Pre prints.org

Article Not peer-reviewed version

Enhancing Efficiency and Security in
Unbalanced PSI-CA Protocols through
Cloud Computing and Homomorphic
Encryption in Mobile Networks

Wuzheng Tan, Shenglong Du i , Jian Weng

Posted Date: 7 May 2024
doi: 10.20944/preprints202405.0307v1

Keywords: private set intersection cardinality; cryptographic; commutative encryption; Cuckoo filter; cloud
computing

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3264408
https://sciprofiles.com/profile/3547018
https://sciprofiles.com/profile/3271666

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Enhancing Efficiency and Security in Unbalanced
PSI-CA Protocols through Cloud Computing and
Homomorphic Encryption in Mobile Networks

2 1,2,%

Wuzheng Tan 1/ and Jian Weng 12

1
2

, Shenglong Du

College of Cyber Security, Jinan University, Guangzhou 510632
Guangdong Key Laboratory of Data Security and Privacy Preserving

* Correspondence: jndsl@stu2021.jnu.edu.cn

Abstract: Private Set Intersection Cardinality(PSI-CA) is a cryptographic method in secure multi-party computa-
tion that allows entities to identify cardinality of the intersection without revealing their private data.Traditional
approaches assume similar-sized datasets and equal computational power, overlooking practical imbalances.In
real-world applications, dataset sizes and computational capacities often vary, particularly in the Internet of
Things and mobile scenarios where device limitations restrict computational types. Traditional PSI-CA protocols
are inefficient here, as computational and communication complexities correlate with the size of larger datasets.
Thus, adapting PSI-CA protocols to these imbalances is crucial. This paper explores unbalanced scenarios where
one party (the receiver) has a relatively small dataset and limited computational power, while the other party
(the sender) has a large amount of data and strong computational capabilities.This paper, based on the concept
of commutative encryption, introduces Cuckoo filter, cloud computing technology, homomorphic encryption,
among other technologies, to construct three novel solutions for unbalanced Private Set Intersection Cardinality
(PSI-CA): an unbalanced PSI-CA protocol based on Cuckoo filter, an unbalanced PSI-CA protocol based on single
cloud assistance, and an unbalanced PSI-CA protocol based on dual cloud assistance. Depending on performance

and security requirements, different protocols can be employed for various applications.

Keywords: private set intersection cardinality; cryptographic; commutative encryption; Cuckoo filter; cloud

computing

1. Introduction

1.1. Background

In today’s digital age, data privacy and security have become critically important issues world-
wide. With technological advancements and explosive growth in data volumes, individuals and
institutions face unprecedented challenges in protecting their privacy. Privacy computing technologies
have emerged in response to these challenges, enabling the secure computation and analysis of data
without exposing the details of personal information. This is crucial for driving data-driven innovation
and services while safeguarding personal privacy and data protection.

Private Set Intersection (PSI) technology is a key technique in the field of privacy computing. It
allows two or more parties to identify the common elements in their data sets without revealing any
other non-shared data. This technology is highly useful in multiple application scenarios, such as cross-
institutional data cooperation, fraud detection, and private contact discovery, without compromising
user privacy. It has been applied in various fields, including genetic testing of fully sequenced
human genomes [1], private contact discovery [2], and botnet detection [3]. This study investigates
the cardinality of private data set intersections between two parties, which is an essential aspect
of two-party computation (2PC) tasks. Specifically, it involves a sender and a receiver who aim to
collaboratively determine the number of common elements in their private data sets. Throughout
this process, only the receiver obtains the cardinality of the set intersection, while the sender remains
unaware of it. The topic of private set intersection cardinality is widely researched due to its significant
practical applications

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-0431-7414
https://doi.org/10.20944/preprints202405.0307.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

2 0f 29

1.2. Motivation

While the traditional Private Set Intersection Cardinality (PSI-CA) protocols has been exten-
sively explored in research, real-world applications continue to present unique challenges.Traditional
approaches assume similar-sized datasets and equal computational power, overlooking practical im-
balances.In real-world applications, dataset sizes and computational capacities often vary, particularly
in the Internet of Things and mobile scenarios where device limitations restrict computational types.
Traditional PSI-CA protocols are inefficient here, as computational and communication complexities
correlate with the size of larger datasets. Thus, adapting PSI-CA protocols to these imbalances is
crucial.

