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Abstract. There is currently an exponential growth in the electric vehicle market, which will require 
an increase in the electrical grid capacity to meet the demand of charging. If, on the one hand, the 
introduction of energy generation from renewable sources can be used to meet that requirement, 
the intermittent nature of some of these sources poses challenges to the required real time 
equilibrium between generation and consumption. The impossibility of controlling generation from 
some of these sources leads to the attempt of controlling and manage the consumption of electricity, 
according with the levels of generation. In this context, the emergence of smart grids has introduced 
mechanisms that guarantee a balance between consumption and generation of electricity. One of 
these mechanisms is the smart charging of electric vehicles. Effective smart charging relies on 
communication between the supply equipment and the electric vehicle, enabling the adjustment of 
the energy transfer according with the generation levels. Thus, there is a necessity for a standardised 
system that guarantees this communication. In this context, the ISO 15118 standard, allows high 
level communication mechanisms, much beyond the basic control solutions offered by the IEC 
61851-1 specification. In this context, this paper presents the development of a charge emulation 
system, based on the ISO 15118 communication protocol and discusses its application for demand 
response purposes.  

Keywords: electric vehicles; smart charging; demand response; iso 15118; smart grids; renewable 
energy sources 

 

1 Introduction 

Introduced as a clean energy initiative due to its CO2 emissions (relatively low or null) [1], 
electric vehicles (EVs) support a new paradigm of sustainable mobility. At a global level, taking into 
account the average carbon emissions used for electricity generation (518 grams of carbon dioxide 
equivalent per kilowatt-hour [518 g CO2-eq / kWh]) [2], an EV emits a smaller amount of greenhouse 
gases than the average internal combustion vehicles. In 2022 the global market share of EVs reached 
14% (more than 26 million EVs around the globe) [3], however, the uncontrolled charging 
requirements of this growing fleet represent a major challenge for the electrical grid, especially if the 
charging demand from EVs coincides with the peak consumption periods already existing in the grid, 
which can lead to its overload  [4][6]. 

The two main solutions to this challenge could be, on the one hand, to introduce Renewable 
Energy Sources (RES), and particularly those that are generated at the distribution level, reducing the 
need for conventional energy sources, and, on the other hand, the introduction of demand response 
mechanisms, that allow adjusting the charging power of EVs according with the power output from 
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these RES. Through this mechanism, known as Smart Charing, EVs can minimise the requirements 
they place to electrical grids, by shaping their demand pattern, by varying the intensity and charging 
periods [4][6]. At this level, EVs can be thought as an additional storage unit, either for the sole 
purpose of mobility, but also to support vehicle-to-grid (V2G) energy transfers [2]. In both cases, 
interoperability mechanisms between the EV and the Electric Vehicle Supply Equipment (EVSE) are 
needed. One of the challenges associated with the implementation of grid-to-vehicle (G2V) and V2G 
energy transfers is the limited capacity for exchanging information between the EV and the EVSE. 
Currently, most of this information exchange is performed by low-level control mechanisms (IEC 
61851-1), through the control pilot and proximity pilot signalling pins. Mostly used in the Alternating 
Current (AC) power transfer mode, the signalling carried out through these pins only indicates when 
the EV is connected to the EVSE and what is the available electrical current that the supply equipment 
can supply to the vehicle. That reduced set of control options limits the implementation of smart 
charging solutions [1,5,6]. 

In order to optimise charge management, an improved interoperability between the EVSE and 
EV is necessary. Information such as the State of Charge (SoC) and its power limits are crucial to 
perform charge scheduling. Thus, there is a clear need for bidirectional communication between 
them, much beyond the control level solutions offered by IEC 61851-1. 

In this context, this work describes the development of a system that emulates a charging process 
between an EV and the EVSE according with the ISO 15118 digital communication protocol. The 
development process involves a comprehensive analysis of the ISO 15118 protocol, culminating in 
the design and implementation of the charging emulation system. Key steps include: (1) 
characterisation of system parameters; (2) architectural design; and (3) development of Human-
Machine Interfaces (HMI) for both EVs and EVSE (these interfaces play an important role in the 
process to demonstrating the system implemented). The system involves the use of two 
microcomputers to emulate the communication between the Supply Equipment Communication 
Controller (SECC) and the Electric Vehicle Communication Controller (EVCC). Communication 
controllers were implemented to establish dynamic communication sessions, and they were 
performed through the open-source library RISE V2G [9].  Each machine (EVSE and EV) will 
implement a respective program code that will manage all its operations, related to charging 
emulations while task scheduling algorithms ensure synchronised information exchange between 
EVs and EVSE. The system's performance was validated through emulator based testing, 
demonstrating its efficacy in demand response scenarios. 

The rest of this work is structured as follows. Section 2 describes the ISO 15118 standard and of 
the RISE V2G library. In Section 3 a description is made of development of the charging emulator 
system, including its characterization, architecture and description of the task scheduling algorithms. 
Section 4 presents the obtained system and evaluation. Finally, Section 5 concludes this work, 
discussing future developments. 

2 Related Work 

In this section we start by describing the ISO 15118 standard with some examples of message 
exchanges between SECC and EVCC. Then in section 2.2 we describe the RISE V2G library, used to 
implement the emulation system described in Section 3. 

