exchange the V2G messages referring
to both the loop as to the charging time. In this library this is not the case. It only allows simulating
communication during charging depending on the number of loops (i.e., the number of times the
V2G messages referring to the charging loop are repeated) and not depending on the time.

Although the RISE V2G library implements communication through V2G messages according
to ISO 15118, the parameters exchanged through the body of these messages remain static during the
communication session. In other words, this mechanism does not allow to vary parameters like the
SoC, charging currents or voltages.

Before starting the communication session, the parameters must be configured and the number
of charge loops, that are intended to simulate, must be given. Then the communication session starts
and ends a few seconds later, with success. Afterwards, all messages exchanged by the controllers in
these seconds by the communication controllers are displayed in the console of a JAVA IDE.
Observing these messages, it is possible to verify that the parameter values entered before the start
of the communication session remain the same during all session. To develop a platform that would
emulate the charging through the ISO 15118 communication protocol, it was necessary to develop
changes to the source code of the RISE V2G library, as well as to develop additional code blocks. That
process is described in the next section.

3 Charging Emulation System

After analysing the ISO 15118 communication protocol and designing a solution for its
implementation, the next step was to develop the charging emulation system between the EVSE and
the EV. Figure 3 presents the general scheme of the system to be implemented, including the EV user
and the Charge Point Operator (CPO).

d0i:10.20944/preprints202405.0340.v1

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

Internet

Private
Network

Charge Point

Operator i
Electric

Supply Vehicle
Equipment

Figure 3. Charging emulation system general scheme which comprises the exchange of information
between the vehicle, the supply equipment, the EV user and the Charging Point Operator (CPO)
during the charging emulation process.

3.1 Characterisation

The charging emulation system's main objective is to monitor and manage the main parameters
exchanged during the charging process, according to the ISO 15118 digital communication protocol,
using the open-source library RISE V2G.

According to ISO 15118 standard, the communication is performed through power line
communication over the control pilot line. Although the RISE V2G library does not implement the
physical and data link layers of the ISO 15118 standard, it uses as a resource to communicate via the
network interface of the machine in which it is installed. So, in this system, communication is
performed through the wireless network interface, using the Wi-Fi standard as the means of
communication.

In this system there is no practical power transfer, ie., the system only emulates de
communication during the charging process between the EV and the EVSE. However, it is necessary
to adopt a power transfer mode to simulate the communication through the corresponding V2G
messages. Since this system was specified in the follow-up of a project, only the DC power transfer
mode was chosen, because the number of parameters exchanged between the EVSE and EV in this
mode is wider, which allows a better charge management. Certificates was chosen as the payment
option, as it is already implemented in the RISE V2G library and offers greater security to the system.
Considering this characterisation, when the system starts a communication session, it follows the
V2G message flowchart represented in a black continuous line depicted in Figure 2.

This system also has the ability of sending data related to the charging process to an Internet of
Things (IoT) data server. In this case, the charging data are sent to an open-source web application,
dedicated to the storage and visualisation of energy data.

3.2 Architecture

The charging emulation system is divided into two main blocks represented in Figure 4, the
EVpi on the vehicle side and the EVSEpi on the supply equipment side. Each of these blocks is
divided into four sub-blocks, which use the same communication principle, namely the
communication controller, the parameters file, the management code, and the HMI. Both blocks were
implemented on a dedicated Raspberry Pi 3 - Model B.

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

P <., > @ oeoerennnannnniesannanennanenn,
i Charge Point User
Operator
: EVSEpi EVpi
4 \ s N
Device L
Private
4 Supply Equip. Supply Equip. Network Electric Vehicle Electric Vehicle
Hi Machi C icati < | C: icati Human-Machine
: Interface Controller Controller Interface
- ¥ ¥ r Y
loT Data
Server 3 4 v 4
t ENSER ” al Supply Equip. Electric Vehicle | > BV
Internet Code = | Parameters File Parameters File | N Gode
\ 7 \ 7

Figure 4. Communication System Architecture composed by two main blocks. On left side, the
EVSEpi block is composed by the SECC, the EVSE parameters file, the EVSEpi management code and
the EVSE HMI. On right side, the EVpi block is composed by the EVCC, the EV parameters file, the
EVpi management code, and the EV HMI. Together, these eight sub-blocks, allow the implementation
of the proposed charging emulation system according to V2G messages, as well as the interaction
with the charge point operator, user and the Internet of Things (IoT) data server.

Communication Controllers. The communication controllers of both blocks aim to establish the
communication session, through IP, to enable the dynamic exchange of charging parameters on the
system. However, the RISE V2G library only allows to exchange static charge parameters. To overtake
this feature of the RISE V2G library, firstly the most relevant parameters used were selected, during
a communication session running on DC power transfer mode. These parameters, on library code,
have been changed from static to a value that is taken from a specific line in the parameters file of the
respective block. In other words, each time the communication controllers get access to a parameter,
instead of directly accessing the static value of a variable in library source code, they obtain the value
from a prerecorded line in the parameters file. This prerecorded line contains the value of the
parameter that the communication controller wants to access, which is updated every five seconds
by the management code of the respective block. These communication controllers are handled by
the management code of their respective block and have an associated log file, which stores their
communication records individually.

