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Article 
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Short-Term PV Power Forecasting Incorporating Data 
from Neighboring Stations 

Feng Hu, Linghua Zhang * and Jiaqi Wang  

Nanjing University of Posts and Telecommunications, China 

* Correspondence: zhanglh@njupt.edu.cn 

Abstract: To enhance the safety of power grid operations, this study proposes a high-precision short-term 

photovoltaic power prediction method that integrates information from surrounding photovoltaic stations and 

the Conv-LSTM-ATT model. In the deep learning prediction model, not only is numerical weather prediction 

(NWP) data from the target photovoltaic station used as input features, but also highly correlated features from 

nearby photovoltaic stations are incorporated. The research begins by analyzing the correlation between 

irradiance and power sequences, along with distance factors, to calculate a composite similarity index between 

the target and other regional photovoltaic stations. Stations with high similarity indices are then selected as 

data sources. Subsequently, Bayesian optimization techniques are employed to find the optimal data fusion 

ratios. Ultimately, using the selected data, power prediction modeling is conducted via the Conv-LSTM-ATT 

deep neural network. Experimental results confirm the superiority of the proposed model, which demonstrates 

higher predictive accuracy compared to three other classical models. The data fusion strategy determined by 

Bayesian optimization significantly enhances prediction accuracy, reducing the root mean square error (RMSE) 

of the test set by 20.04%, 28.24%, and 30.94% for three weather types, respectively. 

Keywords: photovoltaic power forecasting; LSTM; CNN; attention mechanism; Conv-LSTM  

module 

 

1. Introduction 

Solar energy, as a renewable energy source that is inexhaustible and sustainable, holds a 

significant position in long-term energy strategies due to its ample cleanliness, relative abundance, 

low maintenance requirements, resource abundance, and potential economic benefits [1,2]. Among 

various solar energy generation methods, photovoltaic power has garnered widespread attention in 

recent years [3]. With the increasing installed capacity and share, the stochastic and fluctuating 

characteristics of distributed photovoltaic systems have become impossible to overlook in terms of 

their impact on grid security dispatch and field operation management [4]. Accurate prediction of 

photovoltaic power generation can provide conventional power plants with sufficient time to start 

up and maintain proper reserves [5], thereby ensuring the safe and stable operation of the power grid 

and reducing operational costs. 

Related Work on PV Generation Forecasting 

Photovoltaic power prediction has been a hot topic in recent years. Many researchers have 

conducted extensive work in this area. Forecast periods in photovoltaic power prediction are 

categorized into four distinct time windows: ultra-short, short, medium, and long [6]. In these 

windows, ultra-short-term forecasts encompass predictions within an hour, crucial for immediate 

operational adjustments. Short-term forecasts, spanning from one hour to a full day, cater to daily 

management and responsiveness. The medium-term window, extending from a day up to several 

weeks or months, is vital for scheduling maintenance and preparatory operations. Long-term 

forecasts, projecting several months to years ahead, are pivotal for strategic planning and 

participating in energy markets [7]. 
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As to prediction techniques, the forecast methods can be broadly categorized into three types: 

physics-based methods, statistical methods, and hybrid methods. Physics-based methods [8] rely on 

meteorological data, geographical information, and detailed photovoltaic cell physical model 

information to simulate the power generation process. By studying the model's power generation 

process, they predict solar radiation intensity, and the power generation can be obtained from the 

predicted solar radiation intensity. This type of method typically does not require historical data. 

However, due to the challenge of obtaining accurate photovoltaic cell physical model data and the 

limited resolution of geographical information data, the accuracy of physics-based prediction 

methods may not be ideal. Statistical methods [9–11] work by analyzing a large amount of historical 

data and establishing inherent mapping relationships to directly predict photovoltaic power. 

However, due to the stochastic and fluctuating nature of photovoltaic power, the generalization 

ability of statistical methods may be reduced. Hybrid methods [12,13] combine both physics-based 

and statistical approaches to leverage the strengths of each and address their weaknesses. These 

methods aim to improve prediction accuracy and robustness by integrating physical understanding 

with data-driven insights.  

Recently, deep learning [14–16] has attracted a great deal of attention. A study [17] proposed an 

RNN (Recurrent Neural Network) model for solving complex nonlinear mapping problem. 

However, RNN often struggles with long-term data dependencies due to vanishing gradients. 

Another research [18] employed Long Short-Term Memory network (LSTM), successfully addressing 

these gradient issues inherent in traditional RNN. Despite its effectiveness, LSTM have its own set of 

limitations [19,20]. A combination of a Bi-directional Long-Short Term Memory (BiLSTM) network 

and a copula sampling method has been utilized to create representative scenarios for photovoltaic 

(PV) power production, as noted in references [21,22]. Earlier, in [23], a Generative Adversarial 

Network (GAN) was initially used for the generation of these PV power scenarios. To enhance the 

understanding of the temporal correlation in renewable energy, the GAN's generator incorporated 

LSTM units [24]. Numerous articles [25–28], have been focusing on predicting renewable energy, 

highlighting the benefits of Big Data analysis and sophisticated feature extraction. Methods based on 

deep learning techniques are particularly effective in exploring the attributes of higher-dimensional 

data, bypassing the need for complex pre-existing knowledge. However, the above methods predict 

PV power scenarios based only on historical PV power data of target PV station, and the coupling 

relationship between target site and neighboring sites is ignored, which may miss valid 

representative scenarios of PV power.  

To address the aforementioned issue, this paper proposes a data-driven framework that 

considers spatial and temporal information from a large number of neighboring sites to develop a 

short-term photovoltaic power prediction model for the target site. By introducing the Conv-LSTM-

ATT model algorithm, which combines the Conv-LSTM module with the Attention mechanism, the 

model adaptively allocates different levels of attention to the photovoltaic power time series at 

different time points, allowing it to focus on crucial time series and improve prediction accuracy. The 

main contributions of this paper are list as below. 

(1) High-Precision Short-Term Photovoltaic Power Prediction Method: This method integrates 

numerical weather prediction (NWP) data from the target photovoltaic station and highly correlated 

features from surrounding photovoltaic stations using a deep learning model, significantly 

enhancing the safety of grid operations. 

(2) Calculation and Application of Composite Similarity Index: The study first analyzes the 

correlation between irradiance and power sequences and their relationship with distance factors, 

calculates a composite similarity index between the target site and other regional photovoltaic 

stations, and selects data sources based on similarity, providing more precise data input for model 

training. 

(3) Application of Bayesian Optimization Techniques: Optimal data fusion ratios are determined 

through Bayesian optimization techniques, effectively balancing exploration and exploitation, 

enhancing the model's predictive accuracy and stability. 
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(4) Development and Application of the Conv-LSTM-ATT Model: A hybrid deep learning model 

combining Convolutional Long Short-Term Memory (Conv-LSTM) with Attention Mechanism (ATT) 

has been developed, which better handles the spatiotemporal features in time series data, improving 

the accuracy of crucial time series predictions. 

(5) Experimental Validation: Tests on real-world datasets validate the superiority of the 

proposed model over three other classical models in short-term photovoltaic power prediction. 

The structure of this paper is outlined as follows. In Section 1, we provide an overview of the 

related work in the field. In Section 2, we present the problem formulations. Our novel deep learning 

approach for PV power prediction is introduced in Section 3. The real-world dataset is used for 

conducting experiments in Section 4, where we compare the prediction performance with several 

existing methods. Finally, in Section 5, we conclude the paper. 

2. Problem Formulation 

Actual observational data indicates that photovoltaic (PV) power outputs from geographically 

close locations exhibit high similarity due to similar random factors, such as solar radiation intensity 

and weather variations. Therefore, the spatial correlation of PV power generation can be described 

using output spatial correlation. Specifically, output spatial correlation refers to the degree of 

similarity between PV power output sequences in different geographical regions. These similarities 

decrease as the distance between two locations increases. In the latitude direction, as latitude 

increases, solar radiation intensity gradually decreases, leading to higher output spatial correlation 

between neighboring regions. In the longitude direction, the phase difference between PV power 

output sequences in two locations increases with the time difference, thereby affecting the output 

spatial correlation in the longitude direction. 

In this paper, we propose a data-driven framework aimed at leveraging spatial-temporal 

correlations and periodic characteristics for short-term photovoltaic (PV) power prediction. This 

framework, considering the information from neighboring sites, is depicted in Figure 1. and primarily 

consists of the following steps: 

1. Distributed PV power data are collected to form a spatial-temporal data set 

2. PV power time series are detrended to exclude impacts of diurnal cycle. 

3. detrended solar data from multiple sites are fused to form the input for data-driven forecasting 

models 

4. data-driven forecasting models are developed based on the fused data. 
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Figure 1. The spatiotemporal data-driven framework for photovoltaic (PV) power forecasting. 

This framework illustrates how spatial-temporal datasets are fused using historical data from 

neighboring power stations. The historical PV power of station 𝑝 at time 𝑡 can be represented as 

𝑓𝑡
𝑝. The historical data of station 𝑝 from time 𝑡 − 𝑛 to 𝑡 is described as 𝑋𝑡

𝑝
= [𝑓𝑡−𝑛

𝑝
, 𝑓𝑡−(𝑛−1)

𝑝
, ⋯ , 𝑓𝑡

𝑝
]

𝑇

. 

Then, we combine the historical PV power from its neighboring stations to construct a spatiotemporal 

PV power matrix, as follows: 
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The overall timeline is defined as the union of historical 𝑇ℎ and future timesteps 𝑇𝑓, and 𝑇ℎ ∪

𝑇ℎ = {𝑡1, 𝑡2, ⋯ , 𝑡ℎ} ∪ {𝑡ℎ+1, 𝑡ℎ+𝑓}. 

The objective is to forecast the PV generation 𝑌𝑇𝑓

𝑃̂  based on the provided numerical weather 

prediction (NWP) 𝑋𝑁𝑊𝑃 and fused data 𝑿𝑡
𝑠. This task can be framed as an optimization problem, 

where the aim is to determine the sequence conditional on the future 𝑓 timesteps. 

𝐹(𝑋𝑁𝑊𝑃; 𝑿𝑡
𝑠) → 𝑌𝑇𝑓

𝑃̂   

Here → represents the complex nonlinear mapping. 

Research manuscripts reporting large datasets that are deposited in a publicly available database 

should specify where the data have been deposited and provide the relevant accession numbers. If 

the accession numbers have not yet been obtained at the time of submission, please state that they 

will be provided during review. They must be provided prior to publication. 

Interventionary studies involving animals or humans, and other studies that require ethical 

approval, must list the authority that provided approval and the corresponding ethical approval 

code. 

3. Materials and Methods 

3.1. Overview of the Proposed Model 

This section proposes a novel hybrid deep architecture for short-term photovoltaic (PV) power 

forecasting. The proposed model consists of a Conv-LSTM module and two Bi-LSTM modules. 

Figure 2 illustrates the overall architecture of the proposed model. The Conv-LSTM module 

comprises a convolutional neural network (CNN) and an LSTM network, where the CNN is utilized 

to extract spatial features of PV power, which are then connected to the LSTM network to capture 

short-term temporal features of PV power. Simultaneously, the Bi-LSTM modules are employed to 

extract auxiliary information features, such as global irradiation, direct irradiation, temperature, and 

humidity, etc. The spatial-temporal features and auxiliary information features are fused into a 

feature vector through the Feature Fusion (FF) layer. Finally, two fully connected layers (FC layers) 

are applied as regression layers for prediction. Additionally, an attention mechanism is incorporated 

into the Conv-LSTM module to automatically explore varying levels of time series importance at 

different time points. In the subsequent subsections, a detailed description of each module will be 

provided. 
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Figure 2. Short-term photovoltaic (PV) power forecasting model based on deep learning.  
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3.2. Selection of Similar Neighboring PV Plants Based on Composite Similarity Index 

To enhance the accuracy of photovoltaic (PV) power output forecasts, it is vital to integrate 

information from adjacent PV plants as input features. This integration is predicated on the premise 

that these neighboring plants must exhibit a significant similarity with the target PV plant. A 

sophisticated approach involves constructing a composite correlation index that encapsulates both 

the irradiance and power sequence correlations across various PV plants, reflecting the degree of 

similarity in PV plant data over different time scales. The mathematical formulation used to calculate 

this composite correlation is given by: 

ϕi = ϕRgi

2 + ϕRdi

2 + ϕPi

2  (2) 

where dRgi, dRdi, anddPirepresent the correlations of the historical global irradiance Rg component, 

the diffuse irradianceRdcomponent, and the power sequence between the i th neighboring PV plant 

and the target plant, respectively. ∅i  denotes the overall composite correlation for the i  th 

neighboring PV plant relative to the target plant. 

To ensure comprehensive similarity, it is also critical to evaluate the amplitude of irradiance and 

power output. Thus, a composite distance metric is employed: 

di = dRgi

2 + dRdi

2 + dPi

2  (3) 

In this formula, dRgi ,dRdi  and dPi quantify the distances pertaining to the global irradiance 

component Rg , diffuse irradiance component Rd , and power sequence between the i  th 

neighboring PV plant and the target plant, respectively. di represents the composite distance for the 

i th plant, with smaller values indicating a closer match in irradiance and power profiles. 

From these metrics, a composite similarity index Ψi is calculated as follows: 

Ψi =
ϕi

di
 (4) 

This index measures the relative similarity between each neighboring PV plant and the target 

plant. After determining Ψi for all neighbors, they are ranked in descending order of similarity. The 

top k plants are then selected to create a set of neighboring PV plants with the highest degrees of 

similarity to the target plant. 

This structured methodology not only systematizes the selection of relevant input features from 

similar PV plants but also substantiates the inclusion of such features in enhancing the precision of 

PV power forecasts. 

3.3. K-Means++ Approach 

The K-means++ algorithm [29] is an improvement over the K-means algorithm, specifically 

addressing the issue of the dependency on the initial centroids. The process of the K-means++ 

algorithm is as follows: 

1. From the given dataset samples S = {s₁, s₂, . . . , sp}, randomly select one sample as the initial 

cluster center c₁. 

2. Calculate the Euclidean distance between each sample sᵢ(i = 1,2, ⋯ , p) in the dataset and the 

initialized cluster centers. Select the shortest distance and denote it as D(sᵢ). 

3. To calculate the probability P(si) of each sample si(i = 1,2, ⋯ , p) being selected as the next 

cluster center and choose the sample with the highest probability as the new cluster center, the 

expression for P(si)  is given by Equation (5). The process is repeated until K clusters are 

determined, and their corresponding cluster centers are denoted as C = {C1, C2, ⋯ , Ck}. 

P(si) =
D2(si)

∑ D2(si)si∈S
 (5) 

where D2(si) represents the Euclidean distance between the sample si and the current cluster center 

C. 
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4. To compute the Euclidean distance between each sample si in the dataset and the K cluster 

centers, and then assign each sample si to the cluster corresponding to the closest cluster center. 

5. For each cluster Ci, recompute the cluster center ci (i.e., the centroid of all samples belonging to 

that cluster). The expression for ci can be calculated using the following formula (Equation (3)): 

ci =
1

|Ci|
∑ s

s∈Ci

 (6) 

where |Ci| represents the total number of samples in cluster Ci, s represents the samples in cluster 

Ci.  

6. Repeat steps 4) and 5) until the positions of the cluster centers no longer change. 

3.4. CNN 

CNN [30] , as a widely used neural network in the field of deep learning, can be applied to learn 

local trends in time series data. The CNN network consists of an input layer, convolutional layers, 

pooling layers, fully connected layers, and an output layer. The input layer reads the data, and the 

convolutional layers perform convolutional operations on the multi-dimensional feature grid data 

using local connections and parameter sharing techniques, mapping local features to global features. 

The pooling layer's role is to perform dimensionality reduction and sampling by calculating the 

maximum and average values of the window matrix through a sliding window, progressively 

compressing data and parameters, while enhancing the robustness of the extracted features. The fully 

connected layers connect all the neurons and produce the output through the hidden layer. The 

structure of the CNN network is shown in Figure 3.  

.

.

.

Input 
layer

Convolutional 
layer Pooling layer

Fully 
connected 

layer

Output 
layer

 

Figure 3. Structure diagram of CNN. 

3.5. LSTM 

Photovoltaic (PV) power data is a set of time series data with the characteristic that later data 

points are related to previous ones. In comparison to traditional Recurrent Neural Networks (RNNs), 

LSTM neural networks [31] offer specific advantages. The gated mechanism in LSTM allows for 

controlled information flow, enabling selective transmission and forgetting of information across 

different time steps. This helps to overcome the vanishing gradient problem and enables the network 

to better learn and retain long-term memories. Additionally, LSTM's memory cell state allows for 

long-term information retention, reducing the issue of information loss and facilitating the capture 

of important features within sequences. The structure of an LSTM network is depicted in Figure 4. 
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𝜎 𝜎 𝜎 𝑡𝑎𝑛ℎ 

𝑡𝑎𝑛ℎ 
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× × 
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𝐶𝑡−1 
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ℎ𝑡  

 

Figure 4. The LSTM neuron structure. 
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ft = σ(Wf ⋅ [ht−1, xt] + bf) (7) 

 it = σ(Wi ⋅ [ht−1, xt] + bi) (8) 

ot = σ(Wo ⋅ [ht−1, xt] + bo) (9) 

c̃t = tanh(Wc ⋅ [ht−1, xt] + bc) (10) 

ct = ft ∗ ct−1 + it ∗ c̃t (11) 

ht = ot ∗ tanh(ct) (12) 

In the above equations, ft represents the forget gate, it represents the input gate, ot represents 

the output gate, ct  represents the cell state, c̃t  represents the cell state candidate value, and ht 

represents the hidden state value. W and b are the weight and bias parameters, respectively. σ 

denotes the sigmoid activation function. After obtaining the outputs of the three gates using 

Equations (7), (8), and (9), the cell state ct and the final output ht of the cell can be further computed 

using Equations (10) and (11). 

3.6. Conv-LSTM 

In this paper, the Conv-LSTM module [32] serves as the main component of our proposed model, 

aiming to extract spatiotemporal features from PV power generation data. This module is a fusion of 

a convolutional neural network (CNN) and an LSTM network, as depicted in Figure 5. The CNN part 

comprises two convolutional layers, while the LSTM part consists of two LSTM layers. 

The Conv-LSTM model combines the respective strengths of CNN and LSTM, allowing it to 

effectively handle spatio-temporal sequence data, extract multi-layer features, model long-term 

dependencies, and capture spatial relationships. As a result of these advantages, the Conv-LSTM 

model demonstrates superior performance in various tasks, including image prediction, video 

analysis, PV power forecasting, and traffic flow prediction. 
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Figure 5. The attention-based Conv-LSTM module. 

The Conv-LSTM module receives as input a spatial-temporal matrix, denoted  Xt
s, as elucidated 

in Equation (1). This matrix embodies the historical PV power at the forecast target location and its 

proximate areas. The extraction of spatial features is facilitated through the execution of a one-

dimensional convolution operation across the flow data Xt
s at each time step t. A one-dimensional 

convolution kernel filter maneuvers across the data, capturing the local perceptual domain. The 

operational mechanism of the convolution kernel filter can be expressed mathematically as: 

Yt
s = σ(Ws ∗ Xt

s + bs) (13) 

In this expression,  Ws represents the filter’s weights, bs signifies the bias, Xt
s indicates the PV 

power input at temporal position t, symbol ∗ denotes the convolution operation, σ is the activation 

function and Yt
s is the output of the convolutional layer. This methodology adeptly facilitates the 

extraction of spatial features from adjacent observation points. 
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The pooling layer is not applied after the convolutional layer in our model since the dimension 

of the spatial feature is not large. Denote Gt
s as the output of the convolutional layer 2. After the 

spatial information is processed by the two convolutional layers, then the output is connected to an 

LSTM network. 

3.7. Attention Mechnism 

The attention mechanism [33,34] simulates how the human brain processes information, thereby 

enhancing the ability of neural networks to handle information. It has been widely applied in 

machine translation, speech recognition, image processing, and other related fields. Applying 

attention mechanism to deep neural networks allows the network to adaptively focus on input 

features that are more relevant to the current output while reducing interference from other features. 

Using the LSTM hidden layer output vectors H = {h1, h2, … , ht}  as the input to the attention 

mechanism, the attention mechanism seeks attention weights αi for each hi, which can be obtained 

using Equations (14) and (15). 

ei = tanh(Whhi + bh) , ei ∈ [−1,1] (14) 

αi =
exp(ei)

∑  t
i=1 exp(ei)

, ∑  

t

i=1

αi = 1 (15) 

Wh is the weight matrix for hi, and bh is the bias term. The values of Wh and bh will change 

during the model training process. The attention vector H′ = {h1
′ , h2

′ , … ht
′} can be obtained using 

Equation (16). 

hi
′ = αi ∙ hi (16) 

Figure 6 illustrates how the attention mechanism is applied to the Conv-LSTM module. As 

shown in Figure 6, the output of the Conv-LSTM at each time step t is computed as the weighted 

sum of the LSTM network output Ht
s. The specific calculation is as follows: 

Ht
a = ∑ βkHt−(k−1)

s    

n+1

k=1

 (17) 

where n + 1 is the sequence length, and βk represents the attention value at time t − (k − 1). The 

attention βk can be calculated as follows: 

βk =
exp(sk)

∑ sk
n+1
k=1

 (18) 

The vector 𝐬 = (s1, s2, ⋯ , s1, )T represents the importance of each component in the power time 

series and can be obtained as follows: 

st = Vs
Ttanh(WhsGt

s + WlsHt
s) (19) 

where Vs
T, Wxs, and Whs are learnable parameters, and Ht

s represents the hidden output from the 

Conv-LSTM network. 

From Equations (18) and (19), it can be observed that the attention value β at time t depends 

on the current time step t and its previous n time steps of inputs Gt
s and hidden variables Ht

s. The 

attention value β can also be seen as the activation of the power selection gate, where a set of gates 

controls the amount of information flowing into the LSTM network at each time step. A higher 

activation value indicates that the power's contribution to the final prediction result is more 

significant. 
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Figure 6. Attention and the Conv-LSTM network. 

3.8. Applying Bayesian Optimization to Optimize Data Fusion Ratios in Photovoltaic Power Forecasting 

This study aims to determine the optimal data fusion ratio by minimizing the root mean square 

error (RMSE) of photovoltaic power prediction. To achieve this goal, Bayesian optimization, an 

advanced optimization method suitable for handling high-cost evaluation problems, was employed. 

In the photovoltaic power prediction model, this study specifically focuses on optimizing the data 

fusion ratio. The optimization process involves constructing a Gaussian Process (GP) model of the 

objective function, which not only predicts the values of the objective function but also provides a 

measure of the uncertainty of these predictions, thereby helping to effectively balance the exploration 

and exploitation of the parameter space under the guidance of uncertainty. 

To accommodate the data fusion needs under different weather conditions, the definition of the 

objective function f(𝜃) has been adjusted to a more general form. The specific expression of the 

function is: 

f(θ) =
1

n
∑i=1

n (yi − ∑j∈JrSj ⋅ fSj(Xi,Sj))
2

 (20) 

where  θ = {rSj ∣ j ∈ J} represents the proportion of data from each station in the selected set of 

stations J under specific weather conditions. This form of the objective function allows the model to 

adjust the number and proportion of integrated stations according to specific environmental 

conditions, optimizing prediction performance. Each component of the objective function is 

explained in detail as follows: 

θ = {rSj ∣ j ∈ J} are the model parameters, representing the fusion ratio of data from each station 

in the selected station set J under given weather conditions. These fusion ratio coefficients rSj need 

to be optimized to minimize the overall prediction error. 

n is the total number of data points, used to calculate the overall prediction error. 

𝑦𝑖 is the actual observed value at the 𝑖th data point. 

𝑓𝑆𝑗(𝑋𝑖,𝑆𝑗) is the predictive function output based on the input data 𝑋𝑖,𝑆𝑗   from station J. 

The summation part ∑𝑗∈𝐽𝑟𝑆𝑗 ⋅ 𝑓𝑆𝑗(𝑋𝑖,𝑆𝑗)  calculates the weighted sum of the predictive 

outputs from all selected stations, where the weights are their respective fusion ratios 𝑟𝑆𝑗 , reflecting 

each station's contribution to the final prediction. The goal is to adjust these fusion ratios to find the 

parameter configuration that minimizes the overall prediction error. 

Through the Bayesian optimization framework, this study effectively explores the optimal 

settings of these fusion ratio parameters. The Gaussian Process (GP) model provides a method to 

quantify the uncertainty of the objective function predictions, while the acquisition function, such as 

Expected Improvement (EI), guides the search of the parameter space, prioritizing the exploration of 

parameter combinations that are likely to significantly enhance model performance. This approach 

not only improves the accuracy and reliability of the model under various environmental conditions 
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but also ensures that the optimal data fusion ratio is achieved under different weather conditions, 

effectively enhancing the performance of the photovoltaic power prediction model. 

4. Results 

4.1. Data Source 

The photovoltaic dataset used in this study is provided by the Desert Knowledge Australia Solar 

Centre (DKASC). This region hosts numerous photovoltaic power stations, each with its unique set 

of data records. The selected dataset collects measured data on power and various meteorological 

factors from January 2020 to December 2020, including global radiation, rainfall, humidity, ambient 

temperature, and wind direction, etc. These data are crucial for deeply understanding the 

relationship between photovoltaic power output and meteorological conditions. Specifically, the 

global radiation data reflects solar radiation, which is one of the primary factors influencing 

photovoltaic power generation. During the experiment, the dataset was divided into training, 

validation, and test sets in a ratio of 8:1:1. As photovoltaic components significantly reduce power 

output during early morning and late afternoon, with most of the time having zero or near-zero 

power, the original data has a resolution of 5 minutes. Therefore, the prediction time is chosen to be 

from 7:00 AM to 6:00 PM each day, with a total of 133 sampling points as experimental samples. 

Annual distribution of output power data for selected PV station is shown in Figure 7.                        

 

Figure 7. PV power generation data in three dimension. 

In this study, the K-means++ algorithm is employed to partition the historical photovoltaic 

dataset. To enhance the effectiveness of data partitioning, each day is treated as a sample, and for 

each sample, the standard deviation 𝜎 of the global radiation, relative humidity, and temperature, 

which are three meteorological features, are calculated. Additionally, the skewness coefficient 𝑘𝑢𝑟 

and the mean value 𝑥̅ are computed. These computed values are then used to form a feature vector 

for clustering purposes. The historical photovoltaic data is categorized into three classes: sunny, 

cloudy, and rainy/snowy weather conditions. The results of the data partitioning using the K-

means++ algorithm are presented in Figure 8. This chart clearly displays the data distribution under 

different weather conditions, providing intuitive visual support for our analysis. Among these, there 

are 136 days of sunny weather, 133 days of cloudy weather, and 93 days of rainy/snowy weather. 
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Figure 8. Distribution diagram of weather types based on K-Means++ clustering. 

4.2. Photovoltaic Power Influencing Factors and Correlation Analysis 

Pearson correlation coefficient (PCC) analysis method is employed to calculate the correlation 

coefficients between each factor and PV power output. The results indicate that the global radiation 

has the highest correlation coefficient, while direct radiation, humidity and temperature have 

relatively lower correlation coefficients, and wind speed has the smallest correlation coefficient.  

𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥)

𝑛

𝑖=1
(𝑦𝑖 − 𝑦)

√∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2√∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦)2
 (21) 

𝑥 and 𝑦 are the average values of the elements in x and y, respectively. After computing all the 

data sample through Equation (21), we can get the variable correlation table, where Rg, Rd, H, T, W 

and Wd represent global radiation, direct radiation, humidity, temperature, wind speed and wind 

direction. 

Table 1. depicts the PCC values of variables. The larger the absolute value of PCC indicates a 

stronger association. In this paper, meteorological variables with PCC values greater than 0.4 with 

load are screened as input variables for CNN to reduce the redundancy of inputs and to lay the 

foundation for improving the prediction accuracy. 

Table 1. Correlation analysis. 

Factors Rg Rd H T W Wd 

Correlation 0.98 0.8 -0.46 0.42 0.32 0.08 

From this table, it can be seen that there are 4 elements (global irradiation, direct irradiation, 

humidity, temperature) that have a strong correlation with power. Therefore, the dimension of the 

input sequence is 4. 

Because the input sequence contains the information of multiple moments before the prediction 

point. The computing time and memory consumption will increase dramatically if the length of input 

sequence is too long. Therefore, the length of the input sequence is of great significance for this 

experiment. In this paper, we use the autocorrelation coefficient to determine the length of the input 

sequence. The formula for the autocorrelation coefficient with delay h is as follows: 

𝑟ℎ = ∑  

𝑛−ℎ

𝑖=1

(𝑥𝑖 − 𝑥)(𝑥𝑖+ℎ − 𝑥)

∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2

 (22) 

In the formula, 𝑥𝑖 represent for the historical power Sequence, 𝑥𝑖+ℎ represent for the power 

sequence with a time lag of h * 5min. 
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According to Table 2, we can see that the correlation decreases gradually with the increase of 

time delay h. Based on the previous analysis, the input sequence length of 12 is suitable. Each input 

data is 12 groups of 4-dimensional data before the power point to be predicted. 

Table 2. Autocorrelation analysis. 

Lag Time Correlation Lag Time Correlation 

1 0.988 11 0.633 

2 0.965 12 0.576 

3 0.959 13 0.499 

4 0.925 14 0.427 

5 0.908 15 0.358 

6 0.889 16 0.294 

7 0.836 17 0.231 

8 0.789 18 0.155 

9 0.742 19 0.081 

10 0.695 20 0.031 

4.3. Model Evaluation Metrics 

Four metrics are introduced to evaluate the model performance: Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Coefficient of 

Determination (R2), as expressed in Equation (23), Equation (24), Equation (25) and Equation (26). 

For RMSE, MAPE and MAE, a smaller value indicates better prediction results. On the other hand, 

for the Coefficient of Determination R2, a higher value indicates better prediction results. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (23) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖̂
|

𝑛

𝑖=1

 (24) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̃)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1

 (25) 

𝑀𝐴𝐸 =
100%

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 (26) 

In the above formulas, 𝑦𝑖 and 𝑦𝑖̂  are the true and predicted values of PV power at time 𝑖 , 

respectively. 𝑦𝑖̃ represents the average of true PV power values, and 𝑛 is the number of test samples. 

4.4. Training Configuration 

During the training phase, a loss function was established to update the parameters within the 

mode. This loss function encompasses Mean Squared Error (𝑀𝑆𝐸) loss, L1 weight regularization, and 

L2 weight regularization. By minimizing the loss function, the model's parameters are updated using 

the backpropagation algorithm and an optimizer, gradually refining the model and enhancing its 

predictive performance. The loss function is defined as follows: 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 +
𝜆1

𝑛
‖𝑤‖1 +

𝜆2

𝑛
‖𝑤‖2 (27) 

The 𝑀𝑆𝐸 loss measures the average squared difference between the model's predicted values 

and the true values, serving as an indicator of the model's fitting ability and predictive accuracy. The 

L1 and L2 weight regularization terms are employed to control the complexity of the model and 
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prevent overfitting. λ1 and λ2 are regularization parameters, while 𝑤  represents the weight 

coefficients, helping to balance the importance of different components within the loss function. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (28) 

where 𝑦𝑖  represents the actual photovoltaic power data, 𝑦𝑖̂  denotes the predicted photovoltaic 

power data, and 𝑛 represents the size of the dataset. 

The objective of L1 regularization included in the loss function is to achieve a sparse model and 

prevent overfitting through the utilization of the deep model. Moreover, L2 regularization in the loss 

function serves to prevent the occurrence of excessively large parameter values within the model, 

thereby averting the dominance of a single feature over the predictive performance of the model. L1 

regularization and L2 regularization can be defined as follows: 

‖𝑤‖1 = ∑ ‖𝑤𝑖‖
𝑛
𝑖=1 , ‖𝑤‖2 = ∑ √𝑊𝑖

2𝑛
𝑖=1  (29) 

Then, the loss function can be rewritten as follows:  

𝐿𝑜𝑠𝑠 =
1

𝑛
(∑(𝑦𝑖 − 𝑦𝑖̂)

2 +

𝑛

𝑖=1

𝜆1 ∑|𝑊𝑖|

𝑛

𝑖=1

+ 𝜆2 ∑ √𝑊𝑖
2

𝑛

𝑖=1

) (30) 

In the proposed model, the Adam optimization algorithm [35] is utilized to optimize the model’s 

parameters, which adaptively adjusts the learning rate. 

4.5. Model Setting 

In the experiments, the convolutional layer has 10 filters with the size of each filter being 3. The 

stride of the sliding window for the input data is set to 1. The learning rate is set to 0.01, the batch 

size is 128, and the number of training iterations is set to 100. The Rectified linear activation unit 

(ReLU) is adopted as the activation function. 

All experimental platforms are built on a high-performance server equipped with an Intel Core 

i7-8700 CPU and one Nvidia GeForce RTX 2080Ti Graphics card. The programming language is 

Python 3.7.0 with PyTorch 1.7.1. 

4.6. Selection Results of Neighboring Photovoltaic Stations 

In this study, the Composite Similarity Index (Ψi) was developed to effectively evaluate and 

select neighboring PV plants. This index reflects the similarity between neighboring and target PV 

stations in terms of irradiance and power sequence correlations. The Tables 3–5 below displays the 

normalized composite similarity index for neighboring PV stations numbered 2 to 7 under sunny, 

cloudy, and rainy Weather. 

Table 3. Composite similarity of neighboring PV stations under sunny weather. 

Neighboring PV Station Number Normalized Composite Similarity𝚿𝐢 

2 0.68 

3 0.90 

4 1.00 

5 0.75 

6 0.92 

7 0.85 

Table 4. Composite similarity of neighboring PV stations under cloudy weather. 

Neighboring PV Station Number Normalized Composite Similarity𝚿𝐢 

2 0.88 

3 0.95 
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4 0.99 

5 1.00 

6 0.92 

7 0.65 

Table 5. Composite similarity of neighboring PV stations under rainy weather. 

Neighboring PV Station Number Normalized Composite Similarity𝚿𝐢 

2 0.77 

3 0.90 

4 0.93 

5 0.73 

6 1.00 

7 0.82 

To accurately determine the optimal integration parameter k value, this study employed a Conv-

LSTM model, specifically focusing on the predictive performance for Station No. 1. This paper 

systematically observed the 12-hour average prediction errors under three different meteorological 

conditions: sunny, cloudy, and snowy/rainy, detailed in Tables 6, 7 and 8 respectively. The analysis 

showed that the errors decreased and then increased as the number of neighboring PV stations 

integrated increases in order of decreasing composite similarity. Notably, when no neighboring PV 

stations were integrated (k=0), the prediction errors were higher since the model relied solely on data 

from a single station. Specifically, under sunny conditions, the lowest prediction error occurred when 

k was 4 (see Table 6); under cloudy conditions, the minimum error was achieved at k =5 (see Table 

7); and under snowy/rainy conditions, the optimal performance was observed when k was 3 (see 

Table 8). In this study, the data from neighboring PV stations was integrated in equal proportions 

based on the number of stations, ensuring uniform contributions from each station to the model. In 

summary, this study establishes that the best numbers of neighboring PV stations to integrate under 

varying weather conditions are 4, 5, and 3, respectively. 

Table 6. Impact of the Number of Neighboring PV Stations on Prediction Accuracy for Sunny 

Weather. 

Neighboring PV Stations 

(K) 
0 1 2 3 4 5 6 

RMSE/W 0.1636 0.1622 0.1611 0.1600 0.1583 0.1605 0.1629 

Table 7. Impact of the Number of Neighboring PV Stations on Prediction Accuracy for cloudy 

Weather. 

Neighboring PV Stations (K) 0 1 2 3 4 5 6 

RMSE/W 0.2341 0.2229 0.2114 0.2083 0.2011 0.1996 0.2157 

Table 8. Impact of the Number of Neighboring PV Stations on Prediction Accuracy for rainy 

Weather. 

Neighboring PV Stations (K) 0 1 2 3 4 5 6 

RMSE/W 0.2467 0.2400 0.2349 0.2269 0.2292 0.2307 0.2425 

4.7. Comparison and Analysis of the Results 

To validate the effectiveness of the Conv-LSTM-ATT model, this study selects one day each of 

sunny, cloudy, and rainy weather from the three types of weather clustered as the test set for 

prediction. At the same time, we introduce three deep learning models (LSTM, Bi-LSTM, Conv-

LSTM) as benchmarks for comparison. The model proposed in this study and several baseline models 
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are compared in experiments under the same dataset, that is, only the historical data of the target site 

is used, and then their prediction results are analyzed and compared. 

Figures 9–11 show the prediction results of four different models under different weather 

conditions, and Table 9, Table 10, and Table 11 respectively show the prediction errors of the 

centralized models under different weather conditions. In comparing the data from the three tables, 

it is evident that the model proposed in this article achieves the lowest RMSE values for sunny, 

cloudy, and rainy weather conditions, which are 0.1636, 0.2358, and 0.2421, respectively, when 

compared to other models. Table 9 shows that in sunny conditions, the photovoltaic output power 

fluctuates slightly, and the power curve changes relatively smoothly. Several models can predict the 

trend of photovoltaic output power. The evaluation indicators R2 of the LSTM, Bi-LSTM, and Conv-

LSTM prediction models are 0.933, 0.942, and 0.951, respectively, and the evaluation indicator R2 of 

the model proposed in this article is 0.973, which is higher than the other models, and the effect is the 

best. Table 10 shows that in cloudy conditions, the continuous movement of clouds causes the solar 

radiation intensity received by the photovoltaic components to change continuously, leading to large 

fluctuations in the fitting curve of the predicted and actual values of photovoltaic output power. 

Table 11 shows that in rainy and snowy weather, the RMSEs of the LSTM, Bi-LSTM, and Conv-LSTM 

prediction models are 0.3226, 0.3218, and 0.2886, respectively, and the RMSE of the model proposed 

in this article is 0.2421, which is lower than the other three prediction models. The above analysis 

indicates that the model proposed in this article has more outstanding prediction effects under three 

types of weather conditions. 

Compared to the LSTM model, the model proposed in this paper has reduced the RMSE by 

18.28%, 27.99%, and 24.95% in sunny, cloudy, and rainy weather, respectively, the MAPE has been 

reduced by 36.76%, 45.26% and 41.73% respectively and the MAE has been reduced by 24.97%, 

27.10%, and 16.53%, respectively. Compared to the Bi-LSTM model, the proposed model has reduced 

the RMSE by 13.02%, 22.86%, and 24.76% in sunny, cloudy, and rainy weather, respectively, the 

MAPE has been reduced by 20.86%, 33.62%, 34.28%, respectively and the MAE has been reduced by 

16.03%, 19.37%, and 12.14%, respectively. Compared to the Conv-LSTM model, the proposed model 

has reduced the RMSE by 10.84%, 14.28%, and 16.11% in sunny, cloudy, and rainy weather, 

respectively, the MAPE has been reduced by 8.76%, 7.23%, 15.98%, respectively and the MAE has 

been reduced by 13.07%, 15.26%, and 6.06%, respectively. The comparison results indicate that the 

model proposed in this paper effectively combines the advantages of both CNN and LSTM methods, 

and uses the attention mechanism to compensate for the deficiency of the LSTM model in retaining 

key information when the input sequence is long, thereby effectively improving the prediction 

accuracy.The processing time is crucial for real-time applications, where faster predictions are often 

desirable. In our experiments, the Conv-LSTM-ATT model shows a slightly higher processing time 

compared to the other models. This increment in time can be attributed to the complexity of the 

model, especially due to the integration of the attention mechanism. While it does add to the 

prediction time, the improvement in prediction accuracy (as shown by the lower MAPE, MAE and 

RMSE values) could justify this trade-off in contexts where prediction accuracy is more critical than 

the speed of computation. 
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Figure 9. Forecast result under sunny weather. 

 

Figure 10. Forecast result under cloudy weather. 

 

Figure 11. Forecast result under rainy weather. 
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Table 9. Forecast errors of different forecasting models for sunny weather. 

Indexs LSTM Bi-LSTM Conv-LSTM Conv-LSTM-ATT 

R2 0.933 0.942 0.951 0.973 

RMSE/W 0.2002 0.1881 0.1835 0.1636 

MAE/W 0.1710 0.1528 0.1476 0.1283 

MAPE/% 6.42 5.13 4.45 4.06 

Time/s 542 623 691 755 

Table 10. Forecast errors of different forecasting models for cloudy weather. 

Indexs LSTM BiLSTM Conv-LSTM Conv-LSTM-ATT 

R2 0.919 0.924 0.949 0.965 

RMSE/W 0.3275 0.3057 0.2751 0.2358 

MAE/W 0.2535 0.2292 0.2181 0.1848 

MAPE/% 8.44 6.96 4.98 4.62 

Time/s 559 635 689 739 

Table 11. Forecast errors of different forecasting models for rainy weather. 

Indexs LSTM Bi-LSTM Conv-LSTM Conv-LSTM-ATT 

R2 0.892 0.901 0.918 0.934 

RMSE/W 0.3226 0.3218 0.2886 0.2421 

MAE/W 0.2487 0.2363 0.2210 0.2076 

MAPE/% 11.55 10.24 8.01 6.73 

Time/s 556 628 699 785 

In this study, Bayesian optimization was applied to adjust the data fusion ratios in a photovoltaic 

power prediction model. By setting 100 iterations, using the Expected Improvement (EI) acquisition 

function to balance exploration and exploitation, and setting the data fusion ratio parameter space 

from 0% to 100%, the research team comprehensively covered all configurations from no fusion to 

full fusion. The optimization results revealed the optimal data fusion ratios under different weather 

conditions as follows: under sunny conditions, 38.72%, 2.36%, 26.83%, and 14.50%; under cloudy 

conditions, 49.11%, 6.77%, 23.46%, 9.88%, and 17.68%; under snowy/rainy conditions, 30.18%, 12.05%, 

and 19.45%. These optimized fusion ratios were then applied to the training set data under 

corresponding weather conditions, followed by evaluation using the Conv-LSTM-ATT prediction 

model. 

The experimental design involved comparing the impact of five different data fusion strategies 

on prediction performance, including: "No Fusion", using only historical data from the target site; 

"Uniform Fusion", evenly fusing data from all surrounding stations; "Similarity-Filtered Fusion", 

evenly fusing data from nearby stations selected based on similarity; "Bayesian Optimized Similarity 

Fusion", determining the optimal fusion ratios for nearby stations based on similarity through 

Bayesian optimization; and "Actual Values" as a reference for model prediction accuracy. 

Experimental results showed that, compared to no fusion and uniform fusion strategies, the 

similarity-filtered fusion and Bayesian optimized similarity fusion strategies significantly improved 

prediction accuracy, particularly the Bayesian optimized similarity fusion, which performed better 

than other strategies under all test conditions. 

These findings indicate that appropriate data fusion strategies can significantly enhance the 

performance of photovoltaic power prediction models, and Bayesian optimization serves as a 

powerful tool to effectively implement these strategies, especially in environments requiring high 

data diversity and complexity. Figures 12–14 show the prediction results of the proposed model at 

different integration ratios, and Tables 12–14 show the prediction errors of the proposed model at 

different integration ratios. Through the experiment, we can draw the following conclusions. 
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1. Significant Reduction in Error Metrics: The introduction of more data from neighboring stations 

significantly reduced error metrics such as RMSE and MAE. By applying Bayesian optimization 

to determine the optimal fusion ratios of data from nearby stations based on similarity, the RMSE 

decreased by 20.04%, 28.24%, and 30.94% under sunny, cloudy, and rainy conditions 

respectively, and MAPE decreased by 30.30%, 18.83%, and 29.27%. Similarly, MAE also 

decreased by 23.07%, 17.58%, and 31.36% under these weather conditions. These reductions 

emphasize that the model's ability to predict PV power output is enhanced when supported with 

more extensive spatial data. 

2. Variability in Prediction Accuracy Across Weather Conditions: The improvement in prediction 

accuracy varies across different weather conditions. Particularly during rainy conditions, 

because more data from surrounding areas were integrated, compensating for the lack of 

historical data at the target site, the reduction in prediction error was the greatest, reaching 

31.36%. This shows that the model especially benefits from additional data where there is a 

deficiency, enhancing its accuracy. 

3. Improvement in R2 Value and the Trade-off with Time: As more data is integrated, the model's 

R2 value improves, indicating a stronger correlation between predicted and actual values. 

However, this accuracy comes at the cost of increased computational time, especially as the 

degree of data integration increases, leading to longer prediction times.  

In predicting photovoltaic power, the Conv-LSTM-ATT model that integrates spatial data from 

surrounding stations exhibits excellent performance. This strategy effectively utilizes diverse data 

sources, enhancing the model's predictive accuracy across various weather conditions, and proving 

its practical application potential in real-world PV power forecasting scenarios. 

 

Figure 12. Forecast result under rainy weather. 
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Figure 13. Forecast result under rainy weather. 

 

Figure 14. Forecast result under rainy weather. 

Table 12. Comparison of the prediction errors of sunny weather under different fusion ratios. 

Indexs No Fusion Uniform Fusion 
Similarity-Flitered 

Fusion 

Bayesian 

Optimized 

Similarity Fusion 

R2 0.973 0.983 0.991 0.996 

RMSE/W 0.1636 0.1418 0.1345 0.1308 

MAE/W 0.1283 0.1122 0.1063 0.0987 

MAPE/% 4.06 3.82 3.25 2.83 

Time/s 755 794 824 876 
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Table 13. Comparison of the prediction errors of cloudy weather under different fusion ratios. 

Indexs No Fusion Uniform Fusion 
Similarity-

Flitered Fusion 

Bayesian 

Optimized 

Similarity Fusion 

R2 0.965 0.972 0.980 0.985 

RMSE/W 0.2358 0.1939 0.1747 0.1692 

MAE/W 0.1848 0.1702 0.1675 0.1523 

MAPE/% 4.62 4.05 3.91 3.75 

Time/s 739 783 836 853 

Table 14. Comparison of the prediction errors of rainy weather under different fusion ratios. 

Indexs No Fusion Uniform Fusion 
Similarity-Flitered  

Fusion 

Bayesian Optimized 

Similarity Fusion 

R2 0.934 0.953 0.966 0.976 

RMSE/W 0.2421 0.2179 0.1828 0.1672 

MAE/W 0.2076 0.1813 0.1652 0.1425 

MAPE/% 6.73 5.16 4.99 4.76 

Time/s 785 798 863 898 

5. Conclusions 

This study employs the correlation analysis to identify and refine input variables, aiming to 

reduce their dimensionality and simplify the computational process. A data-driven framework is 

introduced, which integrates spatial and temporal information. This framework effectively leverages 

the advantages of both CNN and LSTM networks by developing the Conv-LSTM module, thereby 

enhancing the model's ability to learn the long-term mapping relationship between photovoltaic 

power and meteorological data. By integrating attention mechanisms into the Conv-LSTM model, 

distinct weights are assigned to LSTM's hidden layers, reducing the loss of historical information and 

intensifying the impact of crucial data. Under the same dataset conditions, the experimental results 

of the study indicate that compared to three classical models, the method proposed in this paper 

exhibits superior performance in terms of prediction. Moreover, the utilization of a fused dataset 

further amplified the model's performance, showcasing its exceptional predictive capabilities. 

Nevertheless, the model’s scalability and generalization capability across different geographical 

locations and varying environmental conditions need further investigation. It's important to assess 

how well the model performs when applied to data from different PV systems that were not part of 

the initial training dataset. To address this, future research could focus on employing advanced 

techniques like transfer learning and domain adaptation. This approach would enable the model to 

effectively adapt to diverse environmental variables and different geographic locations, ensuring 

robust performance across a variety of PV systems. Additionally, enriching the training dataset with 

a broader spectrum of climatic and geographical data could further enhance the model’s predictive 

accuracy and reliability in new settings.  
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