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Abstract: Deep learning has increasingly been employed to identify minerals. However, deep 
learning can only be used to identify minerals in the distribution of the training set, while any 
mineral outside the spectrum of the training set is inevitably categorized erroneously within a 
predetermined class from the training set. To solve this problem, the study introduces the approach 
that amalgamates One-Class Support Vector Machines (OCSVM) with the ResNet architecture for 
the out-of-distribution mineral detection. Initially, ResNet undergoes training using a training set 
comprising well-defined minerals. Subsequently, the earlier layers of the trained ResNet are 
employed to extract the discriminative features of the mineral under consideration. These extracted 
mineral features then become the input for OCSVM. When OCSVM discerns the mineral in the 
training set's distribution, it triggers the subsequent layers within the trained ResNet, facilitating 
the accurate classification of the mineral into one of the predefined categories encompassing the 
known minerals. In the event OCSVM identifies the mineral out of the training set's distribution, it 
is unequivocally categorized as an unclassified or 'unknown' mineral. Empirical results substantiate 
the method's capability to identify out-of-distribution minerals while concurrently maintaining a 
commendably high accuracy rate for the classification of the 36 in-distribution minerals. 

Keywords: mineral identification; deep learning; out-of-distribution detection; one-class support 
vector machines (OCSVM); ResNet 

 

1. Introduction 

Rocks serve as the foundational constituents of the Earth and record the evolutionary narrative 
of our planet. They hold a pivotal role within the multidisciplinary realm of Earth sciences. As rocks 
are composed of a variety of minerals, the accurate identification of minerals is of paramount 
importance [1,2]. Traditional mineral identification techniques primarily rely on the visual 
observation of physical properties like shape, color, and texture, but their precision is contingent 
upon the expertise of the observer [1,2]. Alternatively, although methods such as chemical analysis, 
X-ray diffraction analysis, differential thermal analysis, and polarizing microscope analysis offer 
enhanced accuracy in mineral identification, the defects of these methods are expensive, a long time 
to execute, and especially sample damage [3–7]. In contrast to these resource-intensive approaches, 
the acquisition of mineral images is an expedient, efficient, and cost-effective avenue for analysis. 
Consequently, an increasing body of research has begun to pivot towards mineral identification 
through image-based techniques. 

In particular, numerous studies have harnessed the potential of deep learning to identify 
minerals from images, yielding commendable results [3–7]. However, it is crucial to underscore the 
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intrinsic limitation of traditional deep learning methodologies, as they can exclusively identify 
minerals within the purview of the training dataset's distribution. Any mineral falling beyond the 
confines of this distribution is erroneously categorized within one of the predefined classes from the 
training datasets—an evident and undesirable misclassification. This limitation is exacerbated by the 
extensive diversity with more than 6000 known mineral categories worldwide [1], rendering it 
impractical to encompass all of them within the training datasets. Minerals that fall outside the scope 
of the training datasets necessitate distinct methods for isolation and identification, such as manual 
or instrumental techniques. 

Current strategies addressing the inherent limitation of conventional deep learning models, 
specifically their ability to exclusively recognize in-distribution (ID) categories from the training set, 
encompass an array of techniques, including out-of-distribution (OOD) detection [8], uncertainty 
estimation [9], semi-supervised learning [10], and generative models [11]. Notably, OOD detection 
methodologies have emerged as particularly reliable, affording accurate predictions for samples 
existing outside the training set distribution and necessitating solely in-distribution data for training 
[12–16]. 

Exemplifying the efficacy of OOD detection, Jiang et al. [17] adeptly employed this technique to 
discern between known and unknown instances of plant diseases, while Saadati et al. [18] similarly 
conducted OOD detection to bolster the robustness of insect classification models. Furthermore, the 
utility of OOD detection extends beyond these domains, showcasing notable promise in the arenas 
of medical image diagnosis [19], network security [20], and quality control [21]. In light of these 
compelling precedents, it becomes evident that the isolation and identification of out-of-distribution 
minerals require specific attention. The main contributions of the paper are as follows: 
(1) OOD detection is adopted for the identification of minerals residing outside the training set's 

distribution, providing an opportunity for further identification of these instances. 
(2) A machine learning model that combines One-Class Support Vector Machines (OCSVM) with 

ResNet is designed for mineral identification. 
(3) Comprehensive experiments show the high performance of the proposed model. 

2. Datasets 

In this study, we collect a comprehensive dataset of 183,688 mineral images, encompassing 36 
distinct categories of common minerals, as detailed in Table 1. These images were meticulously 
curated, drawing from the diligent efforts of Zeng et al. [6] and Wu et al. [3], and sourced from the 
reputable repository of mineral data, Mindat.org [22]. Notably, the dataset is divided into training, 
validation, and testing subsets, each allocated in a ratio of 8:1:1, respectively. Some of the 36 catagories 
of the mineral images are shown in Figure 1. In addition to the in-distribution dataset, a separate 
collection of 18,368 mineral images is amassed. These images correspond to 15 categories of minerals, 
as cataloged in Table 2, and have been acquired from the same authoritative source, Mindat.org. This 
auxiliary dataset, representative of out-of-distribution minerals, has been assembled to assess the 
model's proficiency in recognizing and distinguishing mineral types beyond the purview of the 
training set. Some of the images of the out-of-distribution minerals are shown in Figure 2. 

Table 1. Mineral names and number of samples in in-distribution/known category datasets. 

#No. mineral quantities #No. mineral quantities 
1 agate 3,225 19 hematite 5,728 
2 albite 1,775 20 magnetite 2,445 
3 almandine 2,018 21 malachite 6,796 
4 anglesite 1,797 22 marcasite 1,608 
5 azurite 7,924 23 opal 3,197 
6 beryl 8,957 24 orpiment 720 
7 cassiterite 3,205 25 pyrite 8,769 
8 chalcopyrite 3,253 26 quartz 34,883 
9 cinnabar 1,605 27 rhodochrosite 4,276 
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10 copper 5,288 28 ruby 820 
11 demantoid 755 29 sapphire 996 
12 diopside 1,586 30 schorl 2,099 
13 elbaite 5,439 31 sphalerite 6,354 
14 epidote 3,720 32 stibnite 2,475 
15 fluorite 26,336 33 sulphur 1,890 
16 galena 6,188 34 topaz 3,577 
17 gold 4,545 35 torbernite 1,100 
18 halite 756 36 wulfenite 7,583 

Total 183,688 

 
Figure 1. Examples of in-distribution/known minerals. 

Table 2. Mineral names and number of samples in the out-of-distribution/unknown category 
datasets. 

#No. mineral quantities #No. mineral quantities 
1 adularia 759 9 moissanite 10 
2 aegirine 918 10 niccolite 256 
3 amber 1,478 11 nitratine 10 
4 aragonite 4,020 12 ozocerite 26 
5 biotite 1,478 13 selenium 108 
6 boracite 241 14 turquoise 991 
7 goethite 4,176 15 whewellite 106 
8 gypsum 4,950    

Total 18,368 

 

Figure 2. Examples of out-of-distribution/unknown minerals. 

3. Methodology 

The methodology employed for mineral identification is illustrated in Figure 3. To discern 
minerals that fall outside the established set of 36 known minerals, One-Class Support Vector 
Machines (OCSVM) is leveraged for Out-of-Distribution (OOD) detection. Similar to the techniques 
outlined in previous works [23–25], the process initiates with feature extraction from the mineral 
image, with the intent of refining and augmenting the efficacy of OCSVM [23–25]. Crucially, a Deep 
Neural Network (DNN) is integrated into our model for the extraction of mineral-specific features. 
The DNN is meticulously trained on the training set, which comprises the 36 recognized mineral 
categories as shown in Table 1. Subsequently, OCSVM is deployed, with the mineral features derived 
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from the initial layers of the DNN serving as input. This pivotal step serves to ascertain whether the 
mineral in question pertains to the in-distribution category of the 36 known minerals or falls into the 
realm of out-of-distribution. Upon OCSVM's determination that the mineral is classified as out-of-
distribution, the model promptly halts and apprises the user that the input image represents an 
unknown mineral. In contrast, when OCSVM identifies the mineral as in-distribution, the model 
seamlessly proceeds to deploy the remaining layers of the DNN to apprise the user of the specific 
known mineral category to which the input image belongs. 

 

Figure 3. The architecture of the model proposed in the paper. 

3.1. Mineral Feature Extraction 

The mineral feature extraction process capitalizes on the remarkable image classification 
capabilities of ResNet, a convolutional neural network architecture with a proven track record [26]. 
Assuming the feature extracted by ResNet is written as f ∈ R୛ൈୌൈେ(W is the width, H is the height, 
and C is the number of channels of the feature extracted). To enhance the performance of OCSVM in 
the context of OOD detection, a pivotal dimensionality reduction step is introduced. This process is 
elucidated by Formula (1), which involves the concatenation of individual channel values, q୩ to 
create a more concise representation of f. Each q୩ corresponds to the value derived from the kth 
channel within the mineral feature map, as elucidated in Formula (2). This dimensionality reduction 
facilitates the OOD detection process and bolsters the overall performance of the model. 𝑞 = ሺ𝑞ଵ, 𝑞ଶ, … , 𝑞௖ሻ, (1)

𝑞௞ = 1𝑊 ൈ 𝐻 ෍ ෍ห𝑓௜௝௞หு
௝ୀଵ

ௐ
௜ୀଵ , 𝑘 ∈ ሾ1, 𝐶ሿ (2)

3.2. OOD Detection by OCSVM 

To ascertain whether an input image pertains to the in-distribution category of the 36 known 
minerals, the mineral-specific features x extracted from the DNN, are provided as input to the 
OCSVM. These features undergo a crucial transformation, being mapped to a higher-dimensional 
space, as outlined in Formula (3). 

𝑓ሺ𝑥ሻ = 𝑠𝑔𝑛ሺ෍ 𝛼௜𝐾ሺ𝑥௜, 𝑥ሻ − 𝜌ሻ௡
௜ୀଵ  (3)

The classification outcome for the input image hinges on the result of Formula (3): if this result 
surpasses zero, the image is identified as an in-distribution mineral; conversely, if the result is less 
than or equal to zero, the image is categorized as an out-of-distribution mineral. In Formula (3), sgn 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2024                   doi:10.20944/preprints202405.0312.v1

https://doi.org/10.20944/preprints202405.0312.v1


 5 

 

designates the sign function, xi corresponds to the features derived from the ith known mineral 
training data. Kሺx୧, xሻ represents the Radial Basis Function (RBF), as expounded in Formula (4), 
responsible for the transformation of the known mineral training data into a higher-dimensional 
space with the objective of maximizing the separation between these training data points and the 
origin within that space. The parameters α୧  and ρ are determined through the training process 
using the known mineral training datasets. 

𝐾൫𝑥௜, 𝑥௝൯ = 𝑒𝑥𝑝 ቌ− ቚห𝑥௜ − 𝑥௝หቚଶ2𝜎ଶ ቍ , 𝜎 ∈ 𝑅 (4)

In Formula (4), the parameter denoted as σ  represents the bandwidth, a pivotal factor 
governing the behavior of the Radial Basis Function (RBF). The significance of σ within this context 
is notably profound, as its magnitude inherently influences the classification process. Specifically, a 
larger value of σ tilts the balance toward categorizing a greater number of in-distribution samples 
as out-of-distribution, while conversely, a smaller σ biases the model toward classifying a greater 
proportion of out-of-distribution samples as in-distribution. In alignment with prior research and in 
accordance with established convention, the present study maintains σ at the value 1/|x|. It is 
essential to underscore that |x| in this context designates the feature dimension. 

4. Experimental Results and Analysis 

The model's implementation is facilitated through the utilization of the Python programming 
language, executed on a Linux environment, while drawing upon the robust framework provided by 
Keras, Tensorflow, and Sklearn. In pursuit of optimal efficiency during the DNN training process, a 
GPU (Graphics Processing Unit) is judiciously employed. The precise specifications of the 
experimental configuration are comprehensively detailed in Table 3 for reference. 

Table 3. Experimental configuration. 

Configuration Settings 
Programming Language Python 3.6.9 

Keras Keras 2.6.0 
Tensorflow Tensorflow 2.1.0 

Sklearn Scikit-learn 0.24.2 
GPU Tesla P100-PCIE 

GPU Toolkit Version CUDA 10.0 

4.1. Evaluation Metrics 

The evaluation of the model's performance hinges on two key metrics: OOD Detection Accuracy 
and Mineral Identification Accuracy. These metrics serve as crucial indicators of the model's 
proficiency in its respective tasks. OOD Detection Accuracy, a binary classification metric, assesses 
the model's effectiveness in distinguishing whether a mineral is in-distribution or out-of-distribution. 
This metric includes three essential components: ID Accuracy, OOD Accuracy, and Overall Accuracy, 
which are calculated as that in Formula (5), (6) and (7). ID Accuracy gauges the ratio of correctly 
identified in-distribution minerals to the total known mineral test datasets. Conversely, OOD 
Accuracy quantifies the ratio of correctly identified out-of-distribution minerals to the overall count 
within the unknown mineral datasets. Notably, the Overall Accuracy mirrors the average of ID 
Accuracy and OOD Accuracy, given that the known and unknown mineral test data are maintained 
at equal proportions in this study. Mineral Identification Accuracy, a metric applicable to multi-class 
classification, evaluates the model's capacity to correctly identify minerals within their respective 
categories. This metric, akin to OOD Detection Accuracy, contains the trio of ID Accuracy, OOD 
Accuracy, and Overall Accuracy, but focuses on the performance of the model in identifying the 
concrete categories of in-distribution and out-of-distribution minerals. These rigorous and 
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multifaceted metrics offer a comprehensive assessment of the model's performance in distinguishing 
between mineral categories and detecting minerals that deviate from the established training 
datasets. 

ID Accuracy = ୡ୭୰୰ୣୡ୲୪୷ ୧ୢୣ୬୲୧୤୧ୣୢ ୧୬ିୢ୧ୱ୲୰୧ୠ୳୲୧୭୬ ୫୧୬ୣ୰ୟ୪ୱ୲୭୲ୟ୪ ୩୬୭୵୬ ୫୧୬ୣ୰ୟ୪ ୲ୣୱ୲ ୢୟ୲ୟୱୣ୲  (5)

OOD Accuracy = ୡ୭୰୰ୣୡ୲୪୷ ୧ୢୣ୬୲୧୤୧ୣୢ ୭୳୲ି୭୤ିୢ୧ୱ୲୰୧ୠ୳୲୧୭୬ ୫୧୬ୣ୰ୟ୪ୱ୲୭୲ୟ୪ ୳୬୩୬୭୵୬ ୫୧୬ୣ୰ୟ୪ ୢୟ୲ୟୱୣ୲  (6)

Overall Accuracy = ୡ୭୰୰ୣୡ୲୪୷ ୧ୢୣ୬୲୧୤୧ୣୢ ୫୧୬ୣ୰ୟ୪ୱ୲୭୲ୟ୪ ୫୧୬ୣ୰ୟ୪ ୢୟ୲ୟୱୣ୲  (7)

4.2. Mineral Features Selection 

As expounded in Section 3, the mineral features are meticulously extracted by the well-trained 
ResNet prior to OCSVM detection. In the case of ResNet50, a total of 49 mineral features can be 
derived from this process. To ascertain the optimal mineral features for OCSVM OOD detection, each 
of the 49 sets of features is independently subjected to OCSVM analysis, yielding 49 distinct accuracy 
values. The culmination of this analysis is graphically presented in Figure 4, showcasing the Overall 
Accuracy associated with each mineral feature extracted by the 49 layers of ResNet. 

 
Figure 4. Overall Accuracy associated with each mineral feature extracted by Layer 1 to 49 of 
ResNet50. 

Upon careful examination of Figure 4, it becomes evident that the mineral features extracted by 
the second layer of ResNet50 emerge as the most promising, attaining a remarkable Overall Accuracy 
of 82.1%. Consequently, the features derived from the second layer of ResNet50 are judiciously 
chosen as the prime candidates for OCSVM-based OOD detection, given their demonstrably robust 
performance. 

4.2. Performance 

Table 4 presents a comprehensive overview of the OOD Detection Accuracy and Mineral 
Identification Accuracy, offering profound insights into the model's performance. Notably, this 
analysis reveals that the model excels in its ability to correctly identify 82.1% of the test minerals as 
either known or unknown categories, with 96.4% accuracy achieved in discerning in-distribution test 
minerals as known categories. Moreover, 67.8% of the out-of-distribution test minerals are adeptly 
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classified as unknown categories, substantiating the model's competence in addressing the challenge 
of minerals that deviate from the training set. As highlighted in the introduction section, 
contemporary mineral image identification methods are often constrained to categorize minerals 
within the bounds of the training set's distribution, leading to erroneous identifications of out-of-
distribution minerals. In this context, the model distinguishes itself by achieving a 67.8% accuracy in 
classifying out-of-distribution minerals as unknown categories. This OOD Accuracy is lower than 
that of other applications listed in references [17–21] because minerals of the same category may have 
different colors and textures, while different categories of minerals may have the same colors and 
textures [6]. This makes mineral identification more challenging, resulting in similarly lower ID 
Accuracy than other applications. The model attains a commendable 74.1% accuracy in identifying 
in-distribution minerals through the utilization of the state-of-the-art convolutional neural network, 
ResNet. The performance of each of the 36 known mineral categories is presented in Figure 5, 
affording a granular understanding of the model's accuracy across distinct mineral types. 

Table 4. Accuracy of our mineral identification model combing OCSVM and ResNet50. 

Accuracy (%) ID OOD Overall 
OOD Detection 96.4 67.8 82.1 

Mineral Identification 74.1 67.8 71.0 

 
Figure 5. Accuracy of the 36 known category minerals. 

Additionally, a comparative analysis with other related studies, detailed in Table 5, underscores 
the model's superiority. Compared with the study of Zeng et al. [6], which employed the same dataset 
of 36 known minerals, the model exhibits marginally lower ID Accuracy but substantially higher 
OOD Accuracy. Notably, the model surpasses other related studies in OOD Accuracy, highlighting 
its proficiency in mineral identification tasks beyond the training set's confines. 

Table 5. Comparisons of Mineral Identification Accuracy with other studies. 

Model Study 
Number of Known 
Mineral categories 

Accuracy (%) 
ID OOD 

Inception-v3 [7] 12 73.1 0 
ResNet-50 [5] 14 88.0 0 

EfficientNet-b4 [6] 36 78.3 0 
ResNet50 this study 36 76.6 0 

OCSVM+ResNet50 this study 36 74.1 67.8 
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5. Conclusions 

A novel model designed to excel in the task of identifying out-of-distribution minerals, 
harnessing the combined capabilities of OCSVM and the ResNet50 network is introduced. OCSVM 
plays a pivotal role in classifying mineral features extracted through ResNet50, endowing the model 
with the capacity to detect both out-of-distribution and in-distribution minerals. In comparison to 
traditional methods reliant on labor-intensive and time-consuming experimental mineral species 
determination, the approach emerges as a more practical, expedient, and cost-effective alternative. 
Additionally, when contrasted with other conventional deep learning methodologies, the model 
exhibits the unique capability to differentiate out-of-distribution minerals, addressing a critical 
limitation in the field of mineral identification. Further expanding the in-distribution datasets would 
enhance the model's performance and its broader applicability in the field of mineral identification. 
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