Parameters Files. The main purpose of the parameters files is to serve as an intermediary
between the communication controller and the management code of the respective block. Each file
has its respective parameters register list, where each parameter occupies a predefined position. Each
parameter saved in this register list has its respective unit and type. This labelling is important
because the communication controllers, implemented through the RISE V2G library, only allow the
exchange of parameters if they are in accordance with a specific unit, and more importantly, with
their specific type of variable. Thus, these parameters must keep the same name, unit, and type, on
the management code side as well on the communication controller side.

In addition to the ISO 15118 communication protocol parameters, the parameters register list file
also contains local interaction indicators (flags) so that the communication controller and the
management code of the same block can be synchronised (more on this later). All flags are defined as
boolean type, with initial value set to “False”.

Management Codes. The management codes were developed in the JAVA programming
language and their main objectives are to control the charging process, the communication controller
and the information processed on the HMI of the respective block. Each management code is
implemented according to its respective finite state machine, where each state is responsible for a
certain set of tasks of the respective code.

One of the main objectives of the EVpi management code is to control the charging process of
the EV battery. This approach allows to define batteries with different characteristics in the EVpi
management code. In this paper, a virtual Li-ion battery was implemented which only helps emulate

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0340.v1

the typical functioning of an EV charging process, generating the corresponding curves, and bringing
the developed system closer to a real charging process. Nonetheless, some influencing behaviours
such as temperature and cell balance were set aside.

The charging process of the EV lithium-ion virtual battery, applies both the Constant Current
(CC) and Constant Voltage (CV) charging techniques, known as the CC-CV strategy. The CC-CV
strategy consists of dividing the charging process into the former two charging techniques [14,15].

The EVpi management code implements a finite state machine, consisting of eight states, as
shown in the diagram represented in Figure 5. Next, the states will be described.

User Action &
0 < EVRESSSoC = 99

EVCCstart_Flag = "false™
& Wait 25 seconds

EVCCstart_Flag
= "true”

State 6
Charging

State 5
cv
Charging

Loop

State 3

Charging
Start

State 7

Charging
Interrupt

State 4

cc
Charging
Loop

= "false”

Figure 5. Finite State Machine Diagram of the EVpi Management Code. It uses 8 states, beginning at
state 1.

EVpi State 1. Named Initial Parameters Definition, this initial state is when the vehicle user starts by
defining, through the EV HMI, the limits of the current and voltage as supported by the vehicle. The user can
also define with which state of charge the EV starts the charging emulation. The EVpi management code, in
this state, is only responsible for accepting these parameters values. To obtain a more realistic charge emulation
these values should be introduced according to the values of the virtual battery implemented in the management
code. After having the initial parameters defined, the user promotes the EVpi management code to change its
status through interaction with the EV HML. If the vehicle battery is fully charged, the EVpi management code
changes to state 6. If the vehicle battery needs charging, the EVpi management code changes to state 2.

EVpi State 2. Named Enerqy Request Calculation, the EVpi management code calculates the amount of
energy required to charge the vehicle to 100% SoC, and then gives the order to the EVCC to start the
communication session. Through the EVCC start flag, the management code checks whether the EVCC has been
able to establish the communication session with the SECC. In case of success, the EVpi management code
changes to state 3. After 25 seconds, if the EVpi management code does not establish communication, it goes
back to state 1.

EVpi State 3. Named Charging Start, in this state the charging parameters are changed before the charge
of EV takes place. In other words, the EVpi management code sends the EV parameters to its own
communication controller and receives the EVSE parameters from it. The parameters sent by the EVCC are: (1)
The EVCC identifier, (2) the maximum current and voltage limits supported by the EV and (3) the EV SoC.
The parameters received by the EVCC are: (1) The communication session identifier, (2) the EVSE identifier,
(3) the maximum current, voltage and power limits supported by the EVSE, and (4) the minimum current and
voltage limits supported by the EVSE. After this exchange, current, voltage and power limits are established
for charging, to not compromise the EV or the supply equipment. Once these limits are established, charging

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

10

emulation is started by sending the 'Start’ value through the charge progress parameter. Thus, there is a change
from state 3 to state 4 if the SoC of the vehicle is below 80%, or to state 5 if the SoC is above or equal to 80%.
This change of state depending on the SoC is due different charging techniques are used in each of the next
states.

EVpi States 4 and 5. Named CC Charging Loop and CV Charging Loop, respectively, these states represent
the charging loops according to the charging techniques. In these states, the EVpi management code sets the
target current and voltage values to charge the EV battery according to the respective charging technique. The
target current and voltage values are sent to the SECC, via the EVCC, so that the supply equipment can meet
the vehicle’s needs. In these states, the values of the remaining time to full charge and the EV SoC are also
established, considering the values of the EVSE present current and voltage. While the EVpi management code
remains in one of these two states, the parameters mentioned above are constantly changing and updating, with
a periodicity of 5 seconds. The transition of these states can be performed in two different ways, which are
through the EV user’s action using the vehicle’s HMI or by checking the EV SoC. When using user action,
both states change to state 7. This user action results from pressing the stop button on the EV HMI. On the
other hand, when checking the EV SoC, there are different situations for each of these two states. In state 4 when
the vehicle SoC reaches 80%, the value of the bulk (or fast) charge complete indicator is changed to ‘true’ and
the EVpi management code goes to state 5. This is due the charging technique is changed from constant current
to constant voltage. In state 5 when the vehicle SoC reaches 100%, the full charge complete indicator value is
changed to ‘true’ and the EVpi management code goes to state 6.

EVpi States 6 and 7. Named Charging Complete and Charging Interrupt, respectively, these states
represent the last 5 second charging loop and consequently the stop of charging. In state 6 the stop is performed
due to the fully charged status of the EV, while in state 7 the stop is due to the interruption of charging process
by the vehicle user. In these states, the EVpi management code is responsible for setting the EV target current
and voltage values to zero, as well as the parameter charge progress value to 'Stop’. Through the charge progress
parameter, the EVCC informs the SECC that a charging stop has been requested, thus ending the exchange of
the V2G message related to the charging loop and starting the exchange of V2G messages responsible for the
end of communication session. Once the communication session is ended, the EVpi management code sets the
EVCC end flag with the value “true’ and goes to state 8.

EVpi State 8. Named Communication Session End, the main task of the EVpi management code here is to
update all its variables to their initial values and terminate processes that were started during the previous
communication session, so that a new communication session can be started. After this update, the management
code waits 10 seconds and go to state 1 (i.e., transits to its initial state), where a new charge emulation can be
started.

Moving on to the EVSEpi management code, its main objective is to manage the EVSE charging
process. To do this, it is necessary to have access to the voltage and current limit values. Under real
circumstances, these values are limited by the electrical grid, or by the battery system (in case there
is no connection to the electrical grid). In this charge emulator system, these limits are established by
the CPQO, through the EVSE HMI. The EVSEpi management code is also responsible for calculating
the energy transferred during each charge and applying the appropriate energy tariff, as well as
sending the information about the charges for an IoT data server.

The IoT data server used in this system is Emoncms [16], where it is possible to generate graphs
of the charging parameters over time. These temporal graphs are extremely important for the CPO,
as they can monitor all the information that was and is being processed during charges.

The EVSEpi management code implements an finite state machine consisting of 5 states and as
shown in the diagram in Figure 6. These states are described next.

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

11

Charging Point Operator Action &
E i CurrentLimit > E| i urrentLimit
or
EV inii imit > E i imit

SECCstop_Flag = "true”
& Restart

>

Charging Point Operator Action &
EVSEMinimumCurrentLimit <= EVSEMaximumCurrentLimit
&

E inir imit < E i 7 imit

State 5
Charging
End

| charging Point Operator Action |

SECCstop_Flag
= "false”

SECCstart_Flag

ChargeProgress
= "Start"

Figure 6. Finite State Machine Diagram of the EVSEpi Management Code. It uses 5 states, biggening
at state 1.

EVSEpi State 1. Named Initial Parameters Definition, in this initial state the CPO starts by defining,
through the supply equipment HMI, the values of the maximum and minimum current and voltage limits
supported by the EVSE. Once the initial parameters have been defined, and after the operator gives an indication
through the human-machine interface, the EVSEpi management code checks the values entered before changing
his status. Whenever the values of the defined minimum limits are greater than the values of the defined
maximum limits, EVSEpi remains in the first state and requests a new initial definition of parameters to the
CPO. Otherwise, the EVSEpi management code goes to state 2.

EVSEpi State 2. Named Waiting Communication, in this state the EVSEpi management code activates
the SECC so that it waits for a connection with the EVCC. If a new communication session is detected, the
SECC informs the EVSEpi management code through the “true” value of SECC start flag and goes to state 3.
The EVSEpi management code can be in this second state for an indefinite period of time if a new communication
session is not established. Then the CPO has the ability of making the management code return to its initial
state (state 1), through a stop button present in EVSE HML

EVSEpi State 3. Named Charging Start, this state uses the same principle as EVpi state 3 where the
charging parameters are exchanged before the charging takes place. So, in this state, the EVSEpi management
code sends the supply equipment parameters to its communication controller and receives the vehicle parameters
fromit. The parameters sent by the SECC are: (1) The communication session identifier, (2) the EVSE identifier,
(3) the maximum current, voltage and power limits supported by the EVSE and (4) the minimum current and
voltage limits supported by the EVSE. The parameters received by the SECC are: (1) The EVCC, (2) the
maximum current and voltage limits supported by the EV and (3) the EV SoC. Then, the current, voltage and
power limits for charging are established, as well as the hourly period of the tariff and its associated cost. After
that, the EVSEpi management code sends the processed information to the IoT data server. After accomplishing
this set of tasks, the EVSEpi management code checks the charge progress parameter value. If the value is 'start’,
the charge emulation begins and, consequently, the exchange of the V2G message related to the charging loop,
which leads to the transition to state 4.

EVSEpi State 4. Named Charging loop, in this state the EVSEpi management code gets the values of the
remaining time to reach full charge, the target current and voltage for charging the EV and the EV SoC from
the vehicle. The code then establishes the current values of the EVSE electrical current and voltage considering
the availability of the electrical grid or renewable generation system plus batteries. In this state, the EVSEpi
management code also sets up parameters values that are not part of the ISO 15118 communication protocol,
such as the EVSE present power, the charge energy, and the charge energy cost. These parameters are set and
updated considering the duration of the charging loop (5 seconds). In state 4, the EVSEpi management code is
still responsible for sending the charge information to the IoT data server. This information is sent with a

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

12

periodicity of 1 minute (i.e., every 12 charging loops). The EVSEpi management code goes to the next state
(state 5) only when charging ends, that is, when the charge progress parameter shows the value 'Stop’.

EVSEpi State 5. In this state, named Charging End, the EVSEpi management code ensures that the EVSE
present current, voltage and power values are zero. Thereafter, the connection between the communication
controllers is finished and the final information about the charge is sent for the last time to the loT data server.
Finally, the EVSEpi management code checks the value of the SECC’s end flag to know if the communication
session has ceased. Once the communication session is finished, it resets the local variables, waits for 10 seconds,
and returns to its initial state (state 1).

Figure 7 illustrates how the states of each block (EVpi and EVSEpi) are combined to make the
implemented system works. During system operation, each EVSEpi state is related to one or more
EVpi states, however, it can only be conjugated to one of these related states at one time instant. For
example, state 4 of EVSEpi is related to states 4, 5, 6 and 7, but for the system to operate it can only
be combined with one of these four states. So, in the case where the EV charges according to the CC
charging loop technique, while EVpi must be set to state 4 EVSEpi will be set on state 4.

EVSEpi States

_Qﬁ‘;------

IS
L

------------‘;------
1 GG @

-3 g‘ |

EVpi States

Figure 7. Diagram of the EVpi and EVSEpi Conjugation of States. In order to the system works, each
state from the EVpi need to be associated to an EVSEpi state.

It should be noted that for the system to operate correctly, the EVSEpi management code must
be in state 2 before the EVpi management code goes from state 1 to state 2, as shown in the diagram
in Figure 7. This rule applies for every state transition.

Human-Machine Interfaces. The HMI are intended to allow defining limit values of voltage and
current supported by each machine (EV and EVSE) before the communication session is started. This
way, the system allows different charging scenarios to be emulated. These interfaces also provide the
information about the EV charging that is updated every 5 seconds. Its respective source codes were
developed in JAVA programming language, with the aid of the graphical user interface tool Swing
of Netbeans IDE and are controlled by the respective management codes. Next, these interfaces are
described according to their block (EVpi and EVSEpi).

Electric Vehicle Human-Machine Interface. In its initial appearance, the EV HMI presents the initial
parameterisation screen (Figure 8) which corresponds to the behavior of state 1 of the EVpi management code.

)

STATE OF CHARGE [%] 50 o)
(5)
MAXIMUM CURRENT LIMIT [A] 7 @
(6)
MAXIMUM VOLTAGE LIMIT [V] 400 @
”

Figure 8. EV Initial Parameterisation Screen. In this screen, the values of the EV SoC (1), the maximum
current limit supported by the EV (2) and the maximum voltage limit supported by the EV (3) become
defined. These parameters are defined individually through their respective slider (4), (5) and (6).

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

13

Each slider is limited to a range of values that can be easily changed in the source code. Once the
initial parameters have been defined, the button in (7) is responsible for sending the information to
the EVpi management code, prompting the start of the communication session that will lead to the
EV emulation charging.

When button (7) is pressed (Figure 8), the EV HMI goes to a new screen, the EV charging screen (Figure
9). This screen is used to follow all the behaviours of the EVpi management code states except the first one.
From there it is possible to observe information related to the charging status, as well as information related to
the communication session status.

A B
(1)~

_-(5)
(2 (6)

(3) B STARTING CHARGE... é CHARGING... (7)

(4) — 8)

CURRENT [A]: VOLTAGE [V]: H CURRENT [A]:

(10) ©

Figure 9. EV Charging Screen. When charging has not started yet (representation A), the charging
screen has a black background and only some information is available such as the EV SoC (1), the
progress SoC bar (2), the information bar (3) and the EVCC identifier (4). When charging starts
(representation B), the charging screen makes available the remaining information, which is the
remaining time to full charge (5) presented in hour-minute format (hh:mm), the EV target current (7),
the EV target voltage (8), EVSE identifier (9) and the communication session identifier (10). While
charging, the vehicle user can yet request the charge to stop through this interface, using the stop
button (6).

Charging Point Human-Machine Interface. The supply equipment HMI uses the same principle as the
EV’s but dedicated to the charging station. Thus, in its initial appearance, this interface presents the EVSE
initial parameterisation screen (Figure 10).

B —_ MAXIMUM CURRENT LIMIT
® MINIMUM CURRENT LIMIT

(7).) MAXIMUM VOLTAGE LIMIT

(8) MINIMUM VOLTAGE LIMIT

(9) —— START EVSE

Figure 10. EVSE Initial Parameterisation Screen. This screen establishes the values of the maximum
current limit supported by the EVSE (1), the minimum current limit supported by the EVSE (2), the
maximum voltage limit supported by the EVSE (3), and the minimum voltage limit supported by
EVSE (4). These parameters are individually established through their respective slider (5), (6), (7) and
(8). Once the initial parameters have been defined, the button (9) is responsible for sending the
information to the EVSEpi management code.

After this information is sent, the EVSE’s HMI goes to its charging screen. The charging screen is used
to monitor all behaviours of the EVSEpi management code states, except for the first one. Alternatively, it is

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

14

possible to observe information about the charging, as well as the communication session (Figure 11). But
unlike the EV HMI charging screen, the EVSE HMI charging screen in this first phase is made
available before the communication session starts.

A B
: @)

_-(5)
_(6)

(1) = WAITING VEHICLE... E CHARGING...

(2)— N CURRENT [A]: Te— CURRENT [A]:
H 117

VOLTAGE [V]: cosT ¢ * VOLTAGE [V]* 0T (€ -7
H 366 s

~(8)

@ P an o) ©)

Figure 11. EVSE Charging Screen. In the first stage (representation A), this screen makes available the
information bar (1), the EVSE identifier (2) and the stop button (3). Button (3) can be used by the CPO,
only during this stage, so that the EVSE HMI goes back to the initial parameterisation screen,
cancelling the wait for the establishment of a new communication session. Once charging starts
(representation B), the remaining information on the charging screen is make available, such as the
EV SoC (4), the time remaining to full charge (5) displayed in hour-minute format (hh:mm), the
progress SoC bar (6), the charge energy (7), the charge energy cost (8), the EVSE present current (9),
the EVSE present voltage (10), the EVCC identifier (11) and the communication session identifier (12).

3.3 Task Scheduling Algorithm

The charging emulation system also implements a task scheduling algorithm, so that the entire
information can flow in a synchronised way and without failures or collisions. This algorithm not
only allows the system to become lighter at the processing level, but also avoids access collisions to
the parameters file of each block. The tasks performed in the system are composed by the tasks
performed by EVpi and EVSEpi. The tasks performed by EVpi are composed of the tasks performed
by the EVpi management code and the EVCC. The tasks performed by EVSEpi are composed of the
tasks performed by the EVSEpi management code and the SECC. Figure 12 presents the task
scheduling at both extremes.

5 seconds loops

EVpi M t
P Codce | J_I_I_I_hllll NERRANAY

[IIF IIIIL_LLI_L

EVSEpi M t
Poodoa FTTTTITTTTITTITRITITRITTITRITITRITTTTETTTI

® [
Communication EVpi Management EVSEpi Management
Controllers Tasks Code Tasks Code Tasks

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

15

Figure 12. Communication System Task Scheduling. In this figure, the tasks performed by the EVpi
Management Code are represented in green and the tasks performed by the EVSEpi are represented
in red. The tasks performed by the communication controllers (EVCC and SECC), although
implemented on separate machines, are represented in same colour (blue) because they perform tasks
together during the communication session. Seeing this figure in detail, it is possible to observe that
no task is overlapped in the same block (EVpi or EVSEpi).

This algorithm is based on 5 seconds loops, where each second corresponds to a set of tasks that
do not compromise the information flow, as can be seen in Figure 13.

Seconds in a Minute
.

EVpi : b
2
I

10 11 12 13 14 15 16 17 16 19 8721 22 23 24 W26 27 28 20 %0 31 32 33 34 36 % 37 3 3 40 41 42 43 4 ke 47 43 29 W1 %2 %3 54 %5 %6 57 s w9 0

123486788 e 1o i
LLLER LIRS ‘ %H:}%LI.L'LIIII‘III
PR ITTTTITRTF TR BT T AR TR TR W AT W Tl AT T
EVSEpi =N i G /- - EVpi
N\ Management
/ Code Tasks
Communication \
Controllers Tasks
EVSEpi
|] M t
Tasks Associated ‘/ Caor:iaeg'::iz
to Charging Loop /

5 4

.5 seconds loop

Figure 13. Task Scheduling Algorithm Loops. The 60 seconds of a minute are divided into 12 loops of
5 seconds. Each 5 seconds loop corresponds to a charging loop of the respective management code
and each second interval in a 5 second loop corresponds to a set of tasks associated with that charging
loop.

Task sets divided by 1 second intervals, usually, have a running time of less than 1 second, yet
a full second interval is reserved for each set, thus lightening the system. Its scaling at intervals along
the 5 seconds loop is performed whenever the clock seconds are a multiple of 5. For example, if a
given task runs in the time interval [0 to 1], the algorithm performs this same task when the seconds
of the minute are multiples of 5, i.e., this task can be started in seconds 0, 5, 10, 15, 20, 25, etc... as can

be followed in Figure 14.
Time [s] _
— — — — - >
50 |51 52 53 54 55/56 |57 58 59 0 1] 2 |3 4 5 6 7|8 |9 10 11 12 13‘ 14 15 16 17 18 19 20 21 22 23 24 25
55156 57 58 59 O 1]2 3 4 5 6/7 |8 9 10 11 12]13 |14 15 16 17 18] 19 |20 21 22 23 24 25 26 27 28 29 30
01 2 3 4 5|6 |7 8 9 10 1112 13 14 15 16 17|18 25 26 27 28 29 30 31 32 33 35

19 20 21 22 23‘2!
!
|

T] L L]

‘0=11 2 3 4 01‘:2 3 4 0 1‘2=‘3 4 0 1 ng 0 1 2 ZL“O 1. 2 3 4 0“.1 273 4’?
Multiples Multiples Multiples Multiples Multiples v
of 5 of 5+1 of 5+2 of 5+3 of 5+4 5 seconds loop

Figure 14. Task Scheduling Algorithm Intervals Splitting. When a given task is executed, for example,
in the interval [3 to 4], the algorithm performs this same task when the seconds of the minute are
multiples of 5 and remainder 3, i.e., this task can be started in seconds 3, 8, 13, 18, 23, 28, etc....

Through this timestamp, the EVCC adopts the same time as the SECC, making it possible to
implement synchronisation during the communication session.

The use of the 5 seconds loops for the algorithm was performed based on the tasks that the blocks
can perform without compromising the system operability. Since each block is implemented in a
Raspberry Pi 3 — Model B microcomputer, and the controllers communicate through wireless
networks, 3 seconds were reserved for communication purposes only. The remaining 2 seconds, out

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0340.v1

16

of the 5 seconds of the loop, were reserved for tasks in the management code of each block, such as
analysing and updating charging parameters and updating its respective HML

On the other hand, one of the scenarios in the development of this communication system was
the integration with a charging system that allows generation of renewable energy. Since the energy
arising from the renewable generation is too intermittent, it is necessary to transmit viable
information, i.e., the information about the energy transmitted between the communication
controllers of the system must follow the energy that is generated instantly by the RES. Only in this
way are avoided exceptional consumptions from the grid, with only the energy generated by the
renewable source being consumed by the charging.

4 Resulting System and Demand Response Evaluation

This section describes the developed ISO 15118 EVSE and EV emulator system and evaluates its
capability to support demand response when conjugated with a photovoltaic renewable energy
source.

4.1 ISO 15118 EVSE and EV Emulation Platform

In Figure 15, it is possible to observe the final product of the charging emulation system,
resulting from the architecture presented above.

Figure 15. Communication System. On the left side, is shown the EVSE HMI, and a little further down
the microcomputer (EVSEpi) responsible for executing the EVSEpi management code and the SECC
source code. On the right side, is shown the EV HMI. A little further down the microcontroller (EVpi)
responsible for executing the EVpi management code and the EVCC source code are shown. In the
centre of the figure, the web page of the IoT data server (Emoncms) is presented to show the
information about all the charging processes.

The information presented on graphs in the data server is based on the initial parameters of the
EV and EVSE, and the time period in which the charge emulation is performed. For each charge
emulation, a temporal graph is created in the IoT data server, with information from the EV and
EVSE. This information is sent to the server every 1 minute by the EVSE, which makes it possible to
observe the dynamism of the ISO 15118 communication protocol parameters throughout the charging
emulation. Next, two of these graphs are presented (Figures 18 and 19), as an example of running a
simulation where the initial conditions of emulation are given in Table 2.

Table 2. Charging Emulation Initial Conditions.

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0340.v1

17
EVSE Maximum Current 50 A EV State of Charge 10 %
Limit
EVSE Minimum Current EV Maximum Current 117 A
Limit 24 Limit
EVSE Maximum Voltage 600V EV Maximum Voltage 400V
Limit Limit
EVSE Minimum Voltage 10V Tariff Period Peak
Limit

The graph in Figure 16 illustrates the behaviour of current and voltage during the charging
emulation.

300

@
k=]

225

Voltage [V]

SoC [%]
Current [A]

S
o

150

75

10:40 10:50 11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12220 12:30 12:40

SoC Current Voltage

Figure 16. Charging Graph (current and voltage behaviour). The red line represents the SoC in
percentage, the green line represents the current of charging in amperes, and the blue line represents
the voltage of charging in volts. The top and bottom straight green lines represent the maximum and
minimum current that the charging process can reach. The top and bottom straight blue lines
represent the maximum and minimum voltage that the charging process can reach.

The graph in Figure 17 illustrates the behaviour of energy consumed and its associated cost
during the charging emulation for the same scenario.

120 80
100 67
80 53
=
— —_
2 =0
= 60 40 =
0 =g
<] 20
n 0O
c
40 27 W
20 13
0 0

1040 10:50 11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40

SoC Charge Cost Energy Consumed

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

18

Figure 17. Charging Graph (Energy and Cost Behaviour). The red line represents the SoC in
percentage, the green line represents the charge cost in Euros, and the blue line represents the energy
consumed during the charging in kilowatts hour.

With the information in this graph, it is possible to verify that the EV starts the charging
emulation with a SoC of 10%, around 10:34h and ends it, with a SoC of 100%, around 12:49h. During
these 2 hours and 15 minutes, the EV charges 90% of its battery, where approximately 72.7 kWh were
transferred. This emulation was performed in a time period in which electricity has its highest cost
(peak hours), so the 72.7 kWh transferred from the electricity grid to the EV battery results in a
charging cost of €17.30 according to the tariff applied at the EVSE.

4.2 Evaluation of the Responsiveness of the System for Demand Response Purposes

In this section we evaluate the responsiveness of the performed system in a Demand Response
scenario, according with the periodicity between SECC and EVCC transmissions. In the development
of the system a periodicity of 5 seconds was selected, however it is important to assess of this value
is adequate in terms of: (i) difference between charging and generation powers and (ii) number of
packets per second.

In order to perform this assessment, we considered an energy generation dataset, of a high-
definition sampling from a photovoltaic unit, with the power per square meter collected by a unit of
photovoltaic panels during nearly 11 hours of daily light, in one day [17]. The dataset selected
considers a cloudy day with high intermittency levels.

In order to evaluate the mismatch between generation levels and charging levels we simulated
the responsiveness of the system with different communication periods between SECC and EVCC.
We considered that the photovoltaic generation levels are transmitted to the SECC every 100
milliseconds. We then varied the transmission periodicity between controllers, from 1 to 20 seconds,
and computed the percentual error between generation and charging powers, and the number of
packets per second that would be required in each case.

Figure 18 shows the associated results.

14 14
—Error
—Packets per second
12 711.2
1 -
=
o
=
<08 0.8 8
= @
— w
S s
= @
woe 06 =
2
@
2
&
0.4 -04 &
0.2 0.2

O 1 | 1 | | 0
2 4 6 8 10 12 14 16 18 20

System Transmission Time [s]

Figure 18. Communication System Error. The blue line represents the percentage of error associated
with the system transmission time. The black line represents the rate of packets per second associated
with the system transmission time.

In this graph it is possible to conclude that the 5 seconds periodicity communication between
the controllers used in the task management algorithm, results in a low associated error between
generation and charging levels (0.3798%). It is also possible to conclude that the rate of packets per
second is relatively low (0.2 packets per second).

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

19

Considering a periodicity of communications between SECC and EVCC of 5 seconds Figure 19
plots the difference between generation and charging levels. It can be seen that the values transmitted
by the photovoltaic panel unit and the values transmitted between the communication controllers are
very close throughout the daily sample. In light of these results, the utilization of the 5 seconds
between transmissions in the setup for the task scheduling algorithm is justified.

—Photovoltaic Unit TX (0.1 s)
|—Communication System TX (5 s)

—Photovoltaic Unit TX (0.1 s)
—Communication System TX (5)

Figure 19. Photovoltaic Unit and System Communication deviation Samplings. The black line
represents the photovoltaic unit transmission values, and the red lines represents the communication
system transmission values. The excerpt representing around 15 minutes, shows that the difference
between charging and generation levels is low.

5 Discussion, Conclusion and Future Developments

The system developed allows the emulation of a charging system using the ISO 15118
communication protocol, through two microcomputers, allowing observing the dynamism of the
parameters exchanged throughout the communication session. To perform this dynamism in
parameters, management codes were developed for the two main blocks (EV and EVSE). In the EV
block (EVpi) there was a need to implement a virtual battery that would provide dynamism to the
change of some charging parameters. To do this, charging techniques for Li-ion batteries (CC and
CV) were implemented, approximating the behaviour of the parameters exchanged in this system
with the parameters exchanged in a real charge. In the EVSE block (EVSEpi) charging tariffs were
implemented, as well as a connection with an IoT data server, which allows the information of all
emulations to be saved for future consultation. HMI were also developed for the EV and the EVSE,
which allow interaction with the user and the CPO, as well as showing the dynamism of the charging
parameters created through the management codes in real time.

It is possible to conclude that the system adjusts itself, through communication via V2G
messages, when there are limitations on the electrical grid part. In this context, these adjustments are
crucial for the implementation of charging stations that integrate generation of renewable energy. In
this scenario, the EVSE can communicate to the EV the power limit at which it could charge, and this
limit varies depending on the energy generated through its photovoltaic panels or the energy stored
in its batteries.

Through this charge scheduling, and combined with load management algorithms, the charging
can be further optimised. Furthermore, future developments aim to integrate the two main modules
(EVpi and EVSEpi) in a physical system (that integrates renewable energy sources and local storage),
the digital twin of which was introduced in [18]. Additionally, there are plans for implementation

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0340.v1

20

within the context of renewable energy communities, specifically the case of Culatra Island (in [19],
[20]), for electric boats.

Acknowledgements: This work was supported by the Portuguese Foundation for Science and
Technology (FCT) through the individuals research grants: 2021.08721.BD & 2021.08754.BD. The
work was also supported by the Project AGERAR+, Almacenamiento y Gestién de Energia Renovable
para el fomento de la participacion de pequenos y medianos prosumidores en redes eléctricas
inteligentes (Project ID 0091_AGERAR_PLUS_6_E) funded by the European Union, under the FEDER
(Fundo Europeu de Desenvolvimento Regional) and INTERREG programs.

List of Acronyms

AC Alternate Current

CC Constant Current

CPO Charge Point Operator

Ccv Constant Voltage

DC Direct Current

EV Electric Vehicle

EVCC Electric Vehicle Communication Controller

EVSE Electric Vehicle Supply Equipment

HMI Human-Machine Interface

IoT Internet of Things

SECC Supply Equipment Communication Controller
SoC State of Charge

V2G Vehicle-to-Grid

References

1. E. M. Szumska, “Electric Vehicle Charging Infrastructure along Highways in the EU,” Energies. 2023, doi:
10.3390/en16020895.

2. Global EV Outlook 2019. 2019.

International Energy Agency, “Global EV Outlook 2022 - Data product,” 2022.

4. J. A.P. Lopes, E.J. Soares, and P. M. R. Almeida, “Integration of electric vehicles in the electric power
system,” Proc. IEEE, 2011, doi: 10.1109/JPROC.2010.2066250.

5.]. De Hoog et al., “Electric vehicle charging and grid constraints: Comparing distributed and centralized
approaches,” 2013, doi: 10.1109/PESMG.2013.6672222.

6. K.Momoh, S. A. Zulkifli, P. Korba, F. R. S. Sevilla, A. N. Afandi, and A. Velazquez-Ibafiez, “State-of-the-
Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future
Outlooks,” Energies. 2023, doi: 10.3390/en16093956.

7. A. Bahrami, “EV Charging Definitions, Models, Levels, Communication Protocols and Applied
Standards,” 2020.

8. V. Schwarzer and R. Ghorbani, “Current State-of-the-Art of EV Chargers,” 2015.

9. M. Multin and C, “RiseV2G library.” https://github.com/SwitchEV/RISE-V2G.

10. International Organization for Standardization (ISO), “ISO 15118-1:2019.” 2019.

11. S.-H. Ju, I.-H. Lee, S.-H. Song, and H.-S. Seo, “Communication Interoperability between Ev Charging
Infrastruture and Grid,” Int. J. Eng. Technol., 2018.

12. International Organization for Standardization (ISO), “ISO 15118-2:2014.” 2014.

13. V2G CLARITY, “RISE V2G.” .

14. S.]J. Thomson, P. Thomas, R. Anjali, and E. Rajan, “Design and Prototype Modelling of a CC/CV Electric
Vehicle Battery Charging Circuit,” 2018, doi: 10.1109/ICCSDET.2018.8821071.

15. W. Shen, T. T. Vo, and A. Kapoor, “Charging algorithms of lithium-ion batteries: An overview,” 2012, doi:
10.1109/ICIEA.2012.6360973.

@

https://doi.org/10.20944/preprints202405.0340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0340.v1

21

16. Emoncms.org, “Emoncms.” .

17. Government of Canada, “High-Resolution Solar Radiation Datasets,” 2020. .

18. A. M. B. Francisco,]J. Monteiro, and P. J. S. Cardoso, “A Digital Twin of Charging Stations for Fleets of
Electric Vehicles,” IEEE Access, vol. 11, no. IEEE Vehicular Technology Society Section, pp. 125664-125683,
2023, doi: 10.1109/access.2023.3330833.

19. A. Pacheco,]. Monteiro, J. Santos, C. Sequeira, and J. Nunes, “Energy transition process and community
engagement on geographic islands: The case of Culatra Island (Ria Formosa, Portugal),” Renew. Energy,
2022, doi: 10.1016/j.renene.2021.11.115.

20.].Santos, A. Pacheco, and J. Monteiro, “Implementation Process of a Local Energy Community in Portugal
— The Case of Culatra Island BT - INCREaSE 2023,” 2023, pp. 173-191.

Disclaimer/Publisher’'s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202405.0340.v1