2.1 ISO 15118 V2G Messages 

The ISO 15118 standard defines general information about the charging infrastructure, 
describing communication protocols used by the EV and EVSE during the charging process. Its 
architecture defines two endpoints of communication called SECC and EVCC. When an EV connects 
to an EVSE, the controllers establish communication via a data link that allows the exchange of high-
level messages. The purpose of this communication link is to exchange information between them 
including the start and end of charging, authentications and security protocols [10].  
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Communication controllers are responsible for the high-level communication, which controls 
the charging process. Communication in the ISO 15118 standard is performed in the client-server 
model, through request-response message pairs shown in Figure 1. 
 

 

Figure 1. ISO 15118 client-server communication model between the Supply Equipment 
Communication Controller (SECC) and the Electric Vehicle Communication Controller. , and for each 
type of V2G message, the client, on the EVCC side, sends a request message, to which the server, on 
the SECC side, interacts with a response message The EVCC (client), on the Electric Vehicle (EV) side, 
made the requests. The SECC (server), on the Electric Vehicle Supply Equipment (EVSE) side, 
provides the response to the EVCC request. 

Each V2G message contains detailed information that depend on its type, in order to satisfy its 
own purpose. In Table 1 it is possible to observe all types of V2G messages, their associated actions 
and for which power transfer mode they are applied, i.e., AC or Direct Current (DC). These message 
types are defined in the ISO 15118 standard for conductive charging, and can be exchanged by the 
EVCC and SECC during a V2G communication session [11,12]. Figure 2 illustrates how the different 
types of V2G messages are used during a communication session. 

Table 1. ISO 15118 different V2G message types and its associated action. 

V2G Message Types Associated Action 

SessionSetup 

[AC & DC] 
Establish the V2G communication session; 

ServiceDiscovery 
[AC & DC] 

EVSE makes available all its services to EV (e.g., Charge 
Services and Payment Options); 

ServiceDetail 

[AC & DC] 

EV gets more information about an additional EVSE 

service; 

PaymentServiceSelection 

[AC & DC] 

EV chooses which services to use, as provided by EVSE 

previously; 

PaymentDetails 

[AC & DC] 

Exchange details when certificates are chosen as a payment 

option (e.g., E-Mobility Account Identifier); 

Authorization 
[AC & DC] 

EVSE allows, or not, the EV to have access to its energy, 
depending on the validation of the payment option; 

ChargeParameterDiscovery 

[AC & DC] 

EV and EVSE negotiate charging parameters (e.g., Current, 

Voltage and Power Limits); 

PowerDelivery 

[AC & DC] 

EVSE supplies power to its outlet terminals so the EV can 

charge its battery; 

CertificateUpdate 

[AC & DC] 
EV requests a new certificate when it is about to expire; 
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CertificateInstallation 

[AC & DC] 

EV requests a new certificate when it does not have a valid 
one. SECC may have to request this certificate from a 

secondary actor; 

SessionStop 

[AC & DC] 
Finish the V2G communication session; 

MeteringReceipt 

[AC & DC] 

EVSE digitally signs the charging energy metering 

information. 

ChargingStatus 
[AC] 

Responsible for charging loop in AC power transfer mode. 
EV verifies and validates the power consumed by the EVSE; 

CableCheck 

[DC] 

Checks if the connector is locked and if the EV is ready for 

charge; 

PreCharge 

[DC] 
Adjust EVSE voltage to EV battery voltage; 

CurrentDemand 

[DC] 

Responsible for charging loop in DC power transfer mode. 

Control parameters are exchanged; 

WeldingDetection 
[DC] 

Safety checks the electrical contacts after the power transfer 
derived from charging. 
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Figure 2. V2G message types flowchart. In this flowchart it is possible to see how the V2G message 
types flow depending on the power transfer modes (AC or DC), payment options (Certificates and 
EIM), value-added services, metering receipt request and charging progress (‘Start’, Stop’ or 
‘Renegotiate’). The black continuous lines represent V2G message flow, implemented in the system 
created in this work, during a charging communication session. 

As illustrated in Figure 2, to establish the connection for the communication session through 
V2G messages, firstly, two types of special messages are used: the SECCDDiscovery and the 
SupportedAppProtocol. Although these two messages do not belong to the group of the ISO 15118 V2G 
message type, it is through them that communication between controllers is initiated. In the 
SECCDDiscovery, the communication controllers exchange their respective IPv6 to establish an IP-
based connection. In the SupportedAppProtocol, the controllers exchange information regarding the 
protocols supported by both. The connection via this standard is only established if both machines 
support the ISO 15118 communication protocol [12] 
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2.2 RISE V2G Open-Source Library 

The  RISE V2G library [13] stands out as the standard in terms of the  implementation of the 
ISO 15118-2 communication protocol. It is an open-source implementation of the communication 
protocol between the EVCC and the SECC coded in JAVA language. This code offers the possibility 
to change configuration files, from SECC and EVCC, to simulate various implementation scenarios 
for digital communication during the charging process between them. These configuration files hold 
parameters such as the network interface through which the messages will be exchanged, the 
supported power transfer modes for conductive charging (AC and/or DC), and the payment options 
allowed, among a list of many others. 

 Communication controllers can be implemented through this library in two ways. The first one 
is using a single machine, allowing two entities (SECC and EVCC), implemented separately, to run 
and exchange messages. The second way is to implement SECC and EVCC on separate machines and 
still achieve interoperability between them. Further, in the present work communication controllers 
are implemented on separate machines. 

 In a practical charging situation where communication is set via V2G messages, while the EV 
is charging, the communication controllers must exchange the V2G messages referring to the 
charging loop during a certain period. This period must correspond to the time it takes to the EV 
battery to charge. Thus, the communication controllers must exchange the V2G messages referring 
to both the loop as to the charging time. In this library this is not the case. It only allows simulating 
communication during charging depending on the number of loops (i.e., the number of times the 
V2G messages referring to the charging loop are repeated) and not depending on the time. 

 Although the RISE V2G library implements communication through V2G messages according 
to ISO 15118, the parameters exchanged through the body of these messages remain static during the 
communication session. In other words, this mechanism does not allow to vary parameters like the 
SoC, charging currents or voltages. 

 Before starting the communication session, the parameters must be configured and the number 
of charge loops, that are intended to simulate, must be given. Then the communication session starts 
and ends a few seconds later, with success. Afterwards, all messages exchanged by the controllers in 
these seconds by the communication controllers are displayed in the console of a JAVA IDE. 
Observing these messages, it is possible to verify that the parameter values entered before the start 
of the communication session remain the same during all session. To develop a platform that would 
emulate the charging through the ISO 15118 communication protocol, it was necessary to develop 
changes to the source code of the RISE V2G library, as well as to develop additional code blocks. That 
process is described in the next section. 

3 Charging Emulation System  

After analysing the ISO 15118 communication protocol and designing a solution for its 
implementation, the next step was to develop the charging emulation system between the EVSE and 
the EV. Figure 3 presents the general scheme of the system to be implemented, including the EV user 
and the Charge Point Operator (CPO). 
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Figure 3. Charging emulation system general scheme which comprises the exchange of information 
between the vehicle, the supply equipment, the EV user and the Charging Point Operator (CPO) 
during the charging emulation process. 

3.1 Characterisation 

The charging emulation system's main objective is to monitor and manage the main parameters 
exchanged during the charging process, according to the ISO 15118 digital communication protocol, 
using the open-source library RISE V2G. 

According to ISO 15118 standard, the communication is performed through power line 
communication over the control pilot line. Although the RISE V2G library does not implement the 
physical and data link layers of the ISO 15118 standard, it uses as a resource to communicate via the 
network interface of the machine in which it is installed. So, in this system, communication is 
performed through the wireless network interface, using the Wi-Fi standard as the means of 
communication. 

In this system there is no practical power transfer, i.e., the system only emulates de 
communication during the charging process between the EV and the EVSE. However, it is necessary 
to adopt a power transfer mode to simulate the communication through the corresponding V2G 
messages. Since this system was specified in the follow-up of a project, only the DC power transfer 
mode was chosen, because the number of parameters exchanged between the EVSE and EV in this 
mode is wider, which allows a better charge management. Certificates was chosen as the payment 
option, as it is already implemented in the RISE V2G library and offers greater security to the system. 
Considering this characterisation, when the system starts a communication session, it follows the 
V2G message flowchart represented in a black continuous line depicted in Figure 2. 

 This system also has the ability of sending data related to the charging process to an Internet of 
Things (IoT) data server. In this case, the charging data are sent to an open-source web application, 
dedicated to the storage and visualisation of energy data. 

3.2 Architecture 

The charging emulation system is divided into two main blocks represented in Figure 4, the 
EVpi on the vehicle side and the EVSEpi on the supply equipment side. Each of these blocks is 
divided into four sub-blocks, which use the same communication principle, namely the 
communication controller, the parameters file, the management code, and the HMI. Both blocks were 
implemented on a dedicated Raspberry Pi 3 – Model B. 
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Figure 4. Communication System Architecture composed by two main blocks. On left side, the 
EVSEpi block is composed by the SECC, the EVSE parameters file, the EVSEpi management code and 
the EVSE HMI. On right side, the EVpi block is composed by the EVCC, the EV parameters file, the 
EVpi management code, and the EV HMI. Together, these eight sub-blocks, allow the implementation 
of the proposed charging emulation system according to V2G messages, as well as the interaction 
with the charge point operator, user and the Internet of Things (IoT) data server. 

Communication Controllers. The communication controllers of both blocks aim to establish the 
communication session, through IP, to enable the dynamic exchange of charging parameters on the 
system. However, the RISE V2G library only allows to exchange static charge parameters. To overtake 
this feature of the RISE V2G library, firstly the most relevant parameters used were selected, during 
a communication session running on DC power transfer mode. These parameters, on library code, 
have been changed from static to a value that is taken from a specific line in the parameters file of the 
respective block. In other words, each time the communication controllers get access to a parameter, 
instead of directly accessing the static value of a variable in library source code, they obtain the value 
from a prerecorded line in the parameters file. This prerecorded line contains the value of the 
parameter that the communication controller wants to access, which is updated every five seconds 
by the management code of the respective block. These communication controllers are handled by 
the management code of their respective block and have an associated log file, which stores their 
communication records individually. 