A compelling example is found in the collaboration between major medical institutions and small
health app developers. In this scenario, a large medical institution with extensive patient data and
robust computational capabilities collaborates with a small app developer who possesses minimal user
data and limited computational resources. The primary goal is to analyze the coverage of health app
users within the extensive patient database to assess market penetration and potential partnership
opportunities. For instance, the medical institution might want to determine how many of its patients
are using the health app to consider recommending it more broadly or collaborating on new features.

To address the challenges outlined above, this paper delves into the unbalanced Private Set
Intersection-Cardinality (PSI-CA) protocols and proposes three innovative unbalanced PSI-CA proto-
cols. In practical applications, different solutions can be chosen based on varying performance and
security requirements.

1.3. Main Work

1. To address the performance shortcomings of traditional PSI-CA protocols in the face of significant
differences in dataset sizes between participants, this paper introduces the first protocol, which is
the unbalanced PSI-CA protocol based on Cuckoo filter. This protocol successfully constructs the
first unbalanced private intersection cardinality protocol of this article by integrating exchange
encryption technologies with Cuckoo filter functionalities for private information retrieval,
followed by experimental analysis.

2. To alleviate the computational and storage burden on small health app developer in the first
protocol, the paper further proposes an unbalanced PSI-CA protocol based on single cloud
assistance and conducts experimental analysis. This strategy effectively migrates computational
and storage tasks to cloud services, significantly optimizing resource utilization efficiency.

3. To safeguard against data leakage risks inherent in the unbalanced PSI-CA protocol based
on single cloud assistance which cannot resist collusion attacks, the paper further designs an
unbalanced PSI-CA protocol based on dual cloud assistance. By employing homomorphic
encryption and other security technologies, this scheme resolves potential data leakage risks in
the single-cloud protocol while effectively preventing potential collusion attacks.

4. Based on the unbalanced PSI-CA protocol based on dual cloud assistance, this paper also
designs the PSI-CA network and establishes corresponding data update strategies, significantly
enhancing the practicality of the protocol.

2. Related Works
2.1. Design Framework of Private Set Intersection Protocol

2.1.1. Design Framework Based on Public Key Encryption

The basic idea behind early private set intersection protocols is to encrypt data elements and
then perform comparison operations on the encrypted data. The most widely used technique in this
method is homomorphic encryption: the sender encrypts their dataset and sends it to the receiver. The
receiver processes these ciphertexts using the properties of homomorphic encryption and returns the
results to the sender. The sender then decrypts these results using their own private key to obtain

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

30f29

the intersection of the datasets. This public-key-based method generally relies on three main security
assumptions [4]:

1. Based on Diffie-Hellman (DH) theory: Meadows [5] used the DH key exchange mechanism,
which is based on the discrete logarithm problem, to implement a PSI protocol. In contrast,
Huberman [6] and his team explored the use of elliptic curve cryptography in PSI, noting its
significant advantages in security and efficiency compared to traditional discrete logarithm-based

PSI methods.

2. Based on the RSA assumption: DeCristofaro and others [7] developed a semi-honest PSI protocol
using RSA blind signature technology based on the integer factorization problem. Another study
[8] showed that PSI schemes based on discrete logarithm cryptography demonstrated higher
efficiency compared to those based on integer factorization cryptography.

3. Based on homomorphic encryption: Freedman and his team [9] innovatively represented ele-
ments as roots of polynomials and encrypted the coefficients of these polynomials using Paillier
homomorphic encryption technology, combined with zero-knowledge proofs, to implement
a two-party PSI protocol resistant to malicious attacks. In 2016, Freedman et al. [10] further
improved computational efficiency through the ElGamal encryption mechanism and reduced
the protocol’s computational complexity using Cuckoo Hash technology [4]. Abadi et al. [11]
introduced a set representation method based on point-value pairs of d-degree polynomials,
implemented through the Paillier encryption scheme, reducing the multiplication complexity
from O(d?) to O(d) [4]. Kissner and other researchers [12] adopted different polynomial repre-
sentation methods, significantly reducing computational costs to be linearly proportional to the
number of participants. Jarecki and others [13] used additive homomorphic encryption and
zero-knowledge proofs to implement pseudorandom functions (PRF). Hazay and others [14]
developed an additive homomorphic encryption scheme that supports threshold decryption
for implementing multi-party semi-honest PSI protocols. Dou Jiawei and others [15] combined
Paillier encryption to propose a PSI protocol based on the formula for calculating the area of
triangles and rational number encoding.

Public key encryption-based Private Set Intersection (PSI) schemes typically feature fewer commu-
nication rounds and are suitable for environments with strong computational capabilities. However,
in practice, communication bandwidth and time complexity often pose significant constraints [4].

2.1.2. Design Framework Based on Garbled Circuits

Garbled circuit technology can transform any function into a Boolean circuit, thereby securely
computing the function. Early methods based on universal circuits, like the DPSZ scheme [16],
demonstrated how to use arithmetic circuits to solve the set intersection problem: the circuit builder
encrypts the circuit gates using a symmetric key, then creates a garbled circuit and sends it to the
circuit evaluator. The evaluator decrypts specific paths in the garbled circuit to obtain the intersection
results, while being unable to access other paths in the circuit. As the circuit depth increases, its
construction complexity also increases. Additionally, PSI protocols based on this circuit design can
also perform various symmetric function operations, such as calculating the threshold intersection,
the number of intersection elements, and their sum. For adversaries under semi-honest conditions,
there are two types of garbled circuits: the Yao [17] protocol and the GMW [18] protocol. Pinkas et
al. [19-21] and Chandran et al.based on hash storage structures and GMW circuits, implemented a
more efficient OPRF circuit PSI scheme through private membership tests, reducing the number of
comparisons and the depth of circuit equivalence comparisons. Meanwhile, Huang [22] and others
created a semi-honest secure disordered circuit PSI scheme through the combination of Yao circuits,
performing equivalence tests and specific sorting on adjacent elements. Despite these advantages,
these methods still require additional key calculations and communication processes, such as key
exchanges between participants.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

4 0f29

2.1.3. Design Framework Based on Oblivious Transfer

Oblivious Transfer (OT) [23] is a cryptographic protocol that allows a sender to transmit infor-
mation to a receiver without revealing any private information. In the OT protocol, the sender has
two options, but the receiver can only obtain information about one of them without access to the
other, and the sender does not know which option the receiver has chosen. OT is widely used in many
secure areas due to its cryptographic robustness and privacy features. Its applications include secure
protocol negotiation, secure online auction systems, and secure voting systems. In 2013, Dong [24]
et al. proposed a new data structure—the garbled Bloom filter (GBF)—and based on the GBF and
OT extension, they introduced a PSI protocol. This protocol utilized efficient symmetric encryption
operations and could handle billions of elements. However, this protocol faced two issues: one is
that the malicious sender might send incorrect shared information, and the other is that the input
datasets are not independent. To address these problems, in 2016, Rindal and Rosulek [25] proposed
a new randomized garbled Bloom filter using the "cut-and-choose" technique. They successfully
implemented a two-party malicious model PSI protocol. Subsequently, Zhang et al. [26], based on this
scheme, further proposed and implemented a multi-party PSI protocol, ensuring malicious security in
the presence of two non-colluding servers, with computational and communication costs depending on
the number of participants. Pinkas et al. [27] based on the OOS17-OT [28] protocol, built a maliciously
secure PSI protocol. Rindal [29] et al. based on the semi-honest secure Schoppmann et al. [30] protocol
and the maliciously secure Weng et al. [31] protocol, respectively proposed maliciously secure and
semi-honest secure PSI protocols. Overall, PSI protocols based on oblivious transfer typically feature
lower computational and communication overhead.

2.2. PSI-CA

In the research of set intersection cardinality, [32] put forward a two-party protocol based on the
Bloom filter and ElGamal encryption scheme, the trick here is to count how many common zero-bit in
their Bloom filters. Thus the cardinality of set intersection can be quickly figured out by a formula
provided in [33]. The proposal in [34] was analogous to [32], which employed the Goldwasser—Micali
encryption algorithm [25] to encrypt the Bloom filter entries.Cristofaro et al. [35]designed the first
PSI-CA protocol with linear complexity O(ny + ny) based on the Decisional Diffie-Hellman (DDH)
assumption in the random oracle model (ROM) [36]. However, for the computation cost, both the
sender and the receiver need to compute two exponentiations for each item.

3. Related Theories and Technologies

3.1. Multi-Party Secure Computation Security Model

The mathematical concept of Multi-Party Computation (MPC) involves several participants (such
as Py, P, ..., P,) each holding private input data (x;). These participants collaboratively execute a
computation of the function f(xq,x2, ..., x,) with the goal of ensuring that each participant can only
access their own computational results, while being unable to ascertain the inputs and results of others.
There are generally two security models employed in secure multi-party computation protocols [37,38]:

1. Semi-honest model: In this model, participants adhere to the protocol’s execution rules but may
attempt to gather other participants’ inputs, outputs, and any accessible information during
the execution of the protocol. This model assumes that the participants do not deviate from the
established procedural rules but will use all available information to deduce the private data of
others.

2. Malicious adversary model: Unlike the semi-honest model, the malicious adversary model
accounts for the possibility that attackers may manipulate a subset of the participants to perform
illicit actions, such as submitting incorrect input data or maliciously altering data to steal the
private information of honest participants. Malicious adversaries might also disrupt the protocol

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

50f29

by intentionally terminating its execution or by refusing to participate, thus preventing the
protocol’s completion.

The security model considered in this paper is the semi-honest security model.

3.2. Cuckoo Filter

Determining whether a particular element belongs to a given set is a common problem in computer
science, with widespread applications in bioinformatics, machine learning, computer networks, the
Internet of Things, and database systems [39]. Filter data structures such as Bloom filters and Cuckoo
filters can approximately determine if an element is part of a specified set and have been extensively
applied in network routing [40], information retrieval, file merging [41], spam detection [42], and
distributed systems [43].

Filter data structures are used to approximately ascertain if an element belongs to a specific set.
In essence, for a given set S and a query element x, the filter can approximately inform the query
whether "xis in §". "Approximately" here implies that if x is actually not in S, the filter has a small error
probability p of wrongly indicating that "x is in S"; however, if x is indeed in S, the filter will always
correctly return that "x is in S". Filter data structures sacrifice some query accuracy to enhance space
and time efficiency. Unlike data structures that require storing complete information of each element
for precise queries, filters approximate the presence of an element solely through partial information
such as hash values or "fingerprints". Based on this principle, existing filter data structures are mainly
categorized into two types: one type uses bit arrays as in Bloom filters; the other type, exemplified by
Cuckoo filters, is based on element "fingerprints".

The Cuckoo filter [44] is an advanced retrieval structure made up of multiple buckets, each capable
of containing several bits. Compared to Bloom filters, Cuckoo filters offer the significant advantage of
supporting deletion of elements and having higher space efficiency. With equal storage space, Cuckoo
filters can achieve more accurate search results and shorter search times. When querying an element,
the time complexity for Cuckoo filters is O(1), meaning constant time complexity. This indicates that
the execution time for query operations does not increase with the number of elements in the filter,
an important performance feature of the Cuckoo filter design. In this paper, Cuckoo filter are used to
store data on large medical institution.

3.3. Paillier Homomorphic Encryption

Homomorphic encryption is an encryption technology that allows computations to be performed
on encrypted data and to obtain encrypted results, which, when decrypted, are consistent with the
results obtained by performing the same computations directly on the original data. This means that
homomorphic encryption enables data to be processed and analyzed without revealing any content.
It is an important technology for protecting online privacy, allowing cloud computing services to
perform complex data processing tasks on users’ encrypted data without accessing the actual data.

Paillier homomorphic encryption is a public-key cryptosystem that specifically supports homo-
morphic addition operations on encrypted data. The applications of the Paillier encryption scheme are
extensive, and it can be used to protect the privacy and security of data. For example, in distributed
computing, the Paillier encryption scheme can be used to encrypt data and transmit it to various nodes
for processing, ensuring the security and privacy of the data. Furthermore, the Paillier encryption
scheme can also be used to implement homomorphic secret sharing, private set intersection, and other
application scenarios. Overall, the Paillier encryption scheme is an efficient homomorphic encryption
scheme with a wide range of application prospects. This paper uses the Paillier cryptosystem in its
final scheme. The homomorphic properties utilized in this paper are as follows. The final scheme is
based on these two features:

1. Additive Homomorphism: If ¢; = Enc(m;) and c; = Enc(m,), then Dec(cy - c; mod n?) =
my + my. This allows for performing addition operations on ciphertexts without needing to
decrypt them first.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

6 of 29

2. Scalar Multiplication Homomorphism: If ¢ = Enc(m), then Dec(cf mod n?) = k- m. This
means that it is possible to perform multiplication operations between a ciphertext and a plaintext
scalar without decryption.

This paper will utilize homomorphic encryption technology to construct the third protocol of this
paper: Unbalanced PSI-CA Protocol Based on Dual Cloud Assistance.

4. PSI-CA Protocol Constructed Based on DH Key Exchange Mechanism

Before proposing the first unbalanced PSI-CA protocol of this paper, we introduce Cristofaro’
PSI-CA protocol constructed based on the DH key exchange mechanism [35].The specific process is as
follows:

4.1. Protocol Process

4.1.1. Exchange and Computation Stage

1. Receiver Data Encryption: The receiver encrypts H(y;) with its private key B, obtaining H (y;)?
and sends it to the sender.

2. Sender Computation: Upon receiving H(y;)?, the sender applies its private key a to compute
(H(y;)P)* and shuffles it before sending it back to the receiver.

3. Sender Data Encryption: The sender encrypts H(x;) with its private key a, resulting in H(x;)*
and sends it to the receiver to facilitate the computation of the intersection cardinality.

4.1.2. Cardinality Calculation Stage

1. Receiver Decryption and Computation: The receiver uses the inverse of 8 to decrypt (H(y;)f)*
to retrieve H(y;)"*. By comparing H(x;)* with H(y;)%, the receiver can calculate the cardinality
of the intersection between the two sets.

4.2. Experimental Analysis

For this protocol, experiments were conducted and the runtime was recorded for various combi-
nations of dataset sizes, as shown in Table 1.

Table 1. Runtime of the PSI-CA Protocol Constructed Based on DH Key Exchange Mechanism

Cardinality of Dataset ~Cardinality of Dataset Protocol Runtime

from Participant One from Participant Two (seconds)
210 215 1.8095
210 217 7.3003
210 220 56.1277
210 225 1859.9520
215 215 5.2207
215 217 10.0672
215 220 63.4835
215 225 1886.3966
217 217 20.7044
217 220 71.9252
217 225 1977.5657
220 220 170.3074
220 225 2054.2694

Through the experimental data, an important phenomenon can be observed. Table 1 shows the
estimated runtime of the above protocol under different data volume levels. For example: Initially,

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

7 of 29

when the number of elements in Participant One’s dataset is 2! and Participant Two's dataset is 21°,
the runtime of the protocol is 1.745 seconds. In this case, there is a noticeable imbalance between the
smaller side (Participant One) and the larger side (Participant Two). Now, if we expand the number of
elements in Participant One’s dataset (originally the side with fewer elements) to 2!°, while keeping
Participant Two's dataset size constant at 2!°, the runtime increases to 4.925 seconds, approximately
three times the original. This indicates that although the runtime increases when the datasets are
balanced, the increase is limited. However, if we keep Participant One’s dataset size at 2! and increase
Participant Two’s dataset size to 22V (the same scale of change), the runtime dramatically increases
to 55.267 seconds, about 31 times the initial condition. This phenomenon shows that in unbalanced
dataset conditions, increasing the number of elements in the larger dataset significantly affects the
efficiency of the protocol.

These results reveal the importance of dataset balance in maintaining efficiency during the
implementation of this protocol. Unbalanced datasets not only lead to extended runtimes but can also
cause low resource utilization and delays in processing. However, in practical applications, when
two parties want to get private set intersection’s cardinality, their sets are often unequal and with a
significant gap. Therefore, the current situation requires the design of a new protocol to eliminate the
impact of dataset size imbalance on protocol efficiency.

4.3. Summary of This Chapter

This chapter explores the PSI-CA Protocol built on the Diffie-Hellman (DH) key exchange mecha-
nism, detailing its processes and experimental analysis. Initially, the protocol employs a DH mechanism
for securing data exchanges between two parties, outlined in specific stages: data encryption by the
receiver, computation and further encryption by the sender, followed by decryption and intersection
cardinality computation by the receiver.

The experimental analysis section provides a practical examination of the protocol’s runtime
across varying dataset sizes, demonstrating that imbalances significantly affect efficiency. As the
dataset sizes diverge, particularly when a smaller dataset is compared with a rapidly increasing larger
dataset, the protocol’s runtime escalates dramatically.

Therefore, there is an urgent need to design a new protocol to alleviate the adverse effects of
dataset size imbalance on the performance of the PSI-CA protocol.

5. Unbalanced PSI-CA Protocol Based on Cuckoo Filter

Although Cristofaro” PSI-CA protocol [35] constructed based on the DH key exchange mechanism
provides an effective way to compute the intersection’s cardinality of two datasets, especially under the
premise of protecting participants” data privacy, this paper observes that its efficiency is significantly
impacted when dataset sizes are extremely unbalanced. In particular, as shown in Table 1, the runtime
increases significantly as the size of the larger dataset increases, reflecting the performance limitations
of Cristofaro” PSI protocol when dealing with unbalanced datasets.

In order to overcome these limitations, the first protocol proposed in this paper adopts a different
technical strategy, which effectively reduces the computational burden under unbalanced conditions
by introducing Cuckoo filter. This not only optimizes the data processing process, but also improves
the overall operational efficiency. In the new protocol, the increase in run time is not as dramatic as
that in the Cristofaro” PSI-CA protocol [35] based on the DH key exchange, even with unbalanced data
set sizes, this allows for more efficient and balanced data processing. This improvement is particularly
important for data sets of different sizes frequently encountered in practical applications.

Therefore, based on the above introduction, as shown in Figure 1, this paper first proposes a
PSI-CA protocol based on the discrete logarithm problem difficulty and the correctness (high false
positive rate) of Cuckoo filter. This protocol is divided into two phases, the specific details are as
follows

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

8 of 29

Server: X = {xl,x2 ...,xnl} Client:Y = {1, o)1, }

Randomly permute elements in X Randomly permute elements in ¥
R Vj1<j<
tel, b ISt
. ‘ ﬁ} « Z(}
ov, 1<y b= H
. . = H(y)
CF. nsert((H(x))°) sum=0
QCF
, AOR A SRS
- =pb
) Oc= {Clu s Gy G = 1y J] tem, = erl/ﬁ;
@' = [Cl’, G’ ---'an’|C]" = Cj“ = (hjﬁj)“] if CF. check(item]-) then
> sum = sum+1

small health app
developers

Figure 1. Unbalanced PSI-CA Protocol Based On Cuckoo Filter

|arge medical institution

5.1. Definition of Main Participants and Related Symbols

1. large medical institution represents the party with a larger dataset and greater computational
and storage capabilities.

2. small health app developer represents the party with a smaller dataset and lesser computational
and storage capabilities.

3. X and Y represent the dataset of the large medical institution and the small health app developer
respectively.

4. a represents the private key of the large medical institution in the Diffie-Hellman encryption
algorithm.

5. Bj represents the random number generated by the small health app developer for the Diffie-
Hellman encryption algorithm.

6. H represents the hash function negotiated by the small health app developer and large medical
institution for use.

7. CF represents Cuckoo Filter,CF.insert represents the operation of adding an element to the
Cuckoo filter,CF.check represents the operation of checking whether a specific element exists in
the filter.

8. X; represents the i-th element of set X. Similarly, Y;, C;, etc., also represent similar meanings.

9. C = {c1,¢c2,...,cn} represents the set containing n, ciphertexts sent by the small health app
developer to the large medical institution.

10. C’ represents the set containing 1, ciphertexts sent by the large medical institution to the small
health app developer.

11. item; represents the result obtained through a series of exchange and decryption operations, used
to retrieve the filter.

12. sum represents the cardinality of the intersection between the two parties.

5.2. Protocol Process

The protocol is divided into two phases: the preprocessing phase and the intersection phase, with
specific details as follows.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

9 of 29

5.2.1. Preprocessing

In the preprocessing phase, the small health app developer and the large medical institution need
to perform a series of preparatory work to ensure the security and efficiency of subsequent interactions.
The specific steps are as follows:

1. Security parameter negotiation: The small health app developer and the large medical institution
agree on the large prime number q used in the DH encryption algorithm and the hash function
H used.

2. Large Medical Institution Generates Private Key: The large medical institution generates its own
private key &, used for the Diffie-Hellman (DH) encryption algorithm.

3. Data Scrambling: The small health app developer and the large medical institution scramble
their own datasets Y and X for randomization, enhancing data privacy and security.

4. Small Health App Developer Data Preprocessing: The small health app developer calculates
h; = H(y;) and generates 1, random numbers §;, used for the Diffie-Hellman (DH) encryption
algorithm.

5. Creation of Cuckoo Filter: The large medical institution generates a Cuckoo filter CF by using
the operation CF.insert((H(x;))*), and sends the filter CF to the small health app developer for
private set intersection queries with privacy protection.

5.2.2. Cardinality Calculation

In the cardinality calculation phase, the small health app developer and the large medical institu-
tion perform a series of carefully designed encryption and decryption operations to blind the small
health app developer’s elements securely and compute the intersection’s cardinality of the two sets.
The specific operations are as follows:

1. Element Blinding and Interactive Encryption Operations: The small health app developer and
the large medical institution interact through a series of asymmetric encryption and decryption
operations to blind the small health app developer’s elements. Specifically, the small health app

developer calculates C; = hfi and sends C to the large medical institution. The large medical

institution uses its private key a to compute C]{ = C]‘f‘ and sends C’ back to the small health app
developer.

2. Cardinality Computation: After receiving C’, the small health app developer checks whether they
belong to the filter CF through the check operation CF.check, thereby calculating the cardinality
of the intersection of the sets. Specifically, after receiving H(X)"™ sent by the large medical
institution, the small health app developer computes item; = C]’.l/ Pi and uses the result to query
the filter CF to obtain the intersection’s cardinality sum.

5.3. Correctness Analysis

) N 1/ Bj*a
If x; = y;, then H(x;) = H(y;), then item; = Cj{l/ﬁf = C}?‘*l/ﬁf = (hf’) T = H(x;)* =
H(y;)".
Thus, through this scheme, the small health app developer can accurately obtain the cardinality
of the intersection of both parties.

5.4. Security Analysis

This section will analyze the security of the protocol in detail, mainly its ability to protect the
privacy of both parties.

Firstly, considering that the protocol utilizes the Diffie-Hellman (DH) key exchange mechanism to
blind the small health app developer’s elements, this process’s security is based on the difficulty of
solving the One-More-Gap-Diffie-Hellman (OMGDH) problem. Since the DH mechanism ensures that
even in public communication channels, unauthorized parties cannot decipher the exchanged secret
information, the small health app developer’s data is protected during transmission to the server. The

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

10 of 29

server uses a private key to process the received data and returns the results to the small health app
developer, this process likewise ensures the security and privacy of the data server.

Secondly, the protocol’s use of Cuckoo filter, while efficiently supporting insertion and query
operations, its false positive characteristics mean that even if some non-intersecting elements are
mistakenly identified as belonging to the intersection, it does not reveal the exact set membership
information. This feature provides additional privacy protection to some extent, as even in the event
of a false positive error, attackers cannot determine whether a specific element truly exists in the other
party’s set.

Furthermore, through the interactive computations between the small health app developer and
the large medical institution, the protocol ensures that only elements common to both parties can be
accurately identified. The small health app developer checks the data returned by the server against
its own dataset to ultimately determine the intersection’s cardinality.

In summary, based on the blinding process using the Diffie-Hellman mechanism and the use of
Cuckoo filter, this protocol can accurately calculate the cardinality of the intersection between two sets
while protecting the participants’ privacy. It is worth noting that neither party can obtain the specific
intersection elements.

5.5. Experimental Analysis

For this protocol, experiments were conducted, and the runtime was recorded for various com-
binations of data volumes, as shown in Table 2. The table also compares the runtime of Cristofaro’
PSI-CA protocol constructed based on the DH key exchange mechanism [35]. Since preprocessing can
be completed offline, the runtime of the unbalanced PSI-CA protocol based on Cuckoo filter refers
to the total time of the the cardinality calculation process. The original protocol refers to the PSI-CA
protocol constructed based on the DH key exchange mechanism, and the new protocol refers to the
unbalanced PSI protocol based on Cuckoo filter.

Table 2. Comparison of running time of PSI-CA protocol based on DH key exchange mechanism and
Cuckoo Filter based

Cardinality of Dataset Cardinality of Dataset Original Protocol =~ New Protocol
from Participant One from Participant Two Runtime (seconds) Runtime (seconds)

210 215 1.8095 0.1685
210 217 7.3003 0.1663
210 220 56.1277 0.1641
210 225 1859.9520 0.1840
215 215 5.2207 5.2725
215 217 10.0672 5.5104
215 220 63.4835 5.2807
215 225 1886.3966 5.5166
217 217 20.7044 21.1474
217 220 71.9252 21.2865
217 225 1977.5657 21.9713
220 220 170.3074 171.5354
220 225 2054.2694 186.9644

Through the experimental data, this paper can observe several key phenomena. First, when
the cardinality of the smaller dataset (number of elements) remains constant while the number of
elements in the larger dataset increases rapidly, it is observed that the runtime of the protocol does
not change much, remaining consistent. This indicates that although the size of the large dataset
increases dramatically, the efficiency of the protