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Abstract: Deep learning has increasingly been employed to identify minerals. However, deep
learning can only be used to identify minerals in the distribution of the training set, while any
mineral outside the spectrum of the training set is inevitably categorized erroneously within a
predetermined class from the training set. To solve this problem, the study introduces the approach
that amalgamates One-Class Support Vector Machines (OCSVM) with the ResNet architecture for
the out-of-distribution mineral detection. Initially, ResNet undergoes training using a training set
comprising well-defined minerals. Subsequently, the earlier layers of the trained ResNet are
employed to extract the discriminative features of the mineral under consideration. These extracted
mineral features then become the input for OCSVM. When OCSVM discerns the mineral in the
training set's distribution, it triggers the subsequent layers within the trained ResNet, facilitating
the accurate classification of the mineral into one of the predefined categories encompassing the
known minerals. In the event OCSVM identifies the mineral out of the training set's distribution, it
is unequivocally categorized as an unclassified or 'unknown' mineral. Empirical results substantiate
the method's capability to identify out-of-distribution minerals while concurrently maintaining a
commendably high accuracy rate for the classification of the 36 in-distribution minerals.

Keywords: mineral identification; deep learning; out-of-distribution detection; one-class support
vector machines (OCSVM); ResNet

1. Introduction

Rocks serve as the foundational constituents of the Earth and record the evolutionary narrative
of our planet. They hold a pivotal role within the multidisciplinary realm of Earth sciences. As rocks
are composed of a variety of minerals, the accurate identification of minerals is of paramount
importance [1,2]. Traditional mineral identification techniques primarily rely on the visual
observation of physical properties like shape, color, and texture, but their precision is contingent
upon the expertise of the observer [1,2]. Alternatively, although methods such as chemical analysis,
X-ray diffraction analysis, differential thermal analysis, and polarizing microscope analysis offer
enhanced accuracy in mineral identification, the defects of these methods are expensive, a long time
to execute, and especially sample damage [3-7]. In contrast to these resource-intensive approaches,
the acquisition of mineral images is an expedient, efficient, and cost-effective avenue for analysis.
Consequently, an increasing body of research has begun to pivot towards mineral identification
through image-based techniques.

In particular, numerous studies have harnessed the potential of deep learning to identify
minerals from images, yielding commendable results [3-7]. However, it is crucial to underscore the
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intrinsic limitation of traditional deep learning methodologies, as they can exclusively identify
minerals within the purview of the training dataset's distribution. Any mineral falling beyond the
confines of this distribution is erroneously categorized within one of the predefined classes from the
training datasets —an evident and undesirable misclassification. This limitation is exacerbated by the
extensive diversity with more than 6000 known mineral categories worldwide [1], rendering it
impractical to encompass all of them within the training datasets. Minerals that fall outside the scope
of the training datasets necessitate distinct methods for isolation and identification, such as manual
or instrumental techniques.

Current strategies addressing the inherent limitation of conventional deep learning models,
specifically their ability to exclusively recognize in-distribution (ID) categories from the training set,
encompass an array of techniques, including out-of-distribution (OOD) detection [8], uncertainty
estimation [9], semi-supervised learning [10], and generative models [11]. Notably, OOD detection
methodologies have emerged as particularly reliable, affording accurate predictions for samples
existing outside the training set distribution and necessitating solely in-distribution data for training
[12-16].

Exemplifying the efficacy of OOD detection, Jiang et al. [17] adeptly employed this technique to
discern between known and unknown instances of plant diseases, while Saadati et al. [18] similarly
conducted OOD detection to bolster the robustness of insect classification models. Furthermore, the
utility of OOD detection extends beyond these domains, showcasing notable promise in the arenas
of medical image diagnosis [19], network security [20], and quality control [21]. In light of these
compelling precedents, it becomes evident that the isolation and identification of out-of-distribution
minerals require specific attention. The main contributions of the paper are as follows:

(1) OOD detection is adopted for the identification of minerals residing outside the training set's
distribution, providing an opportunity for further identification of these instances.

(2) A machine learning model that combines One-Class Support Vector Machines (OCSVM) with
ResNet is designed for mineral identification.

(3) Comprehensive experiments show the high performance of the proposed model.

2. Datasets

In this study, we collect a comprehensive dataset of 183,688 mineral images, encompassing 36
distinct categories of common minerals, as detailed in Table 1. These images were meticulously
curated, drawing from the diligent efforts of Zeng et al. [6] and Wu et al. [3], and sourced from the
reputable repository of mineral data, Mindat.org [22]. Notably, the dataset is divided into training,
validation, and testing subsets, each allocated in a ratio of 8:1:1, respectively. Some of the 36 catagories
of the mineral images are shown in Figure 1. In addition to the in-distribution dataset, a separate
collection of 18,368 mineral images is amassed. These images correspond to 15 categories of minerals,
as cataloged in Table 2, and have been acquired from the same authoritative source, Mindat.org. This
auxiliary dataset, representative of out-of-distribution minerals, has been assembled to assess the
model's proficiency in recognizing and distinguishing mineral types beyond the purview of the
training set. Some of the images of the out-of-distribution minerals are shown in Figure 2.

Table 1. Mineral names and number of samples in in-distribution/known category datasets.

#No. mineral quantities #No. mineral quantities

1 agate 3,225 19 hematite 5,728
2 albite 1,775 20 magnetite 2,445
3 almandine 2,018 21 malachite 6,796
4 anglesite 1,797 22 marcasite 1,608
5 azurite 7,924 23 opal 3,197
6 beryl 8,957 24 orpiment 720

7 cassiterite 3,205 25 pyrite 8,769
8 chalcopyrite 3,253 26 quartz 34,883
9 cinnabar 1,605 27 rhodochrosite 4276



https://doi.org/10.20944/preprints202405.0312.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0312.v1

3

10 copper 5,288 28 ruby 820

11 demantoid 755 29 sapphire 996

12 diopside 1,586 30 schorl 2,099
13 elbaite 5,439 31 sphalerite 6,354
14 epidote 3,720 32 stibnite 2,475
15 fluorite 26,336 33 sulphur 1,890
16 galena 6,188 34 topaz 3,577
17 gold 4,545 35 torbernite 1,100
18 halite 756 36 wulfenite 7,583

Total 183,688

Figure 1. Examples of in-distribution/known minerals.

Table 2. Mineral names and number of samples in the out-of-distribution/unknown category

datasets.
#No. mineral quantities #No. mineral quantities

1 adularia 759 9 moissanite 10

2 aegirine 918 10 niccolite 256

3 amber 1,478 11 nitratine 10

4 aragonite 4,020 12 ozocerite 26

5 biotite 1,478 13 selenium 108

6 boracite 241 14 turquoise 991

7 goethite 4,176 15 whewellite 106

8 gypsum 4,950

Figure 2. Examples of out-of-distribution/unknown minerals.

3. Methodology

The methodology employed for mineral identification is illustrated in Figure 3. To discern
minerals that fall outside the established set of 36 known minerals, One-Class Support Vector
Machines (OCSVM) is leveraged for Out-of-Distribution (OOD) detection. Similar to the techniques
outlined in previous works [23-25], the process initiates with feature extraction from the mineral
image, with the intent of refining and augmenting the efficacy of OCSVM [23-25]. Crucially, a Deep
Neural Network (DNN) is integrated into our model for the extraction of mineral-specific features.
The DNN is meticulously trained on the training set, which comprises the 36 recognized mineral
categories as shown in Table 1. Subsequently, OCSVM is deployed, with the mineral features derived
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from the initial layers of the DNN serving as input. This pivotal step serves to ascertain whether the
mineral in question pertains to the in-distribution category of the 36 known minerals or falls into the
realm of out-of-distribution. Upon OCSVM's determination that the mineral is classified as out-of-
distribution, the model promptly halts and apprises the user that the input image represents an
unknown mineral. In contrast, when OCSVM identifies the mineral as in-distribution, the model
seamlessly proceeds to deploy the remaining layers of the DNN to apprise the user of the specific
known mineral category to which the input image belongs.

Partl
cf
Trained Dimension
reduction
DNN e et

OOD Output

front layers

Input Image

Middle Layer Output OCSVM Input

|

| If part 2 classifies the input

| image as in-distribution,

1 then part 3 will be activated.
I

Trained DNN
remaining
layers

ID Output

Figure 3. The architecture of the model proposed in the paper.

3.1. Mineral Feature Extraction

The mineral feature extraction process capitalizes on the remarkable image classification
capabilities of ResNet, a convolutional neural network architecture with a proven track record [26].
Assuming the feature extracted by ResNet is written as f € RV*H*¢(W is the width, H is the height,
and C is the number of channels of the feature extracted). To enhance the performance of OCSVM in
the context of OOD detection, a pivotal dimensionality reduction step is introduced. This process is
elucidated by Formula (1), which involves the concatenation of individual channel values, qy to
create a more concise representation of f. Each q, corresponds to the value derived from the kth
channel within the mineral feature map, as elucidated in Formula (2). This dimensionality reduction
facilitates the OOD detection process and bolsters the overall performance of the model.

q = (41,92 -, 9c), 1)
1 W H
qk=Wtzlzl|fijk|;k€[1:C] @)
i=1 j=

3.2. OOD Detection by OCSVM

To ascertain whether an input image pertains to the in-distribution category of the 36 known
minerals, the mineral-specific features x extracted from the DNN, are provided as input to the
OCSVM. These features undergo a crucial transformation, being mapped to a higher-dimensional
space, as outlined in Formula (3).

n
£G) = sgn() | @K Gx) = p) ©)
i=1
The classification outcome for the input image hinges on the result of Formula (3): if this result
surpasses zero, the image is identified as an in-distribution mineral; conversely, if the result is less
than or equal to zero, the image is categorized as an out-of-distribution mineral. In Formula (3), sgn
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designates the sign function, xi corresponds to the features derived from the ith known mineral
training data. K(x;,x) represents the Radial Basis Function (RBF), as expounded in Formula (4),
responsible for the transformation of the known mineral training data into a higher-dimensional
space with the objective of maximizing the separation between these training data points and the
origin within that space. The parameters o; and p are determined through the training process
using the known mineral training datasets.

2
_||xl-—x,-||

552 ,0ER (4)

K(xi, x]-) = exp

In Formula (4), the parameter denoted as o represents the bandwidth, a pivotal factor
governing the behavior of the Radial Basis Function (RBF). The significance of ¢ within this context
is notably profound, as its magnitude inherently influences the classification process. Specifically, a
larger value of o tilts the balance toward categorizing a greater number of in-distribution samples
as out-of-distribution, while conversely, a smaller ¢ biases the model toward classifying a greater
proportion of out-of-distribution samples as in-distribution. In alignment with prior research and in
accordance with established convention, the present study maintains o at the value 1/IxI. It is
essential to underscore that |x| in this context designates the feature dimension.

4. Experimental Results and Analysis

The model's implementation is facilitated through the utilization of the Python programming
language, executed on a Linux environment, while drawing upon the robust framework provided by
Keras, Tensorflow, and Sklearn. In pursuit of optimal efficiency during the DNN training process, a
GPU (Graphics Processing Unit) is judiciously employed. The precise specifications of the
experimental configuration are comprehensively detailed in Table 3 for reference.

Table 3. Experimental configuration.

Configuration Settings
Programming Language Python 3.6.9
Keras Keras 2.6.0
Tensorflow Tensorflow 2.1.0
Sklearn Scikit-learn 0.24.2
GPU Tesla P100-PCIE
GPU Toolkit Version CUDA 10.0

4.1. Evaluation Metrics

The evaluation of the model's performance hinges on two key metrics: OOD Detection Accuracy
and Mineral Identification Accuracy. These metrics serve as crucial indicators of the model's
proficiency in its respective tasks. OOD Detection Accuracy, a binary classification metric, assesses
the model's effectiveness in distinguishing whether a mineral is in-distribution or out-of-distribution.
This metric includes three essential components: ID Accuracy, OOD Accuracy, and Overall Accuracy,
which are calculated as that in Formula (5), (6) and (7). ID Accuracy gauges the ratio of correctly
identified in-distribution minerals to the total known mineral test datasets. Conversely, OOD
Accuracy quantifies the ratio of correctly identified out-of-distribution minerals to the overall count
within the unknown mineral datasets. Notably, the Overall Accuracy mirrors the average of ID
Accuracy and OOD Accuracy, given that the known and unknown mineral test data are maintained
at equal proportions in this study. Mineral Identification Accuracy, a metric applicable to multi-class
classification, evaluates the model's capacity to correctly identify minerals within their respective
categories. This metric, akin to OOD Detection Accuracy, contains the trio of ID Accuracy, OOD
Accuracy, and Overall Accuracy, but focuses on the performance of the model in identifying the
concrete categories of in-distribution and out-of-distribution minerals. These rigorous and
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multifaceted metrics offer a comprehensive assessment of the model's performance in distinguishing
between mineral categories and detecting minerals that deviate from the established training

datasets.
correctly identified in—distribution minerals
ID Accuracy = - : 5)
total known mineral test dataset
correctly identified out—of—distribution minerals
OOD Accuracy = y : (6)
total unknown mineral dataset
correctly identified minerals
Overall Accuracy = Y (7)

total mineral dataset

4.2. Mineral Features Selection

As expounded in Section 3, the mineral features are meticulously extracted by the well-trained
ResNet prior to OCSVM detection. In the case of ResNet50, a total of 49 mineral features can be
derived from this process. To ascertain the optimal mineral features for OCSVM OOD detection, each
of the 49 sets of features is independently subjected to OCSVM analysis, yielding 49 distinct accuracy
values. The culmination of this analysis is graphically presented in Figure 4, showcasing the Overall
Accuracy associated with each mineral feature extracted by the 49 layers of ResNet.

100

80 -

60 1

40 -

Overall Accuracy(%)

20 1

(=} n o n [=3 wn o
— — o~ o~ ™

Layers

35
40
45

Figure 4. Overall Accuracy associated with each mineral feature extracted by Layer 1 to 49 of
ResNet50.

Upon careful examination of Figure 4, it becomes evident that the mineral features extracted by
the second layer of ResNet50 emerge as the most promising, attaining a remarkable Overall Accuracy
of 82.1%. Consequently, the features derived from the second layer of ResNet50 are judiciously
chosen as the prime candidates for OCSVM-based OOD detection, given their demonstrably robust
performance.

4.2. Performance

Table 4 presents a comprehensive overview of the OOD Detection Accuracy and Mineral
Identification Accuracy, offering profound insights into the model's performance. Notably, this
analysis reveals that the model excels in its ability to correctly identify 82.1% of the test minerals as
either known or unknown categories, with 96.4% accuracy achieved in discerning in-distribution test
minerals as known categories. Moreover, 67.8% of the out-of-distribution test minerals are adeptly
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classified as unknown categories, substantiating the model's competence in addressing the challenge
of minerals that deviate from the training set. As highlighted in the introduction section,
contemporary mineral image identification methods are often constrained to categorize minerals
within the bounds of the training set's distribution, leading to erroneous identifications of out-of-
distribution minerals. In this context, the model distinguishes itself by achieving a 67.8% accuracy in
classifying out-of-distribution minerals as unknown categories. This OOD Accuracy is lower than
that of other applications listed in references [17-21] because minerals of the same category may have
different colors and textures, while different categories of minerals may have the same colors and
textures [6]. This makes mineral identification more challenging, resulting in similarly lower ID
Accuracy than other applications. The model attains a commendable 74.1% accuracy in identifying
in-distribution minerals through the utilization of the state-of-the-art convolutional neural network,
ResNet. The performance of each of the 36 known mineral categories is presented in Figure 5,
affording a granular understanding of the model's accuracy across distinct mineral types.

Table 4. Accuracy of our mineral identification model combing OCSVM and ResNet50.

Accuracy (%) ID (0]0)) Overall
OOD Detection 96.4 67.8 82.1
Mineral Identification 74.1 67.8 71.0
80
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Figure 5. Accuracy of the 36 known category minerals.

Additionally, a comparative analysis with other related studies, detailed in Table 5, underscores
the model's superiority. Compared with the study of Zeng et al. [6], which employed the same dataset
of 36 known minerals, the model exhibits marginally lower ID Accuracy but substantially higher
OOD Accuracy. Notably, the model surpasses other related studies in OOD Accuracy, highlighting
its proficiency in mineral identification tasks beyond the training set's confines.

Table 5. Comparisons of Mineral Identification Accuracy with other studies.

Number of Known Accuracy (%)

Model Study Mineral categories ID g (0]0)D)
Inception-v3 [7] 12 73.1 0
ResNet-50 [5] 14 88.0 0
EfficientNet-b4 [6] 36 783 0
ResNet50 this study 36 76.6 0

OCSVM+ResNet50 this study 36 74.1 67.8
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5. Conclusions

A novel model designed to excel in the task of identifying out-of-distribution minerals,
harnessing the combined capabilities of OCSVM and the ResNet50 network is introduced. OCSVM
plays a pivotal role in classifying mineral features extracted through ResNet50, endowing the model
with the capacity to detect both out-of-distribution and in-distribution minerals. In comparison to
traditional methods reliant on labor-intensive and time-consuming experimental mineral species
determination, the approach emerges as a more practical, expedient, and cost-effective alternative.
Additionally, when contrasted with other conventional deep learning methodologies, the model
exhibits the unique capability to differentiate out-of-distribution minerals, addressing a critical
limitation in the field of mineral identification. Further expanding the in-distribution datasets would
enhance the model's performance and its broader applicability in the field of mineral identification.
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