Parameters Files. The main purpose of the parameters files is to serve as an intermediary 
between the communication controller and the management code of the respective block. Each file 
has its respective parameters register list, where each parameter occupies a predefined position. Each 
parameter saved in this register list has its respective unit and type. This labelling is important 
because the communication controllers, implemented through the RISE V2G library, only allow the 
exchange of parameters if they are in accordance with a specific unit, and more importantly, with 
their specific type of variable. Thus, these parameters must keep the same name, unit, and type, on 
the management code side as well on the communication controller side. 

In addition to the ISO 15118 communication protocol parameters, the parameters register list file 
also contains local interaction indicators (flags) so that the communication controller and the 
management code of the same block can be synchronised (more on this later). All flags are defined as 
boolean type, with initial value set to “False”. 

Management Codes. The management codes were developed in the JAVA programming 
language and their main objectives are to control the charging process, the communication controller 
and the information processed on the HMI of the respective block. Each management code is 
implemented according to its respective finite state machine, where each state is responsible for a 
certain set of tasks of the respective code. 

One of the main objectives of the EVpi management code is to control the charging process of 
the EV battery. This approach allows to define batteries with different characteristics in the EVpi 
management code. In this paper, a virtual Li-ion battery was implemented which only helps emulate 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2024                   doi:10.20944/preprints202405.0340.v1

https://doi.org/10.20944/preprints202405.0340.v1


 9 

 

the typical functioning of an EV charging process, generating the corresponding curves, and bringing 
the developed system closer to a real charging process. Nonetheless, some influencing behaviours 
such as temperature and cell balance were set aside. 

The charging process of the EV lithium-ion virtual battery, applies both the Constant Current 
(CC) and Constant Voltage (CV) charging techniques, known as the CC-CV strategy. The CC-CV 
strategy consists of dividing the charging process into the former two charging techniques [14,15]. 

The EVpi management code implements a finite state machine, consisting of eight states, as 
shown in the diagram represented in Figure 5. Next, the states will be described. 

 

Figure 5. Finite State Machine Diagram of the EVpi Management Code. It uses 8 states, beginning at 
state 1. 

EVpi State 1. Named Initial Parameters Definition, this initial state is when the vehicle user starts by 
defining, through the EV HMI, the limits of the current and voltage as supported by the vehicle. The user can 
also define with which state of charge the EV starts the charging emulation. The EVpi management code, in 
this state, is only responsible for accepting these parameters values. To obtain a more realistic charge emulation 
these values should be introduced according to the values of the virtual battery implemented in the management 
code. After having the initial parameters defined, the user promotes the EVpi management code to change its 
status through interaction with the EV HMI. If the vehicle battery is fully charged, the EVpi management code 
changes to state 6. If the vehicle battery needs charging, the EVpi management code changes to state 2. 

EVpi State 2. Named Energy Request Calculation, the EVpi management code calculates the amount of 
energy required to charge the vehicle to 100% SoC, and then gives the order to the EVCC to start the 
communication session. Through the EVCC start flag, the management code checks whether the EVCC has been 
able to establish the communication session with the SECC. In case of success, the EVpi management code 
changes to state 3. After 25 seconds, if the EVpi management code does not establish communication, it goes 
back to state 1. 

EVpi State 3. Named Charging Start, in this state the charging parameters are changed before the charge 
of EV takes place. In other words, the EVpi management code sends the EV parameters to its own 
communication controller and receives the EVSE parameters from it. The parameters sent by the EVCC are: (1) 
The EVCC identifier, (2) the maximum current and voltage limits supported by the EV and (3) the EV SoC. 
The parameters received by the EVCC are: (1) The communication session identifier, (2) the EVSE identifier, 
(3) the maximum current, voltage and power limits supported by the EVSE, and (4) the minimum current and 
voltage limits supported by the EVSE. After this exchange, current, voltage and power limits are established 
for charging, to not compromise the EV or the supply equipment. Once these limits are established, charging 
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emulation is started by sending the ‘Start’ value through the charge progress parameter. Thus, there is a change 
from state 3 to state 4 if the SoC of the vehicle is below 80%, or to state 5 if the SoC is above or equal to 80%. 
This change of state depending on the SoC is due different charging techniques are used in each of the next 
states. 

EVpi States 4 and 5. Named CC Charging Loop and CV Charging Loop, respectively, these states represent 
the charging loops according to the charging techniques. In these states, the EVpi management code sets the 
target current and voltage values to charge the EV battery according to the respective charging technique. The 
target current and voltage values are sent to the SECC, via the EVCC, so that the supply equipment can meet 
the vehicle's needs. In these states, the values of the remaining time to full charge and the EV SoC are also 
established, considering the values of the EVSE present current and voltage. While the EVpi management code 
remains in one of these two states, the parameters mentioned above are constantly changing and updating, with 
a periodicity of 5 seconds. The transition of these states can be performed in two different ways, which are 
through the EV user's action using the vehicle's HMI or by checking the EV SoC. When using user action, 
both states change to state 7. This user action results from pressing the stop button on the EV HMI. On the 
other hand, when checking the EV SoC, there are different situations for each of these two states. In state 4 when 
the vehicle SoC reaches 80%, the value of the bulk (or fast) charge complete indicator is changed to ‘true’ and 
the EVpi management code goes to state 5. This is due the charging technique is changed from constant current 
to constant voltage. In state 5 when the vehicle SoC reaches 100%, the full charge complete indicator value is 
changed to ‘true’ and the EVpi management code goes to state 6. 

