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Abstract: Brain tumors are frequently classified with high accuracy using convolutional neural networks 
(CNNs) and better comprehend the spatial connections among pixels in complex pictures. Due to their tiny 
receptive fields, the majority of deep convolutional neural network (DCNN)-based techniques overfit and are 
unable to extract global context information from more significant regions. While dilated convolution retains 
data resolution at the output layer and increases the receptive field without adding computation, stacking 
several dilated convolutions has the drawback of producing a grid effect. To handle gridding artifacts and 
extract both coarse and fine features from the images, this research suggests using a dilated parallel deep 
convolutional neural network (PDCNN) architecture that preserves a wide receptive field. To reduce 
complexity, initially, input images are resized and then grayscale transformed. Data augmentation has since 
been used to expand the number of datasets. Dilated PDCNN makes use of the lower computational overhead 
and contributes to the reduction of gridding artifacts. By contrasting various dilation rates, the global path uses 
a low dilation rate (2,1,1), while the local path uses a high dilation rate (4,2,1) for decremental even numbers to 
tackle gridding artifacts and extract both coarse and fine features from the two parallel paths. Using three 
different types of MRI datasets, the suggested dilated PDCNN with the average ensemble method performs 
better. The accuracy provided by the Multiclass Kaggle dataset-III, Figshare dataset-II, and Binary tumor 
identification dataset-I is 98.35%, 98.13%, and 98.67%, respectively. In comparison to state-of-the-art 
techniques, the suggested structure improves results by extracting both fine and coarse features, making it 
efficient. 

Keywords: Brain tumor classification; data augmentation; receptive field; grid effect; multiscale 
dilated parallel convolution; machine learning classifiers 

 

1. Introduction  

The growth that may adversely impact a person's life is a brain tumor, which can appear in the 
tissues enclosing the brain or skull. Two characteristics can identify a benign or malignant growth. 
While secondary tumors, also referred to as brain metastasis tumors, are typically formed from 
tumors outside the brain, primary cancers start inside the brain. Meningioma, pituitary adenomas, 
and gliomas are the three most common primary brain tumors. The brain, and spinal cord membrane 
layers, are the origin of meningioma, a tumor that grows slowly. Cancerous cells that arise in the 
pituitary gland are referred to as pituitary adenomas [1]. The brain tissue is compressed by the 
irregular growth of these tumors. Malignant tumors, in comparison with benign tumors, grow 
unevenly and damage the tissues around them. Surgical techniques are frequently employed in the 
treatment of brain tumors [2]. Because MRI is non-interfering, it is preferred over computed 
tomography (CT), positron emission tomography (PMT), and x-rays [3]. It is estimated that 79,340 
Americans aged 40 and older will be diagnosed with a primary brain tumor by 2023. It is estimated 
that one million Americans suffer from primary brain tumors; of these, 72% are benign tumors and 
28% are malignant. The adults with primary brain tumors typically have meningioma (46.1%), 
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glioblastoma (16.4%), and pituitary tumors (14.5%) [4,5]. Biopsies are taken for analysis after the 
tumor is found using standard medical techniques like MRI. The first test used in medicine to find 
cancer is the MRI [6,7]. Two MRI pictures of two distinct brains are shown in Figure 1. 

As the number of patients has grown, individually analyzing these images has become laborious, 
disorganized, and frequently incorrect. A computer-aided diagnostic technique that concludes the 
expense of brain MRI identification needs to be developed to ease this limitation. Many attempts have 
been made to create an extremely effective and trustworthy method for classifying brain tumors 
automatically. Conventional approaches to machine learning rely on handmade qualities, which 
increases the cost and limits the durability of the solution. But occasionally, models of supervised 
learning can perform better than unsupervised learning strategies, leading to an overfitted 
framework that is inappropriate for another large database. These challenges underscore the 
significance of creating a machine learning-based, fully automated system for classifying brain 
tumors. 

    

Figure 1. MRI scans are performed on two different brains. On the left is a tumor, and on the right is 
a healthy [8]. 

CNN's architecture is based on a neural network known as the deep learning model, which 
excels at image recognition and classification. [9,10]. The receptive field in CNN is too tiny to produce 
excellent precision [11]. A large receptive field of the convolution kernel would help enhance the 
efficiency of the classification techniques because the fixed size of the sliding window in CNN misses 
out on utilizing techniques like convolution, pooling, and flattening. The recommended model's 
parameters possess the ability to acquire characteristics extracted from the images. While 
hyperparameters are focused on, recent iterations of CNN models have yet to focus much on them. 
Another important consideration is CNN's local feature collection. Furthermore, because of the 
limited quantity of the kernel, sharply raising the dilation rate could exacerbate feature collection 
failures and hinder small object detection [12]. High dilation rates may impact tiny object detection. 
As a result, the dilation rate has been gradually decreased in this suggested model. By doing this, the 
dilated feature map's sparsity has decreased and more data can be extracted from the investigated 
region. 

Using publicly available Kaggle and Figshare datasets, this work aims to develop a fully 
autonomous dilated PDCNN with an average ensemble model for brain tumor classification [8,13,14]. 
This article suggests an architecture for the detection and classification of brain tumors that consists 
of two synchronously dilated DCNNs. Because convolutions are accurate and time-efficient 
processes, the dilated PDCNN with an average ensemble model performs more quickly than the 
conditional random field (CRF)-based methods. The recommended dilated PDCNN with an average 
ensemble framework incorporates batch normalization to normalize the results of previous layers. 

By simultaneously integrating two DCNNs with two distinct window sizes, parallel pathways 
enable the model to learn both global and local features. While maintaining a large receptive field, 
this research also recommends managing gridding artifacts and extracting both coarse and fine 
characteristics from the images. Key accomplishments of the work are shown in these aspects: 

1) A dilated PDCNN with even-numbered dilation rate decrements at the local path and 
combining two parallel CNNs with data preparation (image pre-processing, data augmentation) and 
hyper-parameter tuning is suggested for brain tumor classification.  

2) Strengthening the performance of identification and classification by incorporating both high-
level and low-level data as well as particular brain features.   
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3) There is a discussion of the suggested experimental findings regarding why a tiny receptive 
field of PDCNN causes low precision in identifying brain tumors with the dilation rate.  

4) The architecture of the suggested dilated convolution with an expanded receptive field of the 
kernel is thoroughly examined in order to determine how it increases computation efficiency while 
preserving high accuracy.  

5) Employing a feature fusion technology significantly enhances the dynamical properties 
offered by the two simultaneous convolutional layers. 

The remaining portion of this work will be organized as follows: A summary of pertinent studies 
and a thorough assessment of these investigations are presented in Section 2. The recommended 
dilated PDCNN with an average ensemble approach is described in detail in section 3. Sections 4 and 
5 describe the proposed approach are thoroughly compared to existing approaches, and the outcomes 
of the experiment. Section 6, the last section of the study, brings the article to an end. 

2. Related Work: A Brief Review 

There are multiple studies in the literature that categorize brain tumors differently. A few of the 
works that have been analyzed are listed here. 

The method proposed by Anil et al. [15] consists of a classification network that divides the input 
MRI images into two groups: one that contains tumors and the other that does not. In this study, the 
classifier for brain cancer identification is retrained by applying the transfer learning approach. With 
a success rate of 95.78%, the results show that VGG-19 is the most efficient. To categorize brain tumors, 
Muhammad Sajjad et al. established a new CNN model [16]. First, segmentation is used to identify 
the location of the tumor from MRI images. The dataset is enlarged in the next phase. The 
categorization process ends up using the suggested CNN. Data has been classified with 94.58% 
accuracy. Habib [17] recommended a CNN model that uses the Kaggle binary category of brain tumor 
dataset-I, which is used in this study for recognizing brain cancers. With an updated neural network 
architecture, this method can attain an accuracy of 88.7%. [5] describes the development of a model 
centered on a simulated CNN for MRI analysis using matrix calculations and mathematical formulas. 
155 brain tumors and 98 brains with no tumors are used to train this neural network employing MRI. 
The model demonstrates a tumor's location with a 96.7% correctness rate in the validation data. 

A multi-pathway CNN structure was created by Díaz et al. [18] to automatically segment brain 
tumors, including pituitary, meningioma, and glioma. They achieved 97.3% accuracy when testing 
their proposed model on a publicly available T1-weighted contrast-enhanced MRI dataset. Their 
atmosphere for learning was quite expensive though. Mahmoud Khaled Abd-Ellah et al. 
recommended a PDCNN framework in [19] to identify and categorize gliomas from brain MRI 
images. The proposed PDCNNs are tested on the BraTS-2017 dataset. In this research, 1200 images 
are employed for the PDCNN's training phase, 150 images are employed for its validation phase, and 
450 images are applied for its testing phase. The framework has obtained impressive outcomes in 
terms of sensitivity, specificity, and accuracy (97.44%, 97.00%, and 98.00%, consecutively). 

To classify brain tumors, Kwabena Adu et al. proposed a less trainable CapsNet structure in [20]. 
This architecture uses segmented tumor regions as inputs, and it outperformed related works with a 
greater accuracy of 95.54%. To improve and maintain the high resolution of the images being used 
for better classification, the network also employed dilation. The architecture's dilation has shortened 
training times and decreased the number of elements that need to be learned. A. E. Minarno et al. use 
a CNN structure to identify three different kinds of brain tumors on MRI images [21]. 3264 datasets 
containing detailed images of meningioma tumors (937 photos), pituitary cancers (901 photos), 
glioma tumors (926 photos), and other tumor-free datasets (500 photos) are analyzed in this study. 
The CNN method is presented along with hyperparameter tuning to achieve the best possible results 
in brain tumor categorization. This paper tests the framework in three distinct cases. Classifying brain 
tumors with an accuracy of 96.00% is the result of the third model evaluation scenario. 

3. Proposed Brain Tumor Detection and Classification Methodology 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2024                   doi:10.20944/preprints202405.0321.v1

https://doi.org/10.20944/preprints202405.0321.v1


 4 

 

Prior to beginning treatment, the most significant challenge is identifying and categorizing brain 
MRI tumors. There aren't many studies on tumor diagnosis as a time-saving method, despite the 
majority of brain tumor identification research focusing on tumor slicing and positioning methods. 
Most DCNN-based methods are unable to acquire global context details of larger regions because of 
the small receptive fields. Stacking multiple dilated convolutions has the disadvantage of creating a 
grid effect, even though dilated convolution maintains data resolution at the output layer and 
expands the receptive field without incorporating calculation. If the dilation factor (DF) is low, the 
model may have a smaller receptive field but misses the coarse characteristics. In contrast, when the 
DF is excessive, the model is unable to learn from the finer details. This study proposes the use of a 
dilated PDCNN architecture that maintains a large receptive field to cope with gridding distortions 
and capture both coarse and fine attributes from images. Initial input image resizing is followed by 
grayscale transformation to minimize complexity. Data augmentation has since been used to expand 
the number of datasets. While maintaining an extensive receptive field, dilated PDCNN utilizes the 
reduced computational cost and helps to reduce gridding artifacts. The schematic representation of 
the suggested dilated PDCNN design is presented in Figure 2. 

The sequence that follows is the order in which the recommended structure's events occur: brain 
MRI images are fed into the input layer of the dilated PDCNNs after being processed. The initial 
images are converted from various resolution dimensions to 32 × 32 pixels for training reasons. The 
grayscale transformation of these input images contributes to a reduction in complexity. Following 
that, new images are created from prior ones using data augmentation. The data set has been split 
into training and testing subsets in order to train the suggested network. The PDCNN structure then 
makes use of the chosen dilated rates to effectively classify the input images. Following the 
classification of the images using four classifiers: support vector machine (SVM), K-Nearest Neighbor 
(KNN), Naïve Bayes (NB), and Decision Tree the brain tumor identification process is completed 
using an average ensemble approach. 

 

 

 

 

 

Figure 2. Proposed methodology’s workflow. 

The step-by-step flow of the suggested framework is mentioned in Algorithm 1. 

Algorithm 1 Algorithm Based on Brain Tumor Detection and Classification Approach  

Input    Representative three different public datasets of brain MRI pictures:  ࢐ࡵ , ࢐ =

૚, ૛, … , ࢃ of size ࡷ × ࡯ and the class labels ࡴ = ૛, ૜, ૝. 

Output Brain Tumor Detection & Classification 

 
1:    Develop a Dilated PDCNN with selected parameters              

2:    Accuracy           0 

3:    for epoch = 1, 2, ….. , ࢙ࢎࢉ࢕࢖ࢋ ۼ  do 

Anisotropic 

Diffusion 

Pre-processing 

Size 

Adjustment 

Gray 

Data 

Augmentation 

Proposed Dilated PDCNN 

Feature Extraction 

Classifier 

Support Vector Machine 

K-Nearest 

Naive Bayes 

Decision Tree 

Classification 

Output 

Input 

MRI 

Average 
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4:       for image = 1, 2, ………,  ۹ ࢋࢠ࢏࢙_ࢎࢉ࢚ࢇ࢈  do 

૞:              ࢊࢋࢠ࢏࢙ࢋ࢘ ࢋࢍࢇ࢓ࡵ                   Resize (Image, Set ࢃ = ૜૛, ࡴ = ૜૛) 

૟:              ࢟ࢇ࢘ࢍ ࢋࢍࢇ࢓ࡵ                      Grayscale, Using ࢟ࢇ࢘ࢍࢋࢍࢇ࢓ࡵ =   (ࢊࢋࢠ࢏࢙ࢋ࢘ࢋࢍࢇ࢓ࡵ)࢟ࢇ࢘ࢍ૛࢈ࢍ࢘

 (࢟ࢇ࢘ࢍ ࢋࢍࢇ࢓ࡵ  ) Augmentation                       ࢇ࢚ࢇࢊ ࢋࢍࢇ࢓ࡵ            :7

8:            Input layer takes  ࢇ࢚ࢇࢊ ࢋࢍࢇ࢓ࡵ and   sends it to the convolution layers to extract features 

9:            Suggested Parallel Dilated Deep Convolutional Layers 

10:          Train the dilated PDCNN model with ML classifiers including SVM, KNN, NB, and Decision 

Tree. 

11:          Calculate the test accuracy for each ML classifier with the average ensemble  

12:          Calculate error rate, e(t) 

13.      end for 

14.   end for 

3.1. Dataset  

This study makes use of three distinct public datasets containing images from brain MRIs. The 
details regarding the dataset are provided as follows. 

Dataset-Ⅰ: Through the Kaggle platform, the initial accessible dataset of binary-class MRI scans 
of the brain has been obtained for simplicity and this dataset is widely used. This data is known as 
dataset-I in this study [8]. This set of 253 brain MRI images includes 98 samples with tumors and 155 
samples without tumors.  

Dataset-Ⅱ: The Figshare dataset containing 233 patients' brain MRI images is employed in this 
research [13]. These brain MRI images are obtained at Nanfang Hospital and General Hospital, two 
Chinese medical centers. This dataset, designated dataset-II, comprises 3064 brain MRI scans, 
including 1426 glioma tumors, 708 meningioma tumors, and 930 pituitary tumors.  

Dataset-Ⅲ: The additional dataset utilized in this study can also be obtained via the Kaggle 
website [14]; it contains brain MRI images of glioma tumor, meningioma tumor, no tumor, and 
pituitary tumor, numbered 826, 822, 395, and 827, in that order. This collection of data is identified as 
dataset-Ⅲ in the current research. The four different kinds of brain MRI images that are present in 
dataset-Ⅲ are shown in Figure 3. 

                   

   (a) No Tumor                 (b) Glioma Tumor        (c) Meningioma Tumor     

 

       (d) Pituitary Tumor 
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Figure 3. Examples of brain MR images [14]. 

3.2. Data Preprocessing  

A method for enhancing the efficiency of a machine learning model is called data preprocessing, 
which involves purifying and preparing data for usage by the model. The skull photos in the MRI 
datasets are not all identical in width, and height; instead, each image is scaled to 32 x 32 pixels for 
training purposes. Grayscale conversion of these data contributes to a reduction in the level of 
complexity. Digital images can be noise-free without having their edges blurred through the 
utilization of the anisotropic diffusion filter. 

Table 1. Filtered Dataset after Utilization of Anisotropic Diffusion Filter. 

 No Tumor Glioma Tumor Meningioma 

Tumor 

Pituitary Tumor 

 

 

 

MRI Brain Pictures 

[12]     
Anisotropic Diffusion 

Filtered Pictures  

  
  

3.3. Data Augmentation 

Since deep learning needs a lot of data to extract information, data enhancement is being 
employed at this time to increase the quantity of available data by altering the initial image. 
Supplementary data can be used to increase the effectiveness of categorized outcomes. Illustrations 
can undergo the following procedures: shifting, scaling, translation, and filtering methods. This 
article uses the process of anisotropic diffusion filtering as augmentation. 

Table 2. Dataset Statistics. 

 Category Original 

Data 

 Augmented 

Data 

 

  Number Percentage Number Percentage 

Dataset Ⅰ Tumor Yes 98 61% 196 61% 

  No 155 39% 310 39% 

 Total 253 100% 506 100% 

Dataset Ⅱ Glioma 1426 47% 2852 47% 

 Meningioma 708 23% 1416 23% 

 Pituitary 930 30% 1860 30% 

 Total 3064 100% 6128 100% 
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Dataset 
Ⅲ 

Glioma 826 28.78% 1652 28.78% 

 Meningioma 822 28.64% 1644 28.64% 

 Pituitary 395 13.76% 790 13.76% 

 No Tumor 827 28.81% 1654 28.81% 

 Total 2870 100% 5740 100% 

3.4. Developed Dilated PDCNN Design 

This paper presents the design of a multiscale dilated two simultaneous deep CNN technique to 
extract multiscale detail characteristics from MRI images. To increase the receptive field despite 
adding more parameters to the network, dilated convolution is used. Additionally, batch 
normalization is used to guarantee that the model's precision won't drop as the network depth 
increases. 

The multiscale extraction of characteristics, integrating path, and classification stage are the three 
main elements of the suggested network, as illustrated in Figure 4. Since the suggested model uses 
dilated CNNs, the DF is an additional hyper-parameter that must be considered. 

Both local and global characteristics are acquired in the dilated PDCNN framework through the 
corresponding local and global routes. However, most DCNN-based methods cannot effectively 
collect both local and global data because of their tiny receptive fields. Stacking multiple dilated 
convolutions has the disadvantage of creating a grid effect, even though dilated convolution 
maintains data resolution at the output layer and expands the receptive field without incorporating 
computation. In the event that, with poor DF, the model may contain a smaller receptive field 
nevertheless misses the coarse features. In contrast, with the excessive DF, the model is unable to pick 
up from the finer details. By contrasting various DFs, these suitable DFs are chosen for both local and 
global feature paths. Each of the convolutional layers is followed by the max-pooling layer for every 
single path that down samples the outcome of the convolutional layer and uses the ReLU activation 
function. In the end, an average ensemble method is employed to carry out the brain tumor 
categorization process after four ML classifiers—have been training the images. 

 
 
 

 

 

 

 

 

 

 

M
er

ge
 

ML Classifiers 

(SVM, KNN, NB, 

Decision Tree) 

fc_1 

 
fc_2 

 

Extract Global & Finer Features 

Extract Local & Coarse Features 
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Figure 4. Proposed architecture of dilated PDCNN model. 

The step-by-step flow of the suggested dilated PDCNN structure is mentioned in Algorithm 2. 

Algorithm 2 Algorithm Based on Dilated PDCNN Model 

 
    Parallel Dilated Deep Convolutional Layers 

i. For the local and coarse path set the window size = 5 and for the global and finer path set the 

window size = 12 

ii. Divide ࢐ࡵ, ࢐ = ૚, ૛, … , ࢏,࢐࢏ࢇ into blocks ࡷ = ૚, ૛, ૜, … , ,࡮ ࢐ = ૚, ૛, ૜, … ,  of size ,ࡷ

࢝ × ࢎ × ,ࢊ  Number of blocks created from = ࡮ and ࢐ࡵ Number of feature maps in = ࢊ ࢋ࢘ࢋࢎ࢝

each ࢐ࡵ 

iii. Flatten ࢐࢏ࢇ  into vector ࢞࢏ ∈ ℝ࢔, ࢏ = ૚, ૛, … ,ࡹ ࡹ ࢋ࢘ࢋࢎ࢝ = ࡷ × ,࡮ ࡰ ࢊ࢔ࢇ = ࢝ × ࢎ ×  ࢊ

iv. Large dilation _rate: Coarse Features 

v. Small dilation _rate: Finer Features  

vi. Compare different configurations of dilation rates to find best-diagnosed results 

vii. Compute ReLU activation function, ࢌ(࢞) = ൜࢞      ࢘࢕ࢌ ࢞ ≥ ૙
૙      ࢘࢕ࢌ ࢞ < ૙ൠ 

viii. Compute cross-channel normalization, ࢞ʹ =  ࢞
࢙࢙ × ࢻ ାࡷ)

,ࢻ where ࢼ(ࢋࢠ࢏࢙ ࢒ࢋ࢔࢔ࢇࢎࢉ ࢝࢕ࢊ࢔࢏࢝ ,ࢼ  are the ࡷ

hyperparameters in the normalization and ss = sum of squares of the elements in the 

normalization window 

ix. Apply max-out plan, ࢙ࢆ to different feature maps ࢙ࡻ, ,ା૚࢙ࡻ … … ,  ା࢑ି૚which takes maximum࢙ࡻ

over the ࢙ࡻ and maps it individually as represented in ࢐,࢏,࢙ࢆ = ,࢐,࢏,࢙ࡻ)ܠ܉ܕ ,࢐,࢏,ା૚࢙ࡻ … … ,  (࢐,࢏,ା࢑ି૚࢙ࡻ

x. Apply ࢋࢠ࢏࢓࢏࢚࢖ࡻ_࢓ࢇࢊ࡭  ࢘ to minimize error rate 

xi. Repeat steps ⅱ, ⅶ, ⅸ twice for both parallel paths where filter number 96. 

xii. Update weights using back_࢔࢕࢏࢚ࢇࢍࢇ࢖࢕࢘࢖ 

xiii.  ܜܛ܍۰ܛܜܐ܏ܑ܍܅           Save Weights 

xiv. Employ the optimized weights to extract the multiscale features in the training set 

3.4.1. Multiscale Feature Selection Path 

CNNs have been used extensively in the field of medicine and have demonstrated good results 
in the segmentation and classification of medical images [22, 23]. CNN architectures are built using 
a variety of building blocks, such as Fully-Connected (FC) layers, Pooling layers, and Convolution 
layers. Convolution layers, which combine linear and nonlinear operations—that is, activation 
functions and convolution operations—are used in feature extraction [24,25]. Kernels and their 
hyperparameters, such as the size, quantity, stride, padding, and activation function of each kernel, 
are the parameters of convolution layers [26]. Six convolution layers are used in the two simultaneous 
paths and the convolution operation occurs using equation (1). 

Conv_2 

 

relu Cross_norm 

layer 

Max_pool 

 

Batch_norm 

 

Fc 

 

Dropout 
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௣ܱ,௤,௥
௟ = ݂( ௥ܹ

௟ ܫ௣,௤
௟ିଵ  +  ܾ௥

௟ )                                        (1) 
Where for ݎ௧௛ kernel in layer ݈, ௣ܱ,௤,௥

௟  expresses the resultant feature map of position (݌,  ,(ݍ
௥ܹ
௟ represents the weight vector’s values, ܫ௣,௤

௟ିଵ indicates the input vector of position (݌,  in the (ݍ
݈ − 1,and ܾ௥

௟  is the symbol of bias .  In addition, the activation function is ݂( . )  [27]. By down-
sampling, pooling layers lower the dimensionality of the feature maps. The stride, padding, and filter 
size are among the hyperparameters that comprise pooling layers, although they do not contain any 
other parameters. Two common varieties of pooling layers are max pooling and global average 
pooling. Maximum pooling layer is used in this structure. The output size of the pooling operation 
in CNN is calculated using equation (2). 

 

ܱ = ቂ௡ି௙ାଶ௣
௦

ቃ + 1                                (2) 

 

where ݊ stands for the dimension of input, ݂ is the kernel size, the padding size is 
shown by ݌, and ݏ is symbol of stride size [27]. 

The pooling layers' feature maps are smoothed out and sent to several one-dimensional (1D) 
vectors known as FC layers. The most popular activation parameter for FC layers is the Rectified 
Linear Unit (ReLU), which is illustrated in (3). 

(࢞)ࢌ = ൜ݔ ݎ݋݂      ݔ ≥ 0
ݔ ݎ݋݂      0 < 0ൠ                                               (3) 

The final FC layer's activation function is usually SoftMax for the categorization of multiple 
classes and Sigmoid for binary classification. The node values in the final FC layer of the proposed 
model has computed using (4), and the sigmoid activation function for a binary categorization 
dataset-Ⅰ is calculated using (5) [24]. 
ݖ = ℎ்ݓ  + ܾ                                (4) 

ݕ)ܲ = (ݔ|1 =  ଵ
ଵାୣ୶୮ (ି௭)

                                            

(5) 
where ℎ stands for the neural network layers' internal calculations, ܾ shows the bias, and ݓ stands 
for the weights used to determine an output node's value. Furthermore, the input vector and output 
class are denoted by ݔ and ݕ, respectively. The SoftMax activation function is calculated using (6) 
for the multi-class categorization Figshare dataset-Ⅱ and Kaggle dataset-Ⅲ in this proposed structure. 

(ݔ|ݕ)ܲ =  ୣ୶୮ (௙೤)
∑ ୣ୶୮ (௙೎)಴

೎సభ
                               (6) 

where, ݔ stands for the input vector and ݕ for the class in the case of a multi-class categorization 
problem. Additionally, the ܿ௧௛ component of the class rating vector in the final FC layer is displayed 
by ௖݂. The category ݇ with the highest ܲ coefficient is chosen as the output class in the SoftMax 
activation function [24]. A backpropagation algorithm has used during CNN training to adjust the 
weights of the FC and convolution layers. The two main elements of backpropagation are the loss 
function and Gradient Descent (GD), in which GD is used to minimize the loss function. Among the 
loss functions most frequently employed by CNNs is the Cross-Entropy (CE) loss function. For the 
binary categorization dataset-Ⅰ with sigmoid activation function the CE loss function is computed 
using (7). 

ܮ =  ଵ
ே

 ∑ ௜ logݕ] − ቀ ଵ
ଵା௘௫௣(ି௭)ቁ + (1 − (௜ݕ log( ୣ୶୮ (ି௭)

ଵାୣ୶୮ (ି௭)
)]ே

௜ୀଵ                          

(7) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2024                   doi:10.20944/preprints202405.0321.v1

https://doi.org/10.20944/preprints202405.0321.v1


 10 

 

where ݏ݅ ݖ computed using formula (4). For the multi-class categorization Figshare dataset-Ⅱ and 
Kaggle dataset-Ⅲ with the SoftMax activation function the CE loss function is calculated using (8) 
[27,28]. 

ܮ =  ଵ
ே

 ∑ − log(
ୣ୶୮ (௙೤೔)

∑ ୣ୶୮ (௙೎)಴
೎సభ

)]ே
௜ୀଵ                          (8)            

where ܰ denotes the quantity of training elements, input image class ݅௧௛ is indicated by ݕ௜, and the 
ܿ௧௛ component of the category scores vector in the final FC layer is presented by ௖݂ [27].  

Expanding the receptive field in deep learning involves boosting the dimension and depth of 
the convolution kernel, which in turn enhances the number of elements in the network. By adding 
weights of zero to the conventional convolution kernel, dilated convolution may enhance the 
receptive field without adding more network elements.  

Equation (9) defines the convolution function * as follows: 1-D dilated convolution using DF,݈ =
1  connects input image ܨ  alongside kernel ݇ . The term "standard CNN" refers to this 1-D 
convolution. The network is identified as dilated CNN when ݈ rises. 
ܨ) ∗ (݌)(݇ =  ∑ (ݏ)ܨ × ௦ା௧ୀ௣(ݐ)݇                                      

(9)  
Upon the introduction of a DF denoted as ݈ and through its expansion,  ݈ is referred to as, 

ܨ) ∗௟ (݌)(݇ =  ∑ (ݏ)ܨ × ௦ା௟௧ୀ௣(ݐ)݇                                  (10) 
Using equation (10), the dilated convolution operation is calculated in this proposed structure. 

The fundamental CNN has a value of ݈ = 1[28,29]. 
The main function of dilated convolution layer is to extract features. In addition to conveying 

fine and high-level feature details, MRI images also contain rough and low-level information. As a 
result, image data must be extracted at several scales.  Specifically, the local and global routes are 
employed to obtain the local and global features. Within the local route, the convolutional layers 
make use of the small 5x5 pixel window dimension to provide low-level details about the images. 
However, a vast number of filters with 12x12 pixels are present in the convolutional stages of the 
global path. The same 5 by 5 filters are used by three different convolution layers throughout the 
local path, and each layer's decremental even number of high DF (4,2,1) is the only factor used to 
produce the coarse feature maps. Three distinct convolution layers in the global path employ 
identical 12 × 12 filters, and the generation of finer feature maps is exclusively dependent on the tiny 
DF (2,1,1) of every single layer. As illustrated in Figure 4, three convolution layers with distinct filter 
numbers (128, 96, 96) are applied at each feature extraction path to extract image data at various scales. 

Conv1, Conv3, and Conv4 provide local as well as coarse features, while Conv2, Conv5, and 
Conv6 supply global as well as fine features. The max-pooling layer is employed after each 
convolutional layer for each path that down-samples the output of the convolutional layer. By 
employing a 2 × 2 kernel, the max-pooling layers lower the dimension of the attributes that are 
produced. 

A dimension of (32, 32, 1) is assigned to each input tensor in the suggested model's structure. To 
test the impact of the DF on the model's efficiency and comprehend the gridding impact brought 
about by the dilation approach, the interior design is kept as simple as possible. In the local path, 
layer Conv1 applies a 5 × 5 filter and a dilation factor of ݀ଵ=4 to generate coarse feature maps (such 
as shapes and contours); layer Conv3 applies the same filter and dilation factor of ݀ଶ=2 along with 
the final convolution to generate coarse feature maps once more; and layer Conv4 applies a 5 × 5 filter 
and dilation factor of ݀ଷ=1 to generate coarse feature maps. In the global route, layer Conv2 applies 
a 12 × 12 filter and a dilation factor of ݀ସ=2, layer Conv5 applies the same filter and dilation factor of 
݀ହ=1 along with the last convolution to generate fine feature maps once more, and layer Conv6 
applies a 12 × 12 filter and a dilation factor of ݀଺=1 to generate fine feature maps. The activation 
function of ReLU is utilized by all six convolutional stages. 

3.4.2. Merge Stage 
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A merge layer connects the two routes, creating a single path with a cascaded link until it reaches 
the endpoint. This process extracts multiscale features, where local paths with high dilation rates 
extract local as well as coarse features, and global paths with low dilation rates extract global as well 
as fine features. Two fully interconnected layers that are connected to a dropout layer through the 
merging pathway come after a batch normalization layer and a ReLU layer. In order to address the 
issue of performance degradation brought on by a boost in neural network stages, batch 
normalization is used. Equation (11) provides the feature map that results after a merging phase [19]. 
ܼ =  (11)                                                             (((ܺ)݂)ܰܤ)ߪ 
where σ stands for the ReLU activation function, BN denotes the batch normalization function and  
݂(ܺ) denotes the fused feature maps from each channel in the preceding paths. 

3.4.3. Hyperparameter Tuning 

Hyperparameter adjusting is a successful parameter searching technique for the suggested 
dilated PDCNN framework. The dense layer, optimization, and dropout measure are among the 
parameters that must be chosen to perform this PDCNN adjustment. It provides the framework with 
the ideal set of parameters, producing the most effective results. 

The training data for the simulated scenario is provided by the effective adjustment of the 
hyperparameter, which includes the Adaptive Moment Estimation (Adam) optimizer, 0.3 dropout, 
512 dense layers, and 0.0001 rate of learning. In this work, the weight of the layers is updated via 
Adam, the optimizer that calculates the adaptive learning rates of every parameter. The training 
setting employs a validation frequency of 20 Hz. The highest average accuracy for the test datasets is 
collected for each run. When the epoch count reaches 70, the framework is trained employing a range 
of epoch counts; it acquires 98.67% accuracy for dataset-Ⅰ. It acquires 98.13% and 98.35% accuracy for 
dataset-Ⅱ, and dataset-Ⅲ respectively when the epoch number is 60. 

Table 3. Hyper-parameter Settings for Model Training. 

Hyper-parameter Optimized 

Value 

Optimizer Adam 

Dropout 0.3 

Dense Layer 512 

Learning Rate 0.0001 

Maximum Epoch 50 

Validation Frequency 20 

Iteration Per Epoch 34 

3.4.4. Feature Map of Dilated Convolutional Layers 

A CNN feature map represents specific attributes in the input image as the result of a 
convolutional layer. It is produced by filtering input images or the previous layers' feature map 
output. The feature maps that are acquired from every convolutional layer are presented in Figure 5 
and 6. In Figure 5, the low-level and coarse features of the three convolutional layers conv_1, conv_3, 
and conv_4 having filters of 128, 96, and 96 are displayed. The feature maps in this figure are 
primarily composed of coarse and local features which represent the texture in an image. In this local 
path, a dilated CNN algorithm that has DFs associated with (݀ଵ= 4, ݀ଶ= 2, ݀ଷ= 1) is referred to as 
dilated PDCNN (4, 2, 1). In Figure6, the high-level feature maps include contour representations, 
shape descriptors and fine features of the deeper three convolutional layers conv_2, conv_5, and 
conv_6 having the same filters, are shown. DFs corresponding to (݀ସ=2, ݀ହ= 1, ݀଺= 1) are used in this 
global path. The multiscale feature maps, which are displayed in Figure 7, are greatly improved when 
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these features are combined using a feature fusion technique. Figure 8 displays the final multiscale 
features that are extracted, along with a fully connected layer that is prevented from overfitting by 
employing the dropout technique. 

Local & Coarse Features (conv_1[DF:4*4], conv_3[DF:2*2], and conv_4[DF:1*1]) 

      

                (a)                                (b)                                     (c) 

Figure 5. Local and Coarse feature maps of various convolutional layers of the Dilated PDCNN (a) 
Feature map of conv_1-layer (b) Feature map of conv_3-layer (c) Feature map of conv_4-layer. 

Global & Finer Features (conv_2[DF:2*2], conv_5[DF:1*1], and conv_6[DF:1*1]) 

       
              (a)                  (b)                                           (c) 

Figure 6. Global and finer feature maps of various convolutional layers of the Dilated PDCNN (a) 
Feature map of conv_2-layer (b) Feature map of conv_5-layer (c) Feature map of conv_6-layer. 

 

Figure 7. Addition of all features. 
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Figure 8. Features extraction after FC_2 layer. 

3.4.5. Parameters for Dilated PDCNN Model 

Both FC and convolutional layers provide parameters that can be learned. Parameters are the 
quantities of weights that the CNN structure learns during training. It is possible to calculate the 
convolutional layer parameters ( ௖ܲ௢௡௩) equation as follows: 

௖ܲ௢௡௩ = ∗ ௛ܨ  ௪ܨ ∗ ௡௨௠ܨ ∗ ௜௡ܥ +                                     ௡௨௠ܨ 

(12) 
 ௡௨௠ indicates the quantityܨ .௪ stand for the length and width of the filter, accordinglyܨ ௛  andܨ

of filters. ܥ௜௡ indicates the associated layer's input channel quantity. The parameters of the layer that 
is fully connected ( ிܲ஼) are as follows: 

ிܲ஼ = ∗ (௣௥௘௩)ܣ  (ܰ௨௡௜௧) +  ܰ௨௡௜௧                                            (13) 
where ܣ(௣௥௘௩)  indicates the prior layer's activation pattern and (ܰ௨௡௜௧)  denotes the number of 
neurons that make up the present FC layer. There are no variables that can be learned in the max-
pooling layer. The batch-normalization layer's variables are the product of the number of channels 
utilized in the preceding convolutional layer [10]. 

Table 4. Information about the Suggested Dilated PDCNN Framework. 

Layer Type No of Filters Filter Size Stride Dilation 

Factor 

Activation 

Shape 

Total 

Learnable 

Parameters 

Image MRI - - - - 32×32×1 0 

Conv layer 128 5×5 2,2 4,4 16×16×128 3328 

ReLU - - - - 16×16×128 0 

Cross Channel 

Normalization 

- - - - 16×16×128 0 

Max Pooling - 2×2 2,2 - 8×8×128 0 

Conv layer 96 5×5 2,2 2,2 4×4×96 307296 

Conv layer 128 12×12 2,2 2,2 16×16×128 18560 

ReLU - - - - 4×4×96 0 

Max Pooling - 2×2 2,2 - 2×2×96 0 

Conv layer 96 5×5 2,2 1,1 1×1×96 230496 
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ReLU - - - - 1×1×96 0 

Max Pooling - 2×2 2,2 - 1×1×96 0 

ReLU - - - - 16×16×128 0 

Cross-Channel 

Normalization 

- - - - 16×16×128 0 

Max Pooling - 2×2 2,2 - 8×8×128 0 

Conv layer 96 12×12 2,2 1,1 4×4×96 1769568 

ReLU - - - - 4×4×96 0 

Max - 2×2 2,2 - 2×2×96 0 

Conv layer 96 12×12 2,2 1,1 1×1×96 1327200 

ReLU - - - - 1×1×96 0 

Max Pooling - 2×2 2,2 - 1×1×96 0 

Elements-wise 

addition of 2 

inputs 

- - - - 1×1×96 0 

Batch 

Normalization 

- - - - 1×1×96 192 

ReLU - - - - 1×1×96 0 

FC_1 layer - - - - 1×1×512 49664 

ReLU - - - - 1×1×512 0 

Dropout layer - - - - 1×1×512 0 

FC_2 layer - - - - 1×1×2 1026 

      Total =  3, 707, 

330 

3.5. Classification Stage 

In this categorization phase, extracting all the multiscale attributes from the last FC layer, four 
types of classifiers: SVM, KNN, NB, and Decision tree are used to categorize the three types of brain 
tumor datasets. These ML classifiers and their hyper-parameter settings used in this experiment for 
brain tumor classification are discussed in the following subsections. 

3.5.1. SVM 

SVM, proposed by Vapnik, is one of the most powerful classification algorithms that works by 
creating a hyperplane with the maximum margin between classes. SVM uses the kernel 
function, ݔ)ܭ௡ ,  .௜), to transform the original data space into another space with a higher dimensionݔ
The hyperplane function for separating the data can be defined as follows [30]: 
(௜ݔ)݂ = ∑ ௡ݔ)ܭ௡ݕ௡ߙ , (௜ݔ + ܾே

௡ୀଵ                                         (14) 
where ݔ௡ is support vector data (deep features from brain MR image), ߙ௡ is Lagrange multiplier, 
and ݕ௡ represent a target class of these three datasets employed in this paper, such that the first 
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dataset is binary (normal and abnormal) class dataset, while the second dataset has three classes 
(glioma, meningioma, and pituitary) and the third dataset has four different classes (normal, glioma, 
meningioma, and pituitary tumor) with n = 1, 2, 3, ..., N. In this work, the most commonly used kernel 
function is used at the SVM algorithm is linear kernel. 

As shown in (15), an actually separable case is handled using a linear kernel. 
Linear: ݔ) ܭ௡ , ,௡ݔ) ௜) ꞊ݔ  ௜)                                             (15)ݔ
where ݔ) ܭ௡ ,  .௜) represents kernel functionݔ

Hence, a multiclass linear support vector machine with a linear kernel function and a zero 
verbose value is employed in this suggested method.  

3.5.2. K-NN 

k-NN is one of the simplest classification techniques. It performs predictions directly from the 
training set that is stored in the memory. For instance, to classify a new data instance (a deep feature 
from brain MR image), k-NN chooses the set of k objects from the training instances that are closest 
to the new data instance by calculating the distance and assigns the label with two classes (normal or 
tumor), three classes (glioma, meningioma, and pituitary) or four classes (normal, glioma, 
meningioma, and pituitary tumor) and does the selection based on the majority vote of its k neighbors 
to the new data instance.  

Manhattan distance and Euclidean distance are the most commonly used to measure the 
closeness of the new data instance with the training data instances. In this work, the Euclidean 
distance is used to measure for the k-NN algorithm. Euclidean distance ݀ between data point ݔ and 
data point ݕ are calculated as follows [27]: 
,ݔ)݀ (ݕ  =  ඥ∑ ௜ݔ) − ௜)ଶேݕ

௜ୀଵ                                                (16) 
The brief summary of k-NN algorithm is illustrated below:  
 First select a suitable distance metric. 

 Store all the training data set ܲ in pairs in the training phase as follows: 

ܲ = ௜ݕ)   , ܿ௜), ݅ =  1, . . . , ݊                            (17) 

where in the training dataset, ݕ௜ is a training pattern, ݊ is the amount of training patterns and ܿ௜ is 
its corresponding class. 

 In the testing phase, compute the distances between the new features vector and the stored 

(training data) features, and classify the new class example by a majority vote of its k 

neighbors.  

The correct classification given in the test phase is used to evaluate the accuracy of the algorithm. 
If the result is not satisfactory, the k value can be adjusted until a reasonable level of accuracy is 
obtained. It is noticeable here that the number of neighbors is set from 1 to 5 and selected the optimum 
value of K is 5 which is applied for dataset-Ⅰ, dataset-Ⅱ, and dataset-Ⅲ respectively with the highest 
accuracy. The zero standardized value is used to standardize the predictors. 

3.5.3. Naïve Bayes (NB) 

NB classifier is the ML classifier with the assumption of conditional independence between the 
attributes given the class. In this article, the final class is predicted using vectors of attributes and 
class prior probabilities, as shown in (18). 

ܥ) ܲ = ݅ | ܺ = (ݔ =  ௉ (௑ୀ௫ |஼ୀ௜)∗௉(஼ୀ௜)
௉ (௑ୀ௫)

                                  

(18) 
Where ܺ  indicates the given data instance (extracted deep features from brain MR image) 

which is represented by its feature vector (ݔଵ, … , ௡ݔ  ) and ܥ is the class target (type of brain tumor) 
with two classes (normal and tumor) for binary dataset-Ⅰ or three classes (glioma, meningioma, and 
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pituitary) for Figshare dataset-Ⅱ, or four classes (normal, glioma, meningioma, and pituitary) for 
multiclass Kaggle dataset-Ⅲ . Here, ܲ (ܺ = = ܥ | ݔ   ݅) in this classifier is computed by taking the 
dataset's features to be independent, and calculating the probability as shown in (19) [27]. 
ܲ (ܺ = ܥ|ݔ = ݅  ) =  ∏ ܲ ൫ݔ௝  หܥ = ݅)௡

௝ୀଵ                             (19) 
NB can save a significant amount of time and is appropriate for handling multi-class prediction 

problems. The value for the minimum threshold of probabilities for the NB classifier is 0.001. For 
every predictor and class combination, the kernel smoothing window width is automatically chosen 
by default in this suggested approach. 

3.5.4. Decision Tree 

For both classification and regression, decision tree structures are a non-parametric supervised 
learning technique. In this work, this technique is employed to build a model that, by utilizing basic 
decision rules deduced from the data features extracted from brain MR images. With training vectors 
௜ݔ ∈  ℝ௡, i= 1,…,l and a label vector ݕ ∈  ℝ௟, a decision tree successively divides the domain of features 
so that instances that share similar desired values are organized together [31]. 

Three datasets are used in this proposed approach. Here dataset-Ⅰ at node ݉ be denoted by ܳ௠. 
Splitting ߠ = (݆, (௠ݐ  for every candidate which is composed of a characteristic j and threshold 
௠,dividing the dataset-Ⅰ,ܳ௠ into ܳ௠ݐ

௟௘௙௧ and ܳ௠ (ߠ)
௥௜௚௛௧(ߠ) subgroups 

ܳ௠
௟௘௙௧(ߠ) = {(ݔ, ௝ݔ |(ݕ ≤                                    {௠ݐ 

(20) 

ܳ௠
௥௜௚௛௧ ௠ܳ = (ߠ)  \  ܳ௠

௟௘௙௧(ߠ)                             (21)  
Next, to calculate the quality of a potential split of node m, a loss function H() is used. 

௠ܳ)ܩ , (ߠ =  ௡೘
೗೐೑೟

௡೘
ܪ  ቀܳ௠

௟௘௙௧(ߠ)ቁ +  ௡೘
ೝ೔೒೓೟

௡೘
௠ܳ)ܪ 

௥௜௚௛௧  (22)              ((ߠ)

This process should be carried out for ܳ௠
௟௘௙௧ and ܳ௠ (∗ߠ)

௥௜௚௛௧(ߠ∗) subsets until the maximum 
permitted depth is achieved. These steps are also followed for the other two datasets multiclass 
Figshare dataset-Ⅱ and Kaggle dataset-Ⅲ. 

The decision tree can quickly determine which data is relevant and which is not. The maximum 
number of branch nodes in the suggested method is fixed at 1. In this approach, there must be a 
minimum of one leaf node. 

3.5.5. Average Ensemble Method 

Machine learning and signal analysis both use the statistical technique of ensemble averaging. 
Model averaging is a machine learning technique for ensemble learning in which each member of the 
ensemble makes an equal contribution to the ultimate prediction. A group of frameworks often 
outperforms a single one because the individual errors in the models "average out." In average 
ensemble method, the actions are: 

 Create N experts, each starting at a different value: Typically, initial values are selected at random 
from a distribution. 

 Train every specialist independently. 

 Add up all the experts and take the mean of their scores. 

These steps of average ensemble method are used to average the accuracy to acquire the final 
outcome in the proposed method [32,33]. 

4. Experimental Outcomes and Evaluation 
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MATLAB is used to run the implementation program for the suggested dilated PDCNN model. 
The computing device is equipped with a Core i5 processor manufactured by Intel, running at 3.2 
GHz, eight GB of RAM, and Windows 10 operating system installed. 

4.1. Performance Analysis of Suggested Dilated PDCNN Model 

The confusion matrix is used to express the classification system's results. The efficiency is 
evaluated using the following criterion [34]. 

Accuracy =  ்௥௨௘ ௉௢௦௜௧௜௩௘ା்௥௨௘ ே௘௚௔௧௜௩௘
(௉௢௦௜௧௜௩௘ାே௘௚௔௧௜௩௘)

      (23) 

Precision = ்௥௨௘ ௉௢௦௜௧௜௩௘
(்௥௨௘ ௉௢௦௜௧௜௩௘ାி௔௟௦௘ ௉௢௦௜௧௜௩௘)

  (24) 

Recall = ்௥௨௘ ே௘௚௔௧௜௩௘
(ி௔௟௦௘ ௉௢௦௜௧௜௩௘ା்௥௨௘ ே௘௚௔௧௜௩௘)

  (25) 

F1-Score = ଶ∗ ்௥௨௘ ௉௢௦௜௧௜௩௘
(ଶ∗்௥௨௘ ௉௢௦௜௧௜௩௘ାி௔௟௦௘ ௉௢௦௜௧௜௩௘ାி௔௟௦௘ ே௘௚௔௧௜௩௘)

  (26) 

Table 5 provides an overview of the dilated PDCNN algorithm's efficiency indicators using ML 
classifiers over dataset-Ⅰ. As per Table 5 findings, the dilated PDCNN model that incorporates KNN 
and Decision Tree classifiers has the best F1-score, recall, accuracy, and precision in comparison with 
the remaining models. The suggested dilated PDCNN model utilizing KNN and Decision Tree 
classifiers has 100.00% for all performance criteria, which is better than the outcomes obtained by 
other ML classifiers. The dilated PDCNN model that includes SVM and NB classifiers is noteworthy 
for having 100% precision and recall, which is also the same as the dilated PDCNN model alongside 
KNN and Decision Tree classifiers. However, the KNN and Decision Tree classifier execute better 
concerning other performance indicators. The suggested dilated PDCNN utilizing the average 
ensemble approach for the dataset-Ⅰ has finalized accuracy, precision, recall, and F1-score values of 
98.67%, 98.62%, 99.17%, and 98.28%, accordingly, after implementing the average ensemble 
technique. 

Table 5. Performance Parameters of Dilated PDCNN Model with ML Classifiers on Dataset-Ⅰ. 

Dilated PDCNN Models 

Utilizing ML Classification 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Dilated PDCNN 97.33 93.10 95.83 96.43 

Dilated PDCNN with SVM  98.67 100.00 100.00 98.31 

Dilated PDCNN with KNN  100.00 100.00 100.00 100.00 
Dilated PDCNN with NB  97.33 100.00 100.00 96.67 

Dilated PDCNN with Decision 

Tree  

100.00 100.00 100.00 100.00 

Dilated PDCNN with Average 

Ensemble 

98.67 98.62 99.17 98.28 

An overview of the dilated PDCNN algorithm's efficiency indicators using ML classifiers over 
dataset-Ⅱ is provided in Table 6. The results shown in Table 6 demonstrate that, when contrasted to 
other scenarios, the dilated PDCNN algorithm using the NB classifier provides the highest 
performance indicators. The suggested dilated PDCNN model incorporating the NB classifier 
outperforms the findings of the remaining ML classifiers alongside accuracy of 98.90%, precision of 
98.67%, recall of 98.67%, and F1-score of 98.67%. In the end, using the average ensemble approach, 
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the suggested dilated PDCNN employing the average ensemble technique for the dataset-Ⅱ has 
accuracy, precision, recall, and f1-score values of 98.13%, 97.74%, 98.05%, and 97.80%, accordingly.  

Table 6. Performance Parameters of Dilated PDCNN Model with ML Classifiers on Dataset-Ⅱ. 

Dilated PDCNN Models 

Utilizing ML Classification 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Dilated PDCNN  98.20 98.00 98.33 98.00 

Dilated PDCNN with SVM  97.72 97.33 97.33 97.33 
Dilated PDCNN with KNN  97.60 97.00 97.60 97.30 

Dilated PDCNN with NB  98.90 98.67 98.67 98.67 
Dilated PDCNN with 
Decision Tree  

98.21 97.67 98.33 97.67 

Dilated PDCNN with 

Average Ensemble 

98.13 97.74 98.05 97.80 

Table 7 provides an overview of the effective measurements of the suggested dilated PDCNN 
model using machine learning classifiers for dataset-Ⅲ. In comparison to other models, the accuracy, 
precision, recall, and F1-score of the suggested dilated PDCNN alongside SVM classifier are 98.60%, 
98.50%, 98.25%, and 98.50%, respectively, based on the results shown in Table 7. The findings of the 
dilated PDCNN employing average ensemble technique for dataset-Ⅲ are, after executing the 
average ensemble strategy, 98.35%, 98.35%, 97.85%, and 98.20%, accordingly, in terms of accuracy, 
precision, recall, and F1-score. 

Table 7. Performance Parameters of Dilated PDCNN Model with ML Classifiers on Dataset-Ⅲ. 

Dilated PDCNN Models 

Utilizing ML Classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score (%) 

Dilated PDCNN 98.21 98.25 97.75 98.25 

Dilated PDCNN with SVM  98.60 98.50 98.25 98.50 

Dilated PDCNN with KNN  98.50 98.50 98.00 98.50 
Dilated PDCNN with NB  98.57 98.50 98.00 98.50 

Dilated PDCNN with Decision 

Tree  

97.85 98.00 97.25 97.25 

Dilated PDCNN with Average 

Ensemble 

98.35 98.35 97.85 98.20 

4.2. Comparative Analysis of Different Dilation Rate  

While dilated convolution retains data resolution at the output layer and increases the receptive 
field without adding computation, stacking several dilated convolutions has the drawback of 
producing a grid effect. Validating the results involves comparing multiple combinations of dilation 
rates for the various convolution layers. Large dilation rates may impact tiny object recognition. As 
a result, the DF has gradually decreased (even-numbered arithmetic decreasing) at the local path in 
the suggested framework. By doing this, the dilated feature map's sparsity is reduced, and more data 
can be extracted from the investigated region. At the global path, the low DF (2,1,1) has been carried 
out to extract the fine features. 
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Figure 9. Comparing accuracy across different configurations of dilation rates. 

A comprehensive review of the gridding issue and the consequences of different dilation rates 
can be found in the accompanying Figure 9. The poor efficiency of the (4, 2, 1) dilated value for the 
global pathway as well as (8, 4, 2) dilated value for the local route of the suggested model is caused 
by the gridding phenomenon, which arises when high DF are used. This limits the framework from 
acquiring finer characteristics. When a high DF (4,2,1) is used for both local and global paths, the 
accuracy increases more than before. On the contrary, using low dilation rates, the model only learns 
fine features. When low DF (1,1,1) is used in the global path and (2,2,2) is used for the local path, the 
value of accuracy for dataset-Ⅰ, dataset-Ⅱ, and dataset-Ⅲ is 97.30%, 97.70%, and 93.70% respectively. 
When a low DF (2,1,1) is used for the global feature and a high DF (4,2,1) is used for the local feature, 
the highest accuracy is achieved. The highest accuracy for dataset-Ⅰ, dataset-Ⅱ, and dataset-Ⅲ is 
97.33%, 98.20%, and 97.94% respectively. Providing the best-case scenario, a well-balanced model 
(4,2,1) for the local path and (2,1,1) for the global path may acquire both the coarse as well as fine 
characteristics of the pictures. 

4.3. Evaluation Measurements of the Proposed System on the Three Datasets 

With the SVM, KNN, NB, and Decision Tree classifiers for dataset-Ⅰ, Table 8 illustrates the 
classification accuracy, erroneous, duration, and kappa scores for the suggested PDCNN as well as 
dilated PDCNN architectures. When the expected precision of the random classifier is considered, 
the kappa statistic expresses how closely the instances identified by the classification model matched 
the data assigned as ground truth. In comparison to the PDCNN alongside the average ensemble 
model, the dilated PDCNN has a larger kappa. The error rate has reduced, and the elapsed time has 
increased following the application of dilation to the PDCNN with the average ensemble model. 

Table 8. Evaluation Results of the Proposed System on the Binary Classification Dataset-Ⅰ. 

Structure Classifier Performance Indicators 

Accuracy (%) Error (%) Time (s) Kappa 

PDCNN Custom PDCNN  96.03 3.97 662 0.917 

 PDCNN and SVM  97.33 2.67 1020 0.943 

 PDCNN and KNN  96.00 4.00 1069 0.915 

 PDCNN and NB  94.67 5.33 1079 0.888 

 PDCNN and Decision 

Tree 

98.67 1.33 1070 0.972 

Dataset-1 Dataset-2 Dataset-3
Global (4,2,1),Local(4,2,1) 96.00% 96.90% 93.20%
Global (4,2,1),Local(8,4,2) 94.70% 95.27% 90%
Global (4,2,1),Local(1,1,1) 94.67% 96.60% 94.60%
Global (2,1,1),Local(4,2,1) 97.33% 98.20% 97.94%
Global (1,1,1),Local(2,2,2) 97.30% 97.70% 93.70%
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 Average Ensemble 96.54 3.46 980 0.927 

Dilated 
PDCNN 

Custom PDCNN  97.33 2.67 1683 0.943 

 PDCNN and SVM  98.67 1.33 1020 0.972 

 PDCNN and KNN  100.00 0.00 1223 1.000 

 PDCNN and NB  97.33 2.67 1223 0.944 

 PDCNN and Decision 

Tree 

100.00 0.00 1223 1.000 

 Average Ensemble 98.67 1.33 1274 0.972 

 
The success rate, error, period, and kappa statistics for the suggested PDCNN and dilated 

PDCNN architectures employing the SVM, KNN, NB, and Decision Tree classifiers for dataset-Ⅱ are 
presented in Table 9. When the expected precision of the random classifier is considered, the kappa 
statistic expresses how closely the instances identified by the classification model matched the data 
assigned as ground truth. As compared to the PDCNN employing the average ensemble model's 
kappa, the dilated PDCNN offers greater kappa. The error rate has dropped when dilation is applied 
to the PDCNN using the average ensemble method, but the time that passed has increased. 

Table 9. Evaluation Results of the Proposed System on the Multiclass Figshare Dataset-Ⅱ. 

Structure Classifier Performance Indicators 

Accuracy (%) Error (%) Time (s) Kappa 

PDCNN Custom PDCNN  97.64 2.36 8050 0.963 

 PDCNN and SVM  97.71 2.29 6106 0.960 

 PDCNN and KNN  97.40 2.60 6307 0.959 

 PDCNN and NB  97.40 2.60 4998 0.959 

 PDCNN and Decision 

Tree 

96.60 3.40 7170 0.946 

 Average Ensemble 97.35 2.65 6526 0.958 

Dilated 

PDCNN 

Custom PDCNN  98.20 1.80 7204 0.972 

 PDCNN and SVM  97.72 2.28 6106 0.962 

 PDCNN and KNN  97.60 2.40 6187 0.961 

 PDCNN and NB  98.90 1.10 6149 0.982 

 PDCNN and Decision 
Tree 

98.21 1.79 8381 0.972 

 Average Ensemble 98.13 1.87 6805 0.970 

 
Table 10 presents the kappa values, accuracy, error, and training duration for the recommended 

PDCNN and dilated PDCNN models that employ the SVM, KNN, NB, and Decision Tree classifiers 
for dataset-Ⅲ, in that order. When compared to the PDCNN employing an average ensemble model, 
the dilated PDCNN has a higher kappa value. The error rate has reduced, and the elapsed time has 
increased following the application of dilation to the PDCNN with the average ensemble model.  

Table 10. Evaluation Results of the Proposed System on the Multiclass Kaggle Dataset-Ⅲ. 
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Structure Classifier Performance Indicators 

Accuracy (%) Error (%) Time (s) Kappa 

PDCNN Custom PDCNN  96.80 3.20 5633 0.956 

 PDCNN and SVM  97.94 2.06 4462 0.972 

 PDCNN and KNN  97.80 2.20 5753 0.969 

 PDCNN and NB  97.90 2.10 5753 0.972 

 PDCNN and Decision 

Tree 

97.40 2.60 5753 0.965 

 Average Ensemble 97.58 2.42 5470 0.967 

Dilated 

PDCNN 

Custom PDCNN  98.21 1.79 4891 0.976 

 PDCNN and SVM  98.60 1.40 4739 0.980 

 PDCNN and KNN  98.50 1.50 4739 0.979 

 PDCNN and NB  98.57 1.43 4739 0.980 

 PDCNN and Decision 
Tree 

97.85 2.15 4739 0.971 

 Average Ensemble 98.35 1.65 4769 0.977 

 

4.4. Impact of Applying Dilation on the Proposed Model 

In the categories of efficiency, precision, recall, F1-score, error rate, kappa, and training time, 
Figure 10 shows that the suggested dilated PDCNN alongside the average ensemble approach 
executes better than the conventional PDCNN alongside the average ensemble framework. Values of 
the effectiveness indicators will increase even further if dilation is applied to increase the efficiency 
of the recommended approach.  
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Figure 10. Performance metrics comparison of (a) accuracy (b) precision (c) recall (d) F1-score (e) error 
rate (f) kappa and (g) execution time comparison along three types of brain tumor datasets. 

These findings show that in comparison to the proposed PDCNN model using the average 
ensemble technique, the proposed dilated average ensemble classifier for three types of dataset 
indicates a higher accuracy, precision, recall, F1-score, kappa, and lower error rate, execution time. 

4.5. Comparison of the Suggested Model with Prior Investigations Based on Three Datasets 

A comprehensive assessment is made at the end of the validation process for the proposed 
approach. A brief overview is shown in Table 11. 
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Table 11. Assessment of the Employed Kaggle and Figshare Datasets with the Methods Currently in 
Use. 

No Authors Structure Year  Data Type Accuracy (%) 

1. P. Afshar et al.  [12]  Capsule Networks 2019 Figshare Dataset-Ⅱ 90.89 

2. C. L. Choudhury et al. 

[35]  

CNN 2020 Binary Dataset-Ⅰ 96.08 

3. H. H. Sultan et al. [36] Resize+ Augmentation 
+ CNN + 

Hyperparameter 

Tuning 

2019 Figshare Dataset-Ⅱ 96.13 

4. Suhib et. al [18]  Gray Transformation + 

Resize + Flatten + CNN 

2020 Binary Dataset-Ⅰ 96.7 

5. A. E. Minarno et al. 

[21] 

Resize+ Augmentation 

+ CNN+ 
Hyperparameter 

Tuning 

2021 Kaggle Dataset-Ⅲ 96.00 

6. Priyansh et al. [37]  CNN-Based Transfer 

Learning Approach 

2021 Binary Dataset-Ⅰ Resnet-50-95,  

VGG-16- 90,  

Inception-V3-

55 

7. T. Rahman et al. [38] Resize+ Gray+ Augmen-
tation+ Binary+ CNN 

2022 Binary Dataset-Ⅰ 96.9 

8. A. Biswas et al. [39] Resize+ Anisotropic 

Diffusion Filter+ 

Adaptive Histogram 

Equalization+ DCNN-

SVM 

2023 Figshare Dataset-Ⅱ 96 

9. H.A. Munira et al. [40] Thresholding + 
Cropping+ Resizing+ 

Rescaling+ CNN-RE 

and CNN-SVM 

2022 Figshare Dataset-Ⅱ 
Kaggle Dataset-Ⅲ 

CNN-RF-96.52 
CNN-SVM-

95.41 

10. T. Rahman et al. [34] Resize + Gray 

Transformation + 

Augmentation + 

PDCNN 

2023 Binary Dataset-Ⅰ 97.33 

Figshare Dataset-Ⅱ 97.60 

Kaggle Dataset-Ⅲ 98.12 

11. Proposed Method Resize + Gray scale 

Transformation+ 

Augmentation + 

Dilated PDCNN+ 

Machine Learning 

- Binary Dataset-Ⅰ 98.67 

Figshare Dataset-
Ⅱ 

98.13 

Kaggle Dataset-Ⅲ 98.35 
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Classifiers+ Average 
Ensemble 

5. Discussion 

With an increasing number of patients, manually analyzing MRI images has grown more 
complicated, time-consuming, and frequently inaccurate. Conventional machine learning techniques 
utilize handmade properties, which reduces the solution's durability and raises its cost. Nonetheless, 
there are situations when supervised learning models perform better than unsupervised learning 
strategies, leading to an overfitted structure that is inappropriate for another large database. These 
problems emphasize how crucial it is to create a fully machine learning-based classification system 
for brain tumors. By combining the average ensemble technique with PDCNN, this investigation 
presents a novel approach to the identification and classification of brain tumors. The dilated PDCNN 
architecture includes both local and global multiscale feature selection paths, a merging phase, and 
categorization pathways. The initial pictures are converted to grayscale, which makes the process 
easier. After that, new images are made from old ones by employing data augmentation. Using a 
modest window size of 5x5 pixels and gradually high dilation rates (4,2,1) for each convolution layer, 
the convolutional layers in the local path collect coarse characteristics and provide local data to the 
images. In contrast, the global path's convolutional layers obtain fine details by using a large window 
dimension of 12 by 12 pixels and low dilation rates (2,1,1) for every layer of convolution. ReLU 
activation function and max-pooling layer are applied after each convolutional layer for each path 
that down-samples the convolutional layer output. A fusion layer connects the two parallel pathways, 
forming a single path with a cascading link that continues until it reaches the end destination. Two 
fully connected layers that are attached to a dropout layer that is included in the merging route come 
after a batch-normalized layer and a ReLU layer.  At the output path, the four classifier types—SVM, 
KNN, NB, and Decision Tree—are used to execute the brain tumor categorization procedure. A 
regularization method called dropout is also employed to stop the training data from being 
overfitting. 

Tables 5-7 present the performance parameters of dilated PDCNN model with ML classifiers on 
binary Dataset-Ⅰ, multiclass figshare Dataset-Ⅱ and Multiclass Kaggle Dataset-Ⅲ. Among all the 
performance metrics, including accuracy, precision, recall, and F1-score, for three different brain 
tumor datasets employing the average ensemble technique, binary classification Dataset-Ⅰ provides 
the best outcomes. The value of accuracy, precision, recall, and F1-score of dilated PDCNN model on 
binary classification Dataset-Ⅰ is 98.67%, 98.62%, 99.17% and 98.28% respectively. 

The impact of different dilation rates on the model's accuracy has been examined for the dilated 
PDCNN. The comparison analysis among various dilation rate arrangements for the various 
convolution layers is displayed in Figure 9. The comparative study demonstrates that the 
decremental large dilation rate (4, 2, 1) for the local path and the low dilation rate (1, 1, 1) for the 
global path yield the best results, based on an understanding of the gridding phenomenon and 
various recommendations for the dilation rate parameter for each layer. For datasets I, II, and III, the 
highest accuracy values obtained are 98.67%, 98.13%, and 98.35%. This demonstrates that while the 
global path (lower dilation rates) gains knowledge from the finer features, the local path (higher 
dilation rates) concentrates on the coarse features. The best outcomes are obtained with this 
combination. 

Tables 8-10 displays the evaluation results including accuracy, error rate, time and kappa value 
of the proposed system on the three types of datasets. The lowest error rate 1.33% is provided by 
binary classification Dataset- I, and the highest value of kappa is provided by 0.977 is provided by 
multiclass Kaggle Dataset-Ⅲ. 

The results shown in Figure 10 demonstrate that in terms of accuracy, precision, recall, F1-score, 
error rate, kappa, and training duration, the suggested dilated PDCNN with the average ensemble 
model performs better than the standard PDCNN with the average ensemble approach. The 
performance indicators' values will increase even further if the three different types of datasets are 
dilated to increase the suggested dilated PDCNN's efficiency with the average ensemble model. A 
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thorough comparison is done once the evaluation of the proposed method is accomplished. The 
findings demonstrate that the suggested simultaneous network topology outperforms detection and 
classification techniques that have been previously published. 

6. Conclusion and Future Work 

Since brain tumors vary in shape, dimension, and structure, proper identification of these 
conditions remains extremely difficult. It is well-known how important it is to detect brain tumors 
early to receive the right medical care. This study proposed a dilated PDCNN structure with ML 
classifiers to detect and classify brain tumors from MRI images. The proposed dilated PDCNN with 
the average ensemble method is evaluated for binary and multi-class classification on the Kaggle 
dataset, which contains four different types of tumor images, while the Figshare dataset contains 
three types of tumor images. The suggested dilated convolution with an expanded receptive field of 
the kernel has increased the computation efficiency while preserving high accuracy. The framework 
achieved outstanding accuracy, precision, recall, and F1-score regarding the binary brain cancer 
dataset-Ⅰ. In order to gain a better understanding of the inner workings of the network and its 
effectiveness of the dilation rate parameter, experimental evaluation can be performed on other 
datasets in future investigations. Additionally, studies can be carried out to identify brain tumors 
with greater accuracy by utilizing actual patient information from any source (various images 
captured by scanners). 
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