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Abstract: Brain tumors are frequently classified with high accuracy using convolutional neural networks
(CNNSs) and better comprehend the spatial connections among pixels in complex pictures. Due to their tiny
receptive fields, the majority of deep convolutional neural network (DCNN)-based techniques overfit and are
unable to extract global context information from more significant regions. While dilated convolution retains
data resolution at the output layer and increases the receptive field without adding computation, stacking
several dilated convolutions has the drawback of producing a grid effect. To handle gridding artifacts and
extract both coarse and fine features from the images, this research suggests using a dilated parallel deep
convolutional neural network (PDCNN) architecture that preserves a wide receptive field. To reduce
complexity, initially, input images are resized and then grayscale transformed. Data augmentation has since
been used to expand the number of datasets. Dilated PDCNN makes use of the lower computational overhead
and contributes to the reduction of gridding artifacts. By contrasting various dilation rates, the global path uses
a low dilation rate (2,1,1), while the local path uses a high dilation rate (4,2,1) for decremental even numbers to
tackle gridding artifacts and extract both coarse and fine features from the two parallel paths. Using three
different types of MRI datasets, the suggested dilated PDCNN with the average ensemble method performs
better. The accuracy provided by the Multiclass Kaggle dataset-III, Figshare dataset-II, and Binary tumor
identification dataset-I is 98.35%, 98.13%, and 98.67%, respectively. In comparison to state-of-the-art
techniques, the suggested structure improves results by extracting both fine and coarse features, making it
efficient.

Keywords: Brain tumor classification; data augmentation; receptive field; grid effect; multiscale
dilated parallel convolution; machine learning classifiers

1. Introduction

The growth that may adversely impact a person's life is a brain tumor, which can appear in the
tissues enclosing the brain or skull. Two characteristics can identify a benign or malignant growth.
While secondary tumors, also referred to as brain metastasis tumors, are typically formed from
tumors outside the brain, primary cancers start inside the brain. Meningioma, pituitary adenomas,
and gliomas are the three most common primary brain tumors. The brain, and spinal cord membrane
layers, are the origin of meningioma, a tumor that grows slowly. Cancerous cells that arise in the
pituitary gland are referred to as pituitary adenomas [1]. The brain tissue is compressed by the
irregular growth of these tumors. Malignant tumors, in comparison with benign tumors, grow
unevenly and damage the tissues around them. Surgical techniques are frequently employed in the
treatment of brain tumors [2]. Because MRI is non-interfering, it is preferred over computed
tomography (CT), positron emission tomography (PMT), and x-rays [3]. It is estimated that 79,340
Americans aged 40 and older will be diagnosed with a primary brain tumor by 2023. It is estimated
that one million Americans suffer from primary brain tumors; of these, 72% are benign tumors and
28% are malignant. The adults with primary brain tumors typically have meningioma (46.1%),
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glioblastoma (16.4%), and pituitary tumors (14.5%) [4,5]. Biopsies are taken for analysis after the
tumor is found using standard medical techniques like MRI. The first test used in medicine to find
cancer is the MRI [6,7]. Two MRI pictures of two distinct brains are shown in Figure 1.

As the number of patients has grown, individually analyzing these images has become laborious,
disorganized, and frequently incorrect. A computer-aided diagnostic technique that concludes the
expense of brain MRI identification needs to be developed to ease this limitation. Many attempts have
been made to create an extremely effective and trustworthy method for classifying brain tumors
automatically. Conventional approaches to machine learning rely on handmade qualities, which
increases the cost and limits the durability of the solution. But occasionally, models of supervised
learning can perform better than unsupervised learning strategies, leading to an overfitted
framework that is inappropriate for another large database. These challenges underscore the
significance of creating a machine learning-based, fully automated system for classifying brain
tumors.

Figure 1. MRI scans are performed on two different brains. On the left is a tumor, and on the right is
a healthy [8].

CNN's architecture is based on a neural network known as the deep learning model, which
excels at image recognition and classification. [9,10]. The receptive field in CNN is too tiny to produce
excellent precision [11]. A large receptive field of the convolution kernel would help enhance the
efficiency of the classification techniques because the fixed size of the sliding window in CNN misses
out on utilizing techniques like convolution, pooling, and flattening. The recommended model's
parameters possess the ability to acquire characteristics extracted from the images. While
hyperparameters are focused on, recent iterations of CNN models have yet to focus much on them.
Another important consideration is CNN's local feature collection. Furthermore, because of the
limited quantity of the kernel, sharply raising the dilation rate could exacerbate feature collection
failures and hinder small object detection [12]. High dilation rates may impact tiny object detection.
As aresult, the dilation rate has been gradually decreased in this suggested model. By doing this, the
dilated feature map's sparsity has decreased and more data can be extracted from the investigated
region.

Using publicly available Kaggle and Figshare datasets, this work aims to develop a fully
autonomous dilated PDCNN with an average ensemble model for brain tumor classification [8,13,14].
This article suggests an architecture for the detection and classification of brain tumors that consists
of two synchronously dilated DCNNSs. Because convolutions are accurate and time-efficient
processes, the dilated PDCNN with an average ensemble model performs more quickly than the
conditional random field (CRF)-based methods. The recommended dilated PDCNN with an average
ensemble framework incorporates batch normalization to normalize the results of previous layers.

By simultaneously integrating two DCNNs with two distinct window sizes, parallel pathways
enable the model to learn both global and local features. While maintaining a large receptive field,
this research also recommends managing gridding artifacts and extracting both coarse and fine
characteristics from the images. Key accomplishments of the work are shown in these aspects:

1) A dilated PDCNN with even-numbered dilation rate decrements at the local path and
combining two parallel CNNs with data preparation (image pre-processing, data augmentation) and
hyper-parameter tuning is suggested for brain tumor classification.

2) Strengthening the performance of identification and classification by incorporating both high-
level and low-level data as well as particular brain features.
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3) There is a discussion of the suggested experimental findings regarding why a tiny receptive
field of PDCNN causes low precision in identifying brain tumors with the dilation rate.

4) The architecture of the suggested dilated convolution with an expanded receptive field of the
kernel is thoroughly examined in order to determine how it increases computation efficiency while
preserving high accuracy.

5) Employing a feature fusion technology significantly enhances the dynamical properties
offered by the two simultaneous convolutional layers.

The remaining portion of this work will be organized as follows: A summary of pertinent studies
and a thorough assessment of these investigations are presented in Section 2. The recommended
dilated PDCNN with an average ensemble approach is described in detail in section 3. Sections 4 and
5 describe the proposed approach are thoroughly compared to existing approaches, and the outcomes
of the experiment. Section 6, the last section of the study, brings the article to an end.

2. Related Work: A Brief Review

There are multiple studies in the literature that categorize brain tumors differently. A few of the
works that have been analyzed are listed here.

The method proposed by Anil et al. [15] consists of a classification network that divides the input
MRI images into two groups: one that contains tumors and the other that does not. In this study, the
classifier for brain cancer identification is retrained by applying the transfer learning approach. With
a success rate of 95.78%, the results show that VGG-19 is the most efficient. To categorize brain tumors,
Muhammad Sajjad et al. established a new CNN model [16]. First, segmentation is used to identify
the location of the tumor from MRI images. The dataset is enlarged in the next phase. The
categorization process ends up using the suggested CNN. Data has been classified with 94.58%
accuracy. Habib [17] recommended a CNN model that uses the Kaggle binary category of brain tumor
dataset-1, which is used in this study for recognizing brain cancers. With an updated neural network
architecture, this method can attain an accuracy of 88.7%. [5] describes the development of a model
centered on a simulated CNN for MRI analysis using matrix calculations and mathematical formulas.
155 brain tumors and 98 brains with no tumors are used to train this neural network employing MRL
The model demonstrates a tumor's location with a 96.7% correctness rate in the validation data.

A multi-pathway CNN structure was created by Diaz et al. [18] to automatically segment brain
tumors, including pituitary, meningioma, and glioma. They achieved 97.3% accuracy when testing
their proposed model on a publicly available T1-weighted contrast-enhanced MRI dataset. Their
atmosphere for learning was quite expensive though. Mahmoud Khaled Abd-Ellah et al.
recommended a PDCNN framework in [19] to identify and categorize gliomas from brain MRI
images. The proposed PDCNNSs are tested on the BraTS-2017 dataset. In this research, 1200 images
are employed for the PDCNN's training phase, 150 images are employed for its validation phase, and
450 images are applied for its testing phase. The framework has obtained impressive outcomes in
terms of sensitivity, specificity, and accuracy (97.44%, 97.00%, and 98.00%, consecutively).

To classify brain tumors, Kwabena Adu et al. proposed a less trainable CapsNet structure in [20].
This architecture uses segmented tumor regions as inputs, and it outperformed related works with a
greater accuracy of 95.54%. To improve and maintain the high resolution of the images being used
for better classification, the network also employed dilation. The architecture’s dilation has shortened
training times and decreased the number of elements that need to be learned. A. E. Minarno et al. use
a CNN structure to identify three different kinds of brain tumors on MRI images [21]. 3264 datasets
containing detailed images of meningioma tumors (937 photos), pituitary cancers (901 photos),
glioma tumors (926 photos), and other tumor-free datasets (500 photos) are analyzed in this study.
The CNN method is presented along with hyperparameter tuning to achieve the best possible results
in brain tumor categorization. This paper tests the framework in three distinct cases. Classifying brain
tumors with an accuracy of 96.00% is the result of the third model evaluation scenario.

3. Proposed Brain Tumor Detection and Classification Methodology
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https://doi.org/10.20944/preprints202405.0321.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0321.v1

Prior to beginning treatment, the most significant challenge is identifying and categorizing brain
MRI tumors. There aren't many studies on tumor diagnosis as a time-saving method, despite the
majority of brain tumor identification research focusing on tumor slicing and positioning methods.
Most DCNN-based methods are unable to acquire global context details of larger regions because of
the small receptive fields. Stacking multiple dilated convolutions has the disadvantage of creating a
grid effect, even though dilated convolution maintains data resolution at the output layer and
expands the receptive field without incorporating calculation. If the dilation factor (DF) is low, the
model may have a smaller receptive field but misses the coarse characteristics. In contrast, when the
DF is excessive, the model is unable to learn from the finer details. This study proposes the use of a
dilated PDCNN architecture that maintains a large receptive field to cope with gridding distortions
and capture both coarse and fine attributes from images. Initial input image resizing is followed by
grayscale transformation to minimize complexity. Data augmentation has since been used to expand
the number of datasets. While maintaining an extensive receptive field, dilated PDCNN utilizes the
reduced computational cost and helps to reduce gridding artifacts. The schematic representation of
the suggested dilated PDCNN design is presented in Figure 2.

The sequence that follows is the order in which the recommended structure's events occur: brain
MRI images are fed into the input layer of the dilated PDCNNSs after being processed. The initial
images are converted from various resolution dimensions to 32 x 32 pixels for training reasons. The
grayscale transformation of these input images contributes to a reduction in complexity. Following
that, new images are created from prior ones using data augmentation. The data set has been split
into training and testing subsets in order to train the suggested network. The PDCNN structure then
makes use of the chosen dilated rates to effectively classify the input images. Following the
classification of the images using four classifiers: support vector machine (SVM), K-Nearest Neighbor
(KNN), Naive Bayes (NB), and Decision Tree the brain tumor identification process is completed
using an average ensemble approach.

- : (Clacgifier
. »
Size Support Vector Machine
Dat Proposed Dilated PDCN . .
ata Classification
. 4
= Augmentation = Output
Gray Feature Extraction P K-Nearest ~> A
verage
Input v
. . > Naive Bayes
Anisotropic M Y
Diffusion 1’1
Decision Tree

Figure 2. Proposed methodology’s workflow.

The step-by-step flow of the suggested framework is mentioned in Algorithm 1.

Algorithm 1 Algorithm Based on Brain Tumor Detection and Classification Approach

Input Representative three different public datasets of brain MRI pictures: I;,j =
1,2,..,K ofsize W X H and the class labels € = 2, 3, 4.

Output Brain Tumor Detection & Classification

1:  Develop a Dilated PDCNN with selected parameters

2:  Accura§™ 0

3:  forepoch=1,2, ..., Ngpoens do
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4: forimage=1,2,......... , Kopatch size do
5: Image ,cgizeq — Resize (Image, Set W = 32,H = 32)
6: Image g, - Grayscale, Using Image g,q, = rgb2gray(Image,.siscq)
7: Image 450 *™== Augmentation ( Image g,q,)
8: Input layer takes Image 4,4, and sends it to the convolution layers to extract features
9: Suggested Parallel Dilated Deep Convolutional Layers
10: Train the dilated PDCNN model with ML classifiers including SVM, KNN, NB, and Decision
Tree.
11: Calculate the test accuracy for each ML classifier with the average ensemble
12: Calculate error rate, e(t)
13. end for
14. end for
3.1. Dataset

This study makes use of three distinct public datasets containing images from brain MRIs. The
details regarding the dataset are provided as follows.

Dataset-I: Through the Kaggle platform, the initial accessible dataset of binary-class MRI scans
of the brain has been obtained for simplicity and this dataset is widely used. This data is known as
dataset-I in this study [8]. This set of 253 brain MRI images includes 98 samples with tumors and 155
samples without tumors.

Dataset-II: The Figshare dataset containing 233 patients' brain MRI images is employed in this
research [13]. These brain MRI images are obtained at Nanfang Hospital and General Hospital, two
Chinese medical centers. This dataset, designated dataset-II, comprises 3064 brain MRI scans,
including 1426 glioma tumors, 708 meningioma tumors, and 930 pituitary tumors.

Dataset-III: The additional dataset utilized in this study can also be obtained via the Kaggle
website [14]; it contains brain MRI images of glioma tumor, meningioma tumor, no tumor, and
pituitary tumor, numbered 826, 822, 395, and 827, in that order. This collection of data is identified as
dataset-1III in the current research. The four different kinds of brain MRI images that are present in
dataset-III are shown in Figure 3.

(b) Glioma Tumor (c) Meningioma Tumor

(d) Pituitary Tumor
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Figure 3. Examples of brain MR images [14].

3.2. Data Preprocessing

A method for enhancing the efficiency of a machine learning model is called data preprocessing,
which involves purifying and preparing data for usage by the model. The skull photos in the MRI
datasets are not all identical in width, and height; instead, each image is scaled to 32 x 32 pixels for
training purposes. Grayscale conversion of these data contributes to a reduction in the level of
complexity. Digital images can be noise-free without having their edges blurred through the
utilization of the anisotropic diffusion filter.

Table 1. Filtered Dataset after Utilization of Anisotropic Diffusion Filter.

No Tumor Glioma Tumor Meningioma Pituitary Tumor

Tumor

Inputimage Input image Inputimage Inputimage

MRI Brain Pictures

[12]

Anisotropic Diffusion Filtered image

Filtered image
Filtered Pictures

3.3. Data Augmentation

Since deep learning needs a lot of data to extract information, data enhancement is being
employed at this time to increase the quantity of available data by altering the initial image.
Supplementary data can be used to increase the effectiveness of categorized outcomes. Illustrations
can undergo the following procedures: shifting, scaling, translation, and filtering methods. This
article uses the process of anisotropic diffusion filtering as augmentation.

Table 2. Dataset Statistics.

Category Original Augmented
Data Data
Number Percentage Number Percentage
Dataset I | Tumor | Yes 98 61% 196 61%
No 155 39% 310 39%
Total 253 100% 506 100%
Dataset 11 Glioma 1426 47% 2852 47%
Meningioma 708 23% 1416 23%
Pituitary 930 30% 1860 30%
Total 3064 100% 6128 100%
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Dataset Glioma 826 28.78% 1652 28.78%
I
Meningioma 822 28.64% 1644 28.64%
Pituitary 395 13.76% 790 13.76%
No Tumor 827 28.81% 1654 28.81%
Total 2870 100% 5740 100%

3.4. Developed Dilated PDCNN Design

This paper presents the design of a multiscale dilated two simultaneous deep CNN technique to
extract multiscale detail characteristics from MRI images. To increase the receptive field despite
adding more parameters to the network, dilated convolution is used. Additionally, batch
normalization is used to guarantee that the model's precision won't drop as the network depth
increases.

The multiscale extraction of characteristics, integrating path, and classification stage are the three
main elements of the suggested network, as illustrated in Figure 4. Since the suggested model uses
dilated CNNSs, the DF is an additional hyper-parameter that must be considered.

Both local and global characteristics are acquired in the dilated PDCNN framework through the
corresponding local and global routes. However, most DCNN-based methods cannot effectively
collect both local and global data because of their tiny receptive fields. Stacking multiple dilated
convolutions has the disadvantage of creating a grid effect, even though dilated convolution
maintains data resolution at the output layer and expands the receptive field without incorporating
computation. In the event that, with poor DF, the model may contain a smaller receptive field
nevertheless misses the coarse features. In contrast, with the excessive DF, the model is unable to pick
up from the finer details. By contrasting various DFs, these suitable DFs are chosen for both local and
global feature paths. Each of the convolutional layers is followed by the max-pooling layer for every
single path that down samples the outcome of the convolutional layer and uses the ReLU activation
function. In the end, an average ensemble method is employed to carry out the brain tumor
categorization process after four ML classifiers —have been training the images.

—)
)
fc 1 fc 2
J
Y

- . P N ak - .

ML Classifiers

Merge

—

1L

= =| [=> (VM KNN, NB,
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Figure 4. Proposed architecture of dilated PDCNN model.
The step-by-step flow of the suggested dilated PDCNN structure is mentioned in Algorithm 2.
Algorithm 2 Algorithm Based on Dilated PDCNN Model
Parallel Dilated Deep Convolutional Layers
i For the local and coarse path set the window size =5 and for the global and finer path set the
window size =12
ii. Divide I;,j =1,2,...,K intoblocks a;i=1,2,3,.. ,B,j=1,2,3,... K, of size
w X h X d,where d = Number of feature maps in I; and B =Number of blocks created from
each I;
iii. Flatten a;j into vector x; € R",i=1,2,..M,where M =K xB,andD =w X hxd
iv. Large dilation _rate: Coarse Features
V. Small dilation _rate: Finer Features
vi. Compare different configurations of dilation rates to find best-diagnosed results
. o . _(x forx=0
vii. Compute ReLU activation function, f(x) = {0 forx < 0}
viii. Compute cross-channel normalization, x = axx = 3 where &, 8, K are the
K+ window channel size
hyperparameters in the normalization and ss = sum of squares of the elements in the
normalization window
ix. Apply max-out plan, Z; to different feature maps Oy, 04,1, ... ... , 04, x_1which takes maximum
over the Os and maps it individually as represented in Z;; = max(0s;j, Og41,ijy - - 1 Ogik-1,if)
X. Apply Adam_Optimizer to minimize error rate
xi. Repeat steps ii, vii, ix twice for both parallel paths where filter number 96.

Xii. Update weights using back_propagation

xiii. Weightsg, ™ Save Weights

xiv. Employ the optimized weights to extract the multiscale features in the training set

3.4.1. Multiscale Feature Selection Path

CNNs have been used extensively in the field of medicine and have demonstrated good results
in the segmentation and classification of medical images [22, 23]. CNN architectures are built using
a variety of building blocks, such as Fully-Connected (FC) layers, Pooling layers, and Convolution
layers. Convolution layers, which combine linear and nonlinear operations—that is, activation
functions and convolution operations—are used in feature extraction [24,25]. Kernels and their
hyperparameters, such as the size, quantity, stride, padding, and activation function of each kernel,
are the parameters of convolution layers [26]. Six convolution layers are used in the two simultaneous
paths and the convolution operation occurs using equation (1).
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Where for r™* kernel in layer [, 0},, expresses the resultant feature map of position (p, q),
W, represents the weight vector’s values, I, ! indicates the input vector of position (p,q) in the
I —1,and bl is the symbol of bias. In addition, the activation function is f(.) [27]. By down-
sampling, pooling layers lower the dimensionality of the feature maps. The stride, padding, and filter
size are among the hyperparameters that comprise pooling layers, although they do not contain any
other parameters. Two common varieties of pooling layers are max pooling and global average
pooling. Maximum pooling layer is used in this structure. The output size of the pooling operation

in CNN is calculated using equation (2).

0 =[*L2] +1 @)

where n stands for the dimension of input, f is the kernel size, the padding size is

shown by p, and s is symbol of stride size [27].

The pooling layers' feature maps are smoothed out and sent to several one-dimensional (1D)
vectors known as FC layers. The most popular activation parameter for FC layers is the Rectified
Linear Unit (ReLU), which is illustrated in (3).

x foerO}

f(x)={o forx <0 ©)

The final FC layer's activation function is usually SoftMax for the categorization of multiple
classes and Sigmoid for binary classification. The node values in the final FC layer of the proposed
model has computed using (4), and the sigmoid activation function for a binary categorization
dataset-1 is calculated using (5) [24].

z=wlh+b 4)
P(y - 1|X) - 1+ex11) (-2)
©)

where h stands for the neural network layers' internal calculations, b shows the bias, and w stands
for the weights used to determine an output node's value. Furthermore, the input vector and output
class are denoted by x and y, respectively. The SoftMax activation function is calculated using (6)
for the multi-class categorization Figshare dataset-1I and Kaggle dataset-III in this proposed structure.

_exp(fy)
PO = %S exp (fo) ©)

where, x stands for the input vector and y for the class in the case of a multi-class categorization
problem. Additionally, the ¢* component of the class rating vector in the final FC layer is displayed
by f.. The category k with the highest P coefficient is chosen as the output class in the SoftMax
activation function [24]. A backpropagation algorithm has used during CNN training to adjust the
weights of the FC and convolution layers. The two main elements of backpropagation are the loss
function and Gradient Descent (GD), in which GD is used to minimize the loss function. Among the
loss functions most frequently employed by CNNSs is the Cross-Entropy (CE) loss function. For the
binary categorization dataset-I with sigmoid activation function the CE loss function is computed
using (7).

L=230, — [y log () + (1 - y) log(-o2 2

1+exp(-z) 1+exp (-2)

@)
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where zis computed using formula (4). For the multi-class categorization Figshare dataset-II and
Kaggle dataset-III with the SoftMax activation function the CE loss function is calculated using (8)
[27,28].

exp (fyi)

=1lyv _ SC s
L=~ Yy 10g(z§=1exp )

)] )

where N denotes the quantity of training elements, input image class i*" is indicated by y;, and the
ct™ component of the category scores vector in the final FC layer is presented by f. [27].

Expanding the receptive field in deep learning involves boosting the dimension and depth of
the convolution kernel, which in turn enhances the number of elements in the network. By adding
weights of zero to the conventional convolution kernel, dilated convolution may enhance the
receptive field without adding more network elements.

Equation (9) defines the convolution function * as follows: 1-D dilated convolution using DF,l =
1 connects input image F alongside kernel k. The term "standard CNN" refers to this 1-D
convolution. The network is identified as dilated CNN when [ rises.

(F k) () = Zssr=p F(s) X k(1)
)

Upon the introduction of a DF denoted as [ and through its expansion, [ is referred to as,

(F 1 k) () = stie=p F(s) X k(2) (10)

Using equation (10), the dilated convolution operation is calculated in this proposed structure.
The fundamental CNN has a value of [ = 1[28,29].

The main function of dilated convolution layer is to extract features. In addition to conveying
fine and high-level feature details, MRI images also contain rough and low-level information. As a
result, image data must be extracted at several scales. Specifically, the local and global routes are
employed to obtain the local and global features. Within the local route, the convolutional layers
make use of the small 5x5 pixel window dimension to provide low-level details about the images.
However, a vast number of filters with 12x12 pixels are present in the convolutional stages of the
global path. The same 5 by 5 filters are used by three different convolution layers throughout the
local path, and each layer's decremental even number of high DF (4,2,1) is the only factor used to
produce the coarse feature maps. Three distinct convolution layers in the global path employ
identical 12 x 12 filters, and the generation of finer feature maps is exclusively dependent on the tiny
DF (2,1,1) of every single layer. As illustrated in Figure 4, three convolution layers with distinct filter
numbers (128, 96, 96) are applied at each feature extraction path to extract image data at various scales.

Convl, Conv3, and Conv4 provide local as well as coarse features, while Conv2, Conv5, and
Conv6 supply global as well as fine features. The max-pooling layer is employed after each
convolutional layer for each path that down-samples the output of the convolutional layer. By
employing a 2 x 2 kernel, the max-pooling layers lower the dimension of the attributes that are
produced.

A dimension of (32, 32, 1) is assigned to each input tensor in the suggested model's structure. To
test the impact of the DF on the model's efficiency and comprehend the gridding impact brought
about by the dilation approach, the interior design is kept as simple as possible. In the local path,
layer Convl applies a 5 x 5 filter and a dilation factor of d;=4 to generate coarse feature maps (such
as shapes and contours); layer Conv3 applies the same filter and dilation factor of d,=2 along with
the final convolution to generate coarse feature maps once more; and layer Conv4 applies a 5 x 5 filter
and dilation factor of d;=1 to generate coarse feature maps. In the global route, layer Conv2 applies
a 12 x 12 filter and a dilation factor of d,=2, layer Conv5 applies the same filter and dilation factor of
ds=1 along with the last convolution to generate fine feature maps once more, and layer Convé
applies a 12 x 12 filter and a dilation factor of d¢=1 to generate fine feature maps. The activation
function of ReLU is utilized by all six convolutional stages.

3.4.2. Merge Stage

d0i:10.20944/preprints202405.0321.v1
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A merge layer connects the two routes, creating a single path with a cascaded link until it reaches
the endpoint. This process extracts multiscale features, where local paths with high dilation rates
extract local as well as coarse features, and global paths with low dilation rates extract global as well
as fine features. Two fully interconnected layers that are connected to a dropout layer through the
merging pathway come after a batch normalization layer and a ReLU layer. In order to address the
issue of performance degradation brought on by a boost in neural network stages, batch
normalization is used. Equation (11) provides the feature map that results after a merging phase [19].
Z= o(BN(f(X))) (11)
where o stands for the ReLU activation function, BN denotes the batch normalization function and
f(X) denotes the fused feature maps from each channel in the preceding paths.

3.4.3. Hyperparameter Tuning

Hyperparameter adjusting is a successful parameter searching technique for the suggested
dilated PDCNN framework. The dense layer, optimization, and dropout measure are among the
parameters that must be chosen to perform this PDCNN adjustment. It provides the framework with
the ideal set of parameters, producing the most effective results.

The training data for the simulated scenario is provided by the effective adjustment of the
hyperparameter, which includes the Adaptive Moment Estimation (Adam) optimizer, 0.3 dropout,
512 dense layers, and 0.0001 rate of learning. In this work, the weight of the layers is updated via
Adam, the optimizer that calculates the adaptive learning rates of every parameter. The training
setting employs a validation frequency of 20 Hz. The highest average accuracy for the test datasets is
collected for each run. When the epoch count reaches 70, the framework is trained employing a range
of epoch counts; it acquires 98.67% accuracy for dataset-1. It acquires 98.13% and 98.35% accuracy for
dataset-1II, and dataset-III respectively when the epoch number is 60.

Table 3. Hyper-parameter Settings for Model Training,.

Hyper-parameter Optimized
Value

Optimizer Adam

Dropout 0.3

Dense Layer 512

Learning Rate 0.0001

Maximum Epoch 50

Validation Frequency 20
Iteration Per Epoch 34

3.4.4. Feature Map of Dilated Convolutional Layers

A CNN feature map represents specific attributes in the input image as the result of a
convolutional layer. It is produced by filtering input images or the previous layers' feature map
output. The feature maps that are acquired from every convolutional layer are presented in Figure 5
and 6. In Figure 5, the low-level and coarse features of the three convolutional layers conv_1, conv_3,
and conv_4 having filters of 128, 96, and 96 are displayed. The feature maps in this figure are
primarily composed of coarse and local features which represent the texture in an image. In this local
path, a dilated CNN algorithm that has DFs associated with (d;= 4, d,=2, d;=1) is referred to as
dilated PDCNN (4, 2, 1). In Figure6, the high-level feature maps include contour representations,
shape descriptors and fine features of the deeper three convolutional layers conv_2, conv_5, and
conv_6 having the same filters, are shown. DFs corresponding to (d,=2, ds=1, dg=1) are used in this
global path. The multiscale feature maps, which are displayed in Figure 7, are greatly improved when
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these features are combined using a feature fusion technique. Figure 8 displays the final multiscale
features that are extracted, along with a fully connected layer that is prevented from overfitting by
employing the dropout technique.

Local & Coarse Features (conv_1[DF:4*4], conv_3[DF:2*2], and conv_4[DF:1*1])

Layer conv_1 Features Layer conv_3 Features Layer conv_4 Features

(a) (b) (©)

Figure 5. Local and Coarse feature maps of various convolutional layers of the Dilated PDCNN (a)
Feature map of conv_1-layer (b) Feature map of conv_3-layer (c) Feature map of conv_4-layer.

Global & Finer Features (conv_2[DF:2*2], conv_5[DF:1*1], and conv_6[DF:1*1])

Layer conv_2 Features Layer conv_5 Features Layer conv_6 Features

(a) (b) (c)

Figure 6. Global and finer feature maps of various convolutional layers of the Dilated PDCNN (a)
Feature map of conv_2-layer (b) Feature map of conv_5-layer (c) Feature map of conv_6-layer.

Layer addition Features

Figure 7. Addition of all features.


https://doi.org/10.20944/preprints202405.0321.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0321.v1

Figure 8. Features extraction after FC_2 layer.

3.4.5. Parameters for Dilated PDCNN Model

Both FC and convolutional layers provide parameters that can be learned. Parameters are the
quantities of weights that the CNN structure learns during training. It is possible to calculate the
convolutional layer parameters (F,,,,,) equation as follows:

Peonv = Fn * By * By * Cin + Fum
(12)

F, and F, stand for the length and width of the filter, accordingly. F,,,, indicates the quantity
of filters. C;, indicates the associated layer's input channel quantity. The parameters of the layer that
is fully connected (Py¢) are as follows:

Ppc = A(prev) * N(unit) + Nynie (13)

where Ag,rey) indicates the prior layer's activation pattern and N, denotes the number of
neurons that make up the present FC layer. There are no variables that can be learned in the max-
pooling layer. The batch-normalization layer's variables are the product of the number of channels
utilized in the preceding convolutional layer [10].

Table 4. Information about the Suggested Dilated PDCNN Framework.

Layer Type No of Filters Filter Size | Stride Dilation Activation Total

Factor Shape Learnable
Parameters

Image MRI - - - - 32x32x1 0

Conv layer 128 5x5 2,2 4,4 16x16x128 3328

ReLU - - - - 16x16x128 0

Cross Channel @ - - - - 16x16x128 0

Normalization

Max Pooling - 2x2 2,2 - 8x8x128 0

Conv layer 96 5x5 2,2 2,2 4x4x96 307296

Conv layer 128 12x12 2,2 2,2 16x16x128 18560

ReLU - - - - 4x4x96 0

Max Pooling - 2x2 2,2 - 2x2x96 0

Conv layer 96 5x5 2,2 1,1 1x1x96 230496
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ReLU - - - - 1x1x96 0

Max Pooling - 2x2 2,2 - 1x1x96 0

ReLU - - - - 16x16x128 0
Cross-Channel - - - - 16x16x128 0
Normalization

Max Pooling - 2x2 2.2 - 8x8x128 0

Conv layer 96 12x12 2,2 1,1 4x4x96 1769568
ReLU - - - - 4x4x96 0

Max - 232 2.2 - 2x2x96 0

Conv layer 96 12x12 2,2 1,1 1x1x96 1327200
ReLU - - - - 1x1x96 0

Max Pooling - 2x2 2,2 - 1x1x96 0
Elements-wise - - - - 1x1x96 0

addition of 2

inputs

Batch - - - - 1x1x96 192
Normalization

ReLU - - - - 1x1x96 0
FC_1 layer - - - - 1x1x512 49664
ReLU - - - - 1x1x512 0
Dropout layer - - - - 1x1x512 0
FC_2 layer - - - - 1x1x2 1026

Total = 3,707,

330

3.5. Classification Stage

In this categorization phase, extracting all the multiscale attributes from the last FC layer, four
types of classifiers: SVM, KNN, NB, and Decision tree are used to categorize the three types of brain
tumor datasets. These ML classifiers and their hyper-parameter settings used in this experiment for
brain tumor classification are discussed in the following subsections.

3.5.1. SVM

SVM, proposed by Vapnik, is one of the most powerful classification algorithms that works by
creating a hyperplane with the maximum margin between classes. SVM uses the kernel
function, K(x,,x;), to transform the original data space into another space with a higher dimension.
The hyperplane function for separating the data can be defined as follows [30]:

f () = Xher @YK Cexi) + b (14)
where x, is support vector data (deep features from brain MR image), a, is Lagrange multiplier,
and y, represent a target class of these three datasets employed in this paper, such that the first
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dataset is binary (normal and abnormal) class dataset, while the second dataset has three classes
(glioma, meningioma, and pituitary) and the third dataset has four different classes (normal, glioma,
meningioma, and pituitary tumor) withn=1, 2, 3, ..., N. In this work, the most commonly used kernel
function is used at the SVM algorithm is linear kernel.

As shown in (15), an actually separable case is handled using a linear kernel.
Linear: K (x,,x;) = (xp, %;) (15)
where K (x,,x;) represents kernel function.

Hence, a multiclass linear support vector machine with a linear kernel function and a zero
verbose value is employed in this suggested method.

3.5.2. K-NN

k-NN is one of the simplest classification techniques. It performs predictions directly from the
training set that is stored in the memory. For instance, to classify a new data instance (a deep feature
from brain MR image), k-NN chooses the set of k objects from the training instances that are closest
to the new data instance by calculating the distance and assigns the label with two classes (normal or
tumor), three classes (glioma, meningioma, and pituitary) or four classes (normal, glioma,
meningioma, and pituitary tumor) and does the selection based on the majority vote of its k neighbors
to the new data instance.

Manhattan distance and Euclidean distance are the most commonly used to measure the
closeness of the new data instance with the training data instances. In this work, the Euclidean
distance is used to measure for the k-NN algorithm. Euclidean distance d between data point x and
data point y are calculated as follows [27]:

d(x,y) = VXL —yi)? (16)

The brief summary of k-NN algorithm is illustrated below:

=  First select a suitable distance metric.
=  Store all the training data set P in pairs in the training phase as follows:

P =(,)i=1,..n (17)

where in the training dataset, y; is a training pattern, n is the amount of training patterns and ¢; is
its corresponding class.

= In the testing phase, compute the distances between the new features vector and the stored
(training data) features, and classify the new class example by a majority vote of its k

neighbors.

The correct classification given in the test phase is used to evaluate the accuracy of the algorithm.
If the result is not satisfactory, the k value can be adjusted until a reasonable level of accuracy is
obtained. It is noticeable here that the number of neighbors is set from 1 to 5 and selected the optimum
value of K is 5 which is applied for dataset-I, dataset-II, and dataset-III respectively with the highest
accuracy. The zero standardized value is used to standardize the predictors.

3.5.3. Naive Bayes (NB)

NB classifier is the ML classifier with the assumption of conditional independence between the
attributes given the class. In this article, the final class is predicted using vectors of attributes and
class prior probabilities, as shown in (18).

P (X=x|C=i)*P(C=i)
P (X=x)

P(C=ilX=x)=

(18)

Where X indicates the given data instance (extracted deep features from brain MR image)
which is represented by its feature vector (x4, ... ,x, ) and C is the class target (type of brain tumor)
with two classes (normal and tumor) for binary dataset-I or three classes (glioma, meningioma, and
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pituitary) for Figshare dataset-II, or four classes (normal, glioma, meningioma, and pituitary) for
multiclass Kaggle dataset-IIl . Here, P (X = x| C = i) in this classifier is computed by taking the
dataset's features to be independent, and calculating the probability as shown in (19) [27].
PX=xlC=i)=1I"-P(x|Cc=0 (19)

NB can save a significant amount of time and is appropriate for handling multi-class prediction
problems. The value for the minimum threshold of probabilities for the NB classifier is 0.001. For
every predictor and class combination, the kernel smoothing window width is automatically chosen
by default in this suggested approach.

3.5.4. Decision Tree

For both classification and regression, decision tree structures are a non-parametric supervised
learning technique. In this work, this technique is employed to build a model that, by utilizing basic
decision rules deduced from the data features extracted from brain MR images. With training vectors
x; € R" i=1,...,land a label vector y € R!, a decision tree successively divides the domain of features
so that instances that share similar desired values are organized together [31].

Three datasets are used in this proposed approach. Here dataset-I at node m be denoted by Q,,,.
Splitting 6 = (j,t,,) for every candidate which is composed of a characteristic j and threshold
tn,dividing the dataset-1Q,, into Qfﬁf ') and Q,T,fg " 6) subgroups

QeI (9) = {6, W) % < t)

(20)
Q" (0) = Qm \ Q" (®) (21)
Next, to calculate the quality of a potential split of node m, a loss function Hy() is used.
left right .
G(Qm 0) = "2 H (" (©)) + ™— H(Q},"" (8) (22)

This process should be carried out for Qfﬁf '(6*) and Q,r,fght (6%) subsets until the maximum
permitted depth is achieved. These steps are also followed for the other two datasets multiclass
Figshare dataset-II and Kaggle dataset-IIL

The decision tree can quickly determine which data is relevant and which is not. The maximum
number of branch nodes in the suggested method is fixed at 1. In this approach, there must be a
minimum of one leaf node.

3.5.5. Average Ensemble Method

Machine learning and signal analysis both use the statistical technique of ensemble averaging.
Model averaging is a machine learning technique for ensemble learning in which each member of the
ensemble makes an equal contribution to the ultimate prediction. A group of frameworks often
outperforms a single one because the individual errors in the models "average out." In average
ensemble method, the actions are:

» Create N experts, each starting at a different value: Typically, initial values are selected at random

from a distribution.
» Train every specialist independently.

> Add up all the experts and take the mean of their scores.

These steps of average ensemble method are used to average the accuracy to acquire the final
outcome in the proposed method [32,33].

4. Experimental Outcomes and Evaluation
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MATLARB is used to run the implementation program for the suggested dilated PDCNN model.
The computing device is equipped with a Core i5 processor manufactured by Intel, running at 3.2
GHz, eight GB of RAM, and Windows 10 operating system installed.

4.1. Performance Analysis of Suggested Dilated PDCNN Model

The confusion matrix is used to express the classification system's results. The efficiency is
evaluated using the following criterion [34].

True Positive+True Negative

Accuracy = 23
y (Positive+Negative) ( )
.. True Positive
Precision = — — (24)
(True Positive+False Positive)
True Negative
Recall = — - (25)
(False Positive+True Negative)
2+ True Positive
F1-Score = (26)

(2*True Positive+False Positive+False Negative)

Table 5 provides an overview of the dilated PDCNN algorithm's efficiency indicators using ML
classifiers over dataset-1. As per Table 5 findings, the dilated PDCNN model that incorporates KNN
and Decision Tree classifiers has the best F1-score, recall, accuracy, and precision in comparison with
the remaining models. The suggested dilated PDCNN model utilizing KNN and Decision Tree
classifiers has 100.00% for all performance criteria, which is better than the outcomes obtained by
other ML classifiers. The dilated PDCNN model that includes SVM and NB classifiers is noteworthy
for having 100% precision and recall, which is also the same as the dilated PDCNN model alongside
KNN and Decision Tree classifiers. However, the KNN and Decision Tree classifier execute better
concerning other performance indicators. The suggested dilated PDCNN utilizing the average
ensemble approach for the dataset-I has finalized accuracy, precision, recall, and F1-score values of
98.67%, 98.62%, 99.17%, and 98.28%, accordingly, after implementing the average ensemble
technique.

Table 5. Performance Parameters of Dilated PDCNN Model with ML Classifiers on Dataset-I.

Dilated PDCNN  Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Utilizing ML Classification

Dilated PDCNN 97.33 93.10 95.83 96.43
Dilated PDCNN with SVM 98.67 100.00 100.00 98.31
Dilated PDCNN with KNN 100.00 100.00 100.00 100.00
Dilated PDCNN with NB 97.33 100.00 100.00 96.67
Dilated PDCNN with Decision 100.00 100.00 100.00 100.00
Tree

Dilated PDCNN with Average 98.67 98.62 99.17 98.28
Ensemble

An overview of the dilated PDCNN algorithm's efficiency indicators using ML classifiers over
dataset-1I is provided in Table 6. The results shown in Table 6 demonstrate that, when contrasted to
other scenarios, the dilated PDCNN algorithm using the NB classifier provides the highest
performance indicators. The suggested dilated PDCNN model incorporating the NB classifier
outperforms the findings of the remaining ML classifiers alongside accuracy of 98.90%, precision of
98.67%, recall of 98.67%, and Fl-score of 98.67%. In the end, using the average ensemble approach,
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the suggested dilated PDCNN employing the average ensemble technique for the dataset-II has
accuracy, precision, recall, and fl-score values of 98.13%, 97.74%, 98.05%, and 97.80%, accordingly.

Table 6. Performance Parameters of Dilated PDCNN Model with ML Classifiers on Dataset-II.

Dilated PDCNN Models Accuracy (%)  Precision (%) Recall (%) F1-Score (%)
Utilizing ML Classification

Dilated PDCNN 98.20 98.00 98.33 98.00
Dilated PDCNN with SVM 97.72 97.33 97.33 97.33
Dilated PDCNN with KNN 97.60 97.00 97.60 97.30
Dilated PDCNN with NB 98.90 98.67 98.67 98.67
Dilated PDCNN with 98.21 97.67 98.33 97.67
Decision Tree

Dilated PDCNN  with 98.13 97.74 98.05 97.80

Average Ensemble

Table 7 provides an overview of the effective measurements of the suggested dilated PDCNN
model using machine learning classifiers for dataset-III. In comparison to other models, the accuracy,
precision, recall, and F1-score of the suggested dilated PDCNN alongside SVM classifier are 98.60%,
98.50%, 98.25%, and 98.50%, respectively, based on the results shown in Table 7. The findings of the
dilated PDCNN employing average ensemble technique for dataset-IIl are, after executing the
average ensemble strategy, 98.35%, 98.35%, 97.85%, and 98.20%, accordingly, in terms of accuracy,
precision, recall, and F1-score.

Table 7. Performance Parameters of Dilated PDCNN Model with ML Classifiers on Dataset-III.

Dilated PDCNN Models Accuracy Precision Recall F1-Score (%)

Utilizing ML Classification (%) (%) (%)

Dilated PDCNN 98.21 98.25 97.75 98.25
Dilated PDCNN with SVM 98.60 98.50 98.25 98.50
Dilated PDCNN with KNN 98.50 98.50 98.00 98.50
Dilated PDCNN with NB 98.57 98.50 98.00 98.50
Dilated PDCNN with Decision 97.85 98.00 97.25 97.25
Tree

Dilated PDCNN with Average 98.35 98.35 97.85 98.20
Ensemble

4.2. Comparative Analysis of Different Dilation Rate

While dilated convolution retains data resolution at the output layer and increases the receptive
field without adding computation, stacking several dilated convolutions has the drawback of
producing a grid effect. Validating the results involves comparing multiple combinations of dilation
rates for the various convolution layers. Large dilation rates may impact tiny object recognition. As
a result, the DF has gradually decreased (even-numbered arithmetic decreasing) at the local path in
the suggested framework. By doing this, the dilated feature map's sparsity is reduced, and more data
can be extracted from the investigated region. At the global path, the low DF (2,1,1) has been carried
out to extract the fine features.
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100.00%
98.00%
96.00%
94.00%

92.00%
90.00%
88.00%
86.00%

84.00%

Accuracy

Dataset-1 Dataset-2 D;aset—S
Global (4,2,1),Local(4,2,1)  96.00% 96.90% 93.20%

Global (4,2,1),Local(8,4,2)  94.70% 95.27% 90%
mGlobal (4,2,1),local(1,1,1)  94.67% 96.60% 94.60%
mGlobal (2,1,1),Local(4,2,1)  97.33% 98.20% 97.94% |

mGlobal (1,1,1),Local(2,2,2)  97.30% 97.70% 93.70%

Figure 9. Comparing accuracy across different configurations of dilation rates.

A comprehensive review of the gridding issue and the consequences of different dilation rates
can be found in the accompanying Figure 9. The poor efficiency of the (4, 2, 1) dilated value for the
global pathway as well as (8, 4, 2) dilated value for the local route of the suggested model is caused
by the gridding phenomenon, which arises when high DF are used. This limits the framework from
acquiring finer characteristics. When a high DF (4,2,1) is used for both local and global paths, the
accuracy increases more than before. On the contrary, using low dilation rates, the model only learns
fine features. When low DF (1,1,1) is used in the global path and (2,2,2) is used for the local path, the
value of accuracy for dataset-1, dataset-1I, and dataset-III is 97.30%, 97.70%, and 93.70% respectively.
When a low DF (2,1,1) is used for the global feature and a high DF (4,2,1) is used for the local feature,
the highest accuracy is achieved. The highest accuracy for dataset-I, dataset-II, and dataset-III is
97.33%, 98.20%, and 97.94% respectively. Providing the best-case scenario, a well-balanced model
(4,2,1) for the local path and (2,1,1) for the global path may acquire both the coarse as well as fine
characteristics of the pictures.

4.3. Evaluation Measurements of the Proposed System on the Three Datasets

With the SVM, KNN, NB, and Decision Tree classifiers for dataset-I, Table 8 illustrates the
classification accuracy, erroneous, duration, and kappa scores for the suggested PDCNN as well as
dilated PDCNN architectures. When the expected precision of the random classifier is considered,
the kappa statistic expresses how closely the instances identified by the classification model matched
the data assigned as ground truth. In comparison to the PDCNN alongside the average ensemble
model, the dilated PDCNN has a larger kappa. The error rate has reduced, and the elapsed time has
increased following the application of dilation to the PDCNN with the average ensemble model.

Table 8. Evaluation Results of the Proposed System on the Binary Classification Dataset-I.

Structure Classifier Performance Indicators

Accuracy (%)  Error (%) Time (s) Kappa

PDCNN Custom PDCNN 96.03 3.97 662 0.917
PDCNN and SVM 97.33 2.67 1020 0.943
PDCNN and KNN 96.00 4.00 1069 0.915
PDCNN and NB 94.67 5.33 1079 0.888
PDCNN and Decision 98.67 1.33 1070 0.972

Tree
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Average Ensemble 96.54 3.46 980 0.927
Dilated Custom PDCNN 97.33 2.67 1683 0.943
PDCNN

PDCNN and SVM 98.67 1.33 1020 0.972

PDCNN and KNN 100.00 0.00 1223 1.000

PDCNN and NB 97.33 2.67 1223 0.944

PDCNN and Decision 100.00 0.00 1223 1.000

Tree

Average Ensemble 98.67 1.33 1274 0.972

The success rate, error, period, and kappa statistics for the suggested PDCNN and dilated
PDCNN architectures employing the SVM, KNN, NB, and Decision Tree classifiers for dataset-II are
presented in Table 9. When the expected precision of the random classifier is considered, the kappa
statistic expresses how closely the instances identified by the classification model matched the data
assigned as ground truth. As compared to the PDCNN employing the average ensemble model's
kappa, the dilated PDCNN offers greater kappa. The error rate has dropped when dilation is applied
to the PDCNN using the average ensemble method, but the time that passed has increased.

Table 9. Evaluation Results of the Proposed System on the Multiclass Figshare Dataset-1I.

Structure Classifier Performance Indicators

Accuracy (%)  Error (%) Time (s) Kappa

PDCNN Custom PDCNN 97.64 2.36 8050 0.963
PDCNN and SVM 97.71 2.29 6106 0.960
PDCNN and KNN 97.40 2.60 6307 0.959
PDCNN and NB 97.40 2.60 4998 0.959
PDCNN and Decision 96.60 3.40 7170 0.946
Tree
Average Ensemble 97.35 2.65 6526 0.958
Dilated Custom PDCNN 98.20 1.80 7204 0.972
PDCNN
PDCNN and SVM 97.72 2.28 6106 0.962
PDCNN and KNN 97.60 2.40 6187 0.961
PDCNN and NB 98.90 1.10 6149 0.982
PDCNN and Decision 98.21 1.79 8381 0.972
Tree
Average Ensemble 98.13 1.87 6805 0.970

Table 10 presents the kappa values, accuracy, error, and training duration for the recommended
PDCNN and dilated PDCNN models that employ the SVM, KNN, NB, and Decision Tree classifiers
for dataset-III, in that order. When compared to the PDCNN employing an average ensemble model,
the dilated PDCNN has a higher kappa value. The error rate has reduced, and the elapsed time has
increased following the application of dilation to the PDCNN with the average ensemble model.

Table 10. Evaluation Results of the Proposed System on the Multiclass Kaggle Dataset-III
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Structure Classifier Performance Indicators

Accuracy (%)  Error (%) Time (s) Kappa

PDCNN Custom PDCNN 96.80 3.20 5633 0.956
PDCNN and SVM 97.94 2.06 4462 0.972
PDCNN and KNN 97.80 2.20 5753 0.969
PDCNN and NB 97.90 2.10 5753 0.972
PDCNN and Decision 97.40 2.60 5753 0.965
Tree
Average Ensemble 97.58 2.42 5470 0.967
Dilated Custom PDCNN 98.21 1.79 4891 0.976
PDCNN
PDCNN and SVM 98.60 1.40 4739 0.980
PDCNN and KNN 98.50 1.50 4739 0.979
PDCNN and NB 98.57 1.43 4739 0.980
PDCNN and Decision 97.85 2.15 4739 0.971
Tree
Average Ensemble 98.35 1.65 4769 0.977

4.4. Impact of Applying Dilation on the Proposed Model

In the categories of efficiency, precision, recall, Fl-score, error rate, kappa, and training time,
Figure 10 shows that the suggested dilated PDCNN alongside the average ensemble approach
executes better than the conventional PDCNN alongside the average ensemble framework. Values of
the effectiveness indicators will increase even further if dilation is applied to increase the efficiency
of the recommended approach.
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Figure 10. Performance metrics comparison of (a) accuracy (b) precision (c) recall (d) F1-score (e) error
rate (f) kappa and (g) execution time comparison along three types of brain tumor datasets.

These findings show that in comparison to the proposed PDCNN model using the average
ensemble technique, the proposed dilated average ensemble classifier for three types of dataset
indicates a higher accuracy, precision, recall, F1-score, kappa, and lower error rate, execution time.

4.5. Comparison of the Suggested Model with Prior Investigations Based on Three Datasets

A comprehensive assessment is made at the end of the validation process for the proposed
approach. A brief overview is shown in Table 11.
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Table 11. Assessment of the Employed Kaggle and Figshare Datasets with the Methods Currently in
Use.
No | Authors Structure Year Data Type Accuracy (%)
1. | P. Afsharetal. [12] | Capsule Networks 2019 | Figshare Dataset-1I | 90.89
2. | C.L.Choudhuryetal. | CNN 2020 | Binary Dataset-I 96.08
(35]
3. | H.H. Sultanetal. [36] | Resizet Augmentation | 2019 | Figshare Dataset-1I | 96.13
+ CNN +
Hyperparameter
Tuning
4. | Suhib et. al [18] Gray Transformation + | 2020 | Binary Dataset-I 96.7
Resize + Flatten + CNN
5. | A. E. Minarno et al. | Resizet Augmentation | 2021 | Kaggle Dataset-III | 96.00
[21] + CNN+
Hyperparameter
Tuning
6. | Priyansh et al. [37] CNN-Based  Transfer | 2021 | Binary Dataset-I Resnet-50-95,
Learning Approach VGG-16- 90,
Inception-V3-
55
7. | T.Rahmanetal. [38] | Resizet+ Gray+ Augmen- | 2022 | Binary Dataset-I 96.9
tation+ Binary+ CNN
8. | A.Biswasetal. [39] Resize+ Anisotropic | 2023 | Figshare Dataset-II | 96
Diffusion Filter+
Adaptive  Histogram
Equalizationt DCNN-
SVM
9. | HAA.Muniraetal. [40] | Thresholding + | 2022 | Figshare Dataset-II | CNN-RF-96.52
Cropping+  Resizing+ Kaggle Dataset-II | CNN-SVM-
Rescaling+ ~ CNN-RE 95.41
and CNN-SVM
10. | T. Rahman et al. [34] | Resize + Gray | 2023 | Binary Dataset-I 97.33
Transformation + Figshare Dataset-II | 97.60
Augmentation + Kaggle Dataset-III | 98.12
PDCNN
11. | Proposed Method Resize + Gray scale - Binary Dataset-I | 98.67
Transformation+ Figshare Dataset- | 98.13
Augmentation + II
Dilated PDCNN+ Kaggle Dataset-III | 98.35
Machine Learning
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Classifiers+ Average

Ensemble

5. Discussion

With an increasing number of patients, manually analyzing MRI images has grown more
complicated, time-consuming, and frequently inaccurate. Conventional machine learning techniques
utilize handmade properties, which reduces the solution's durability and raises its cost. Nonetheless,
there are situations when supervised learning models perform better than unsupervised learning
strategies, leading to an overfitted structure that is inappropriate for another large database. These
problems emphasize how crucial it is to create a fully machine learning-based classification system
for brain tumors. By combining the average ensemble technique with PDCNN, this investigation
presents a novel approach to the identification and classification of brain tumors. The dilated PDCNN
architecture includes both local and global multiscale feature selection paths, a merging phase, and
categorization pathways. The initial pictures are converted to grayscale, which makes the process
easier. After that, new images are made from old ones by employing data augmentation. Using a
modest window size of 5x5 pixels and gradually high dilation rates (4,2,1) for each convolution layer,
the convolutional layers in the local path collect coarse characteristics and provide local data to the
images. In contrast, the global path's convolutional layers obtain fine details by using a large window
dimension of 12 by 12 pixels and low dilation rates (2,1,1) for every layer of convolution. ReLU
activation function and max-pooling layer are applied after each convolutional layer for each path
that down-samples the convolutional layer output. A fusion layer connects the two parallel pathways,
forming a single path with a cascading link that continues until it reaches the end destination. Two
fully connected layers that are attached to a dropout layer that is included in the merging route come
after abatch-normalized layer and a ReLU layer. At the output path, the four classifier types—SVM,
KNN, NB, and Decision Tree—are used to execute the brain tumor categorization procedure. A
regularization method called dropout is also employed to stop the training data from being
overfitting.

Tables 5-7 present the performance parameters of dilated PDCNN model with ML classifiers on
binary Dataset-I, multiclass figshare Dataset-Il and Multiclass Kaggle Dataset-III. Among all the
performance metrics, including accuracy, precision, recall, and F1-score, for three different brain
tumor datasets employing the average ensemble technique, binary classification Dataset-I provides
the best outcomes. The value of accuracy, precision, recall, and F1-score of dilated PDCNN model on
binary classification Dataset-I is 98.67%, 98.62%, 99.17% and 98.28% respectively.

The impact of different dilation rates on the model's accuracy has been examined for the dilated
PDCNN. The comparison analysis among various dilation rate arrangements for the various
convolution layers is displayed in Figure 9. The comparative study demonstrates that the
decremental large dilation rate (4, 2, 1) for the local path and the low dilation rate (1, 1, 1) for the
global path yield the best results, based on an understanding of the gridding phenomenon and
various recommendations for the dilation rate parameter for each layer. For datasets I, II, and III, the
highest accuracy values obtained are 98.67%, 98.13%, and 98.35%. This demonstrates that while the
global path (lower dilation rates) gains knowledge from the finer features, the local path (higher
dilation rates) concentrates on the coarse features. The best outcomes are obtained with this
combination.

Tables 8-10 displays the evaluation results including accuracy, error rate, time and kappa value
of the proposed system on the three types of datasets. The lowest error rate 1.33% is provided by
binary classification Dataset- I, and the highest value of kappa is provided by 0.977 is provided by
multiclass Kaggle Dataset-III.

The results shown in Figure 10 demonstrate that in terms of accuracy, precision, recall, F1-score,
error rate, kappa, and training duration, the suggested dilated PDCNN with the average ensemble
model performs better than the standard PDCNN with the average ensemble approach. The
performance indicators' values will increase even further if the three different types of datasets are
dilated to increase the suggested dilated PDCNN's efficiency with the average ensemble model. A


https://doi.org/10.20944/preprints202405.0321.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0321.v1

25

thorough comparison is done once the evaluation of the proposed method is accomplished. The
findings demonstrate that the suggested simultaneous network topology outperforms detection and
classification techniques that have been previously published.

6. Conclusion and Future Work

Since brain tumors vary in shape, dimension, and structure, proper identification of these
conditions remains extremely difficult. It is well-known how important it is to detect brain tumors
early to receive the right medical care. This study proposed a dilated PDCNN structure with ML
classifiers to detect and classify brain tumors from MRI images. The proposed dilated PDCNN with
the average ensemble method is evaluated for binary and multi-class classification on the Kaggle
dataset, which contains four different types of tumor images, while the Figshare dataset contains
three types of tumor images. The suggested dilated convolution with an expanded receptive field of
the kernel has increased the computation efficiency while preserving high accuracy. The framework
achieved outstanding accuracy, precision, recall, and Fl-score regarding the binary brain cancer
dataset-1. In order to gain a better understanding of the inner workings of the network and its
effectiveness of the dilation rate parameter, experimental evaluation can be performed on other
datasets in future investigations. Additionally, studies can be carried out to identify brain tumors
with greater accuracy by utilizing actual patient information from any source (various images
captured by scanners).
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