EVpi States 6 and 7. Named Charging Complete and Charging Interrupt, respectively, these states 
represent the last 5 second charging loop and consequently the stop of charging. In state 6 the stop is performed 
due to the fully charged status of the EV, while in state 7 the stop is due to the interruption of charging process 
by the vehicle user. In these states, the EVpi management code is responsible for setting the EV target current 
and voltage values to zero, as well as the parameter charge progress value to 'Stop'. Through the charge progress 
parameter, the EVCC informs the SECC that a charging stop has been requested, thus ending the exchange of 
the V2G message related to the charging loop and starting the exchange of V2G messages responsible for the 
end of communication session. Once the communication session is ended, the EVpi management code sets the 
EVCC end flag with the value ‘true’ and goes to state 8. 

EVpi State 8. Named Communication Session End, the main task of the EVpi management code here is to 
update all its variables to their initial values and terminate processes that were started during the previous 
communication session, so that a new communication session can be started. After this update, the management 
code waits 10 seconds and go to state 1 (i.e., transits to its initial state), where a new charge emulation can be 
started. 

Moving on to the EVSEpi management code, its main objective is to manage the EVSE charging 
process. To do this, it is necessary to have access to the voltage and current limit values. Under real 
circumstances, these values are limited by the electrical grid, or by the battery system (in case there 
is no connection to the electrical grid). In this charge emulator system, these limits are established by 
the CPO, through the EVSE HMI. The EVSEpi management code is also responsible for calculating 
the energy transferred during each charge and applying the appropriate energy tariff, as well as 
sending the information about the charges for an IoT data server. 

The IoT data server used in this system is Emoncms [16], where it is possible to generate graphs 
of the charging parameters over time. These temporal graphs are extremely important for the CPO, 
as they can monitor all the information that was and is being processed during charges. 

The EVSEpi management code implements an finite state machine consisting of 5 states and as 
shown in the diagram in Figure 6. These states are described next. 
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Figure 6. Finite State Machine Diagram of the EVSEpi Management Code. It uses 5 states, biggening 
at state 1. 

EVSEpi State 1. Named Initial Parameters Definition, in this initial state the CPO starts by defining, 
through the supply equipment HMI, the values of the maximum and minimum current and voltage limits 
supported by the EVSE. Once the initial parameters have been defined, and after the operator gives an indication 
through the human-machine interface, the EVSEpi management code checks the values entered before changing 
his status. Whenever the values of the defined minimum limits are greater than the values of the defined 
maximum limits, EVSEpi remains in the first state and requests a new initial definition of parameters to the 
CPO. Otherwise, the EVSEpi management code goes to state 2. 

EVSEpi State 2. Named Waiting Communication, in this state the EVSEpi management code activates 
the SECC so that it waits for a connection with the EVCC. If a new communication session is detected, the 
SECC informs the EVSEpi management code through the “true” value of SECC start flag and goes to state 3. 
The EVSEpi management code can be in this second state for an indefinite period of time if a new communication 
session is not established. Then the CPO has the ability of making the management code return to its initial 
state (state 1), through a stop button present in EVSE HMI. 

EVSEpi State 3. Named Charging Start, this state uses the same principle as EVpi state 3 where the 
charging parameters are exchanged before the charging takes place. So, in this state, the EVSEpi management 
code sends the supply equipment parameters to its communication controller and receives the vehicle parameters 
from it. The parameters sent by the SECC are: (1) The communication session identifier, (2) the EVSE identifier, 
(3) the maximum current, voltage and power limits supported by the EVSE and (4) the minimum current and 
voltage limits supported by the EVSE. The parameters received by the SECC are: (1) The EVCC, (2) the 
maximum current and voltage limits supported by the EV and (3) the EV SoC. Then, the current, voltage and 
power limits for charging are established, as well as the hourly period of the tariff and its associated cost. After 
that, the EVSEpi management code sends the processed information to the IoT data server. After accomplishing 
this set of tasks, the EVSEpi management code checks the charge progress parameter value. If the value is 'start', 
the charge emulation begins and, consequently, the exchange of the V2G message related to the charging loop, 
which leads to the transition to state 4. 

EVSEpi State 4. Named Charging loop, in this state the EVSEpi management code gets the values of the 
remaining time to reach full charge, the target current and voltage for charging the EV and the EV SoC from 
the vehicle. The code then establishes the current values of the EVSE electrical current and voltage considering 
the availability of the electrical grid or renewable generation system plus batteries. In this state, the EVSEpi 
management code also sets up parameters values that are not part of the ISO 15118 communication protocol, 
such as the EVSE present power, the charge energy, and the charge energy cost. These parameters are set and 
updated considering the duration of the charging loop (5 seconds). In state 4, the EVSEpi management code is 
still responsible for sending the charge information to the IoT data server. This information is sent with a 
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periodicity of 1 minute (i.e., every 12 charging loops). The EVSEpi management code goes to the next state 
(state 5) only when charging ends, that is, when the charge progress parameter shows the value 'Stop'. 

EVSEpi State 5. In this state, named Charging End, the EVSEpi management code ensures that the EVSE 
present current, voltage and power values are zero. Thereafter, the connection between the communication 
controllers is finished and the final information about the charge is sent for the last time to the IoT data server. 
Finally, the EVSEpi management code checks the value of the SECC's end flag to know if the communication 
session has ceased. Once the communication session is finished, it resets the local variables, waits for 10 seconds, 
and returns to its initial state (state 1). 

Figure 7 illustrates how the states of each block (EVpi and EVSEpi) are combined to make the 
implemented system works. During system operation, each EVSEpi state is related to one or more 
EVpi states, however, it can only be conjugated to one of these related states at one time instant. For 
example, state 4 of EVSEpi is related to states 4, 5, 6 and 7, but for the system to operate it can only 
be combined with one of these four states. So, in the case where the EV charges according to the CC 
charging loop technique, while EVpi must be set to state 4 EVSEpi will be set on state 4. 

 
Figure 7. Diagram of the EVpi and EVSEpi Conjugation of States. In order to the system works, each 
state from the EVpi need to be associated to an EVSEpi state. 

It should be noted that for the system to operate correctly, the EVSEpi management code must 
be in state 2 before the EVpi management code goes from state 1 to state 2, as shown in the diagram 
in Figure 7. This rule applies for every state transition. 

Human-Machine Interfaces. The HMI are intended to allow defining limit values of voltage and 
current supported by each machine (EV and EVSE) before the communication session is started. This 
way, the system allows different charging scenarios to be emulated. These interfaces also provide the 
information about the EV charging that is updated every 5 seconds. Its respective source codes were 
developed in JAVA programming language, with the aid of the graphical user interface tool Swing 
of Netbeans IDE and are controlled by the respective management codes. Next, these interfaces are 
described according to their block (EVpi and EVSEpi). 

Electric Vehicle Human-Machine Interface. In its initial appearance, the EV HMI presents the initial 
parameterisation screen (Figure 8) which corresponds to the behavior of state 1 of the EVpi management code. 

 

 

Figure 8. EV Initial Parameterisation Screen. In this screen, the values of the EV SoC (1), the maximum 
current limit supported by the EV (2) and the maximum voltage limit supported by the EV (3) become 
defined. These parameters are defined individually through their respective slider (4), (5) and (6). 
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Each slider is limited to a range of values that can be easily changed in the source code. Once the 
initial parameters have been defined, the button in (7) is responsible for sending the information to 
the EVpi management code, prompting the start of the communication session that will lead to the 
EV emulation charging. 

When button (7) is pressed (Figure 8), the EV HMI goes to a new screen, the EV charging screen (Figure 
9). This screen is used to follow all the behaviours of the EVpi management code states except the first one. 
From there it is possible to observe information related to the charging status, as well as information related to 
the communication session status. 

 

Figure 9. EV Charging Screen. When charging has not started yet (representation A), the charging 
screen has a black background and only some information is available such as the EV SoC (1), the 
progress SoC bar (2), the information bar (3) and the EVCC identifier (4). When charging starts 
(representation B), the charging screen makes available the remaining information, which is the 
remaining time to full charge (5) presented in hour-minute format (hh:mm), the EV target current (7), 
the EV target voltage (8), EVSE identifier (9) and the communication session identifier (10). While 
charging, the vehicle user can yet request the charge to stop through this interface, using the stop 
button (6). 

Charging Point Human-Machine Interface. The supply equipment HMI uses the same principle as the 
EV’s but dedicated to the charging station. Thus, in its initial appearance, this interface presents the EVSE 
initial parameterisation screen (Figure 10). 

 

Figure 10. EVSE Initial Parameterisation Screen. This screen establishes the values of the maximum 
current limit supported by the EVSE (1), the minimum current limit supported by the EVSE (2), the 
maximum voltage limit supported by the EVSE (3), and the minimum voltage limit supported by 
EVSE (4). These parameters are individually established through their respective slider (5), (6), (7) and 
(8). Once the initial parameters have been defined, the button (9) is responsible for sending the 
information to the EVSEpi management code. 

After this information is sent, the EVSE's HMI goes to its charging screen. The charging screen is used 
to monitor all behaviours of the EVSEpi management code states, except for the first one. Alternatively, it is 
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possible to observe information about the charging, as well as the communication session (Figure 11). But 
unlike the EV HMI charging screen, the EVSE HMI charging screen in this first phase is made 
available before the communication session starts. 
 

 

Figure 11. EVSE Charging Screen. In the first stage (representation A), this screen makes available the 
information bar (1), the EVSE identifier (2) and the stop button (3). Button (3) can be used by the CPO, 
only during this stage, so that the EVSE HMI goes back to the initial parameterisation screen, 
cancelling the wait for the establishment of a new communication session. Once charging starts 
(representation B), the remaining information on the charging screen is make available, such as the 
EV SoC (4), the time remaining to full charge (5) displayed in hour-minute format (hh:mm), the 
progress SoC bar (6), the charge energy (7), the charge energy cost (8), the EVSE present current (9), 
the EVSE present voltage (10), the EVCC identifier (11) and the communication session identifier (12). 

3.3 Task Scheduling Algorithm 

The charging emulation system also implements a task scheduling algorithm, so that the entire 
information can flow in a synchronised way and without failures or collisions. This algorithm not 
only allows the system to become lighter at the processing level, but also avoids access collisions to 
the parameters file of each block. The tasks performed in the system are composed by the tasks 
performed by EVpi and EVSEpi. The tasks performed by EVpi are composed of the tasks performed 
by the EVpi management code and the EVCC. The tasks performed by EVSEpi are composed of the 
tasks performed by the EVSEpi management code and the SECC. Figure 12 presents the task 
scheduling at both extremes. 
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Figure 12. Communication System Task Scheduling. In this figure, the tasks performed by the EVpi 
Management Code are represented in green and the tasks performed by the EVSEpi are represented 
in red. The tasks performed by the communication controllers (EVCC and SECC), although 
implemented on separate machines, are represented in same colour (blue) because they perform tasks 
together during the communication session. Seeing this figure in detail, it is possible to observe that 
no task is overlapped in the same block (EVpi or EVSEpi). 

This algorithm is based on 5 seconds loops, where each second corresponds to a set of tasks that 
do not compromise the information flow, as can be seen in Figure 13. 

 

Figure 13. Task Scheduling Algorithm Loops. The 60 seconds of a minute are divided into 12 loops of 
5 seconds. Each 5 seconds loop corresponds to a charging loop of the respective management code 
and each second interval in a 5 second loop corresponds to a set of tasks associated with that charging 
loop. 

Task sets divided by 1 second intervals, usually, have a running time of less than 1 second, yet 
a full second interval is reserved for each set, thus lightening the system. Its scaling at intervals along 
the 5 seconds loop is performed whenever the clock seconds are a multiple of 5. For example, if a 
given task runs in the time interval [0 to 1], the algorithm performs this same task when the seconds 
of the minute are multiples of 5, i.e., this task can be started in seconds 0, 5, 10, 15, 20, 25, etc… as can 
be followed in Figure 14. 

 

Figure 14. Task Scheduling Algorithm Intervals Splitting. When a given task is executed, for example, 
in the interval [3 to 4], the algorithm performs this same task when the seconds of the minute are 
multiples of 5 and remainder 3, i.e., this task can be started in seconds 3, 8, 13, 18, 23, 28, etc…. 

Through this timestamp, the EVCC adopts the same time as the SECC, making it possible to 
implement synchronisation during the communication session. 

The use of the 5 seconds loops for the algorithm was performed based on the tasks that the blocks 
can perform without compromising the system operability. Since each block is implemented in a 
Raspberry Pi 3 – Model B microcomputer, and the controllers communicate through wireless 
networks, 3 seconds were reserved for communication purposes only. The remaining 2 seconds, out 
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of the 5 seconds of the loop, were reserved for tasks in the management code of each block, such as 
analysing and updating charging parameters and updating its respective HMI. 

On the other hand, one of the scenarios in the development of this communication system was 
the integration with a charging system that allows generation of renewable energy. Since the energy 
arising from the renewable generation is too intermittent, it is necessary to transmit viable 
information, i.e., the information about the energy transmitted between the communication 
controllers of the system must follow the energy that is generated instantly by the RES. Only in this 
way are avoided exceptional consumptions from the grid, with only the energy generated by the 
renewable source being consumed by the charging. 

4 Resulting System and Demand Response Evaluation 

This section describes the developed ISO 15118 EVSE and EV emulator system and evaluates its 
capability to support demand response when conjugated with a photovoltaic renewable energy 
source. 

4.1 ISO 15118 EVSE and EV Emulation Platform 

In Figure 15, it is possible to observe the final product of the charging emulation system, 
resulting from the architecture presented above. 

 

Figure 15. Communication System. On the left side, is shown the EVSE HMI, and a little further down 
the microcomputer (EVSEpi) responsible for executing the EVSEpi management code and the SECC 
source code. On the right side, is shown the EV HMI. A little further down the microcontroller (EVpi) 
responsible for executing the EVpi management code and the EVCC source code are shown. In the 
centre of the figure, the web page of the IoT data server (Emoncms) is presented to show the 
information about all the charging processes. 

 The information presented on graphs in the data server is based on the initial parameters of the 
EV and EVSE, and the time period in which the charge emulation is performed. For each charge 
emulation, a temporal graph is created in the IoT data server, with information from the EV and 
EVSE. This information is sent to the server every 1 minute by the EVSE, which makes it possible to 
observe the dynamism of the ISO 15118 communication protocol parameters throughout the charging 
emulation. Next, two of these graphs are presented (Figures 18 and 19), as an example of running a 
simulation where the initial conditions of emulation are given in Table 2. 

Table 2. Charging Emulation Initial Conditions. 
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 EVSE Maximum Voltage 
Limit 

600 V 
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400 V 

 EVSE Minimum Voltage 
Limit 

120 V 
Tariff Period Peak 

 
The graph in Figure 16 illustrates the behaviour of current and voltage during the charging 

emulation. 

 

 

Figure 16. Charging Graph (current and voltage behaviour). The red line represents the SoC in 
percentage, the green line represents the current of charging in amperes, and the blue line represents 
the voltage of charging in volts. The top and bottom straight green lines represent the maximum and 
minimum current that the charging process can reach. The top and bottom straight blue lines 
represent the maximum and minimum voltage that the charging process can reach. 

The graph in Figure 17 illustrates the behaviour of energy consumed and its associated cost 
during the charging emulation for the same scenario. 
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Figure 17. Charging Graph (Energy and Cost Behaviour). The red line represents the SoC in 
percentage, the green line represents the charge cost in Euros, and the blue line represents the energy 
consumed during the charging in kilowatts hour. 

With the information in this graph, it is possible to verify that the EV starts the charging 
emulation with a SoC of 10%, around 10:34h and ends it, with a SoC of 100%, around 12:49h. During 
these 2 hours and 15 minutes, the EV charges 90% of its battery, where approximately 72.7 kWh were 
transferred. This emulation was performed in a time period in which electricity has its highest cost 
(peak hours), so the 72.7 kWh transferred from the electricity grid to the EV battery results in a 
charging cost of €17.30 according to the tariff applied at the EVSE. 

4.2 Evaluation of the Responsiveness of the System for Demand Response Purposes   

In this section we evaluate the responsiveness of the performed system in a Demand Response 
scenario, according with the periodicity between SECC and EVCC transmissions. In the development 
of the system a periodicity of 5 seconds was selected, however it is important to assess of this value 
is adequate in terms of: (i) difference between charging and generation powers and (ii) number of 
packets per second. 

In order to perform this assessment, we considered an energy generation dataset, of a high-
definition sampling from a photovoltaic unit, with the power per square meter collected by a unit of 
photovoltaic panels during nearly 11 hours of daily light, in one day [17]. The dataset selected 
considers a cloudy day with high intermittency levels. 

In order to evaluate the mismatch between generation levels and charging levels we simulated 
the responsiveness of the system with different communication periods between SECC and EVCC. 
We considered that the photovoltaic generation levels are transmitted to the SECC every 100 
milliseconds. We then varied the transmission periodicity between controllers, from 1 to 20 seconds, 
and computed the percentual error between generation and charging powers, and the number of 
packets per second that would be required in each case. 

 Figure 18 shows the associated results.  

 

Figure 18. Communication System Error. The blue line represents the percentage of error associated 
with the system transmission time. The black line represents the rate of packets per second associated 
with the system transmission time. 

In this graph it is possible to conclude that the 5 seconds periodicity communication between 
the controllers used in the task management algorithm, results in a low associated error between 
generation and charging levels (0.3798%). It is also possible to conclude that the rate of packets per 
second is relatively low (0.2 packets per second). 
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Considering a periodicity of communications between SECC and EVCC of 5 seconds Figure 19 
plots the difference between generation and charging levels. It can be seen that the values transmitted 
by the photovoltaic panel unit and the values transmitted between the communication controllers are 
very close throughout the daily sample. In light of these results, the utilization of the 5 seconds 
between transmissions in the setup for the task scheduling algorithm is justified. 

 

 

Figure 19. Photovoltaic Unit and System Communication deviation Samplings. The black line 
represents the photovoltaic unit transmission values, and the red lines represents the communication 
system transmission values. The excerpt representing around 15 minutes, shows that the difference 
between charging and generation levels is low. 

5  Discussion, Conclusion and Future Developments 

The system developed allows the emulation of a charging system using the ISO 15118 
communication protocol, through two microcomputers, allowing observing the dynamism of the 
parameters exchanged throughout the communication session. To perform this dynamism in 
parameters, management codes were developed for the two main blocks (EV and EVSE). In the EV 
block (EVpi) there was a need to implement a virtual battery that would provide dynamism to the 
change of some charging parameters. To do this, charging techniques for Li-ion batteries (CC and 
CV) were implemented, approximating the behaviour of the parameters exchanged in this system 
with the parameters exchanged in a real charge. In the EVSE block (EVSEpi) charging tariffs were 
implemented, as well as a connection with an IoT data server, which allows the information of all 
emulations to be saved for future consultation. HMI were also developed for the EV and the EVSE, 
which allow interaction with the user and the CPO, as well as showing the dynamism of the charging 
parameters created through the management codes in real time. 

It is possible to conclude that the system adjusts itself, through communication via V2G 
messages, when there are limitations on the electrical grid part. In this context, these adjustments are 
crucial for the implementation of charging stations that integrate generation of renewable energy. In 
this scenario, the EVSE can communicate to the EV the power limit at which it could charge, and this 
limit varies depending on the energy generated through its photovoltaic panels or the energy stored 
in its batteries. 

Through this charge scheduling, and combined with load management algorithms, the charging 
can be further optimised. Furthermore, future developments aim to integrate the two main modules 
(EVpi and EVSEpi) in a physical system (that integrates renewable energy sources and local storage), 
the digital twin of which was introduced in [18]. Additionally, there are plans for implementation 
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within the context of renewable energy communities, specifically the case of Culatra Island (in [19], 
[20]), for electric boats. 
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List of Acronyms 

AC Alternate Current 

CC Constant Current 

CPO Charge Point Operator 

CV Constant Voltage 
DC Direct Current 

EV Electric Vehicle 

EVCC Electric Vehicle Communication Controller 

EVSE Electric Vehicle Supply Equipment 

HMI Human-Machine Interface 

IoT Internet of Things 
SECC Supply Equipment Communication Controller 

SoC State of Charge 

V2G Vehicle-to-Grid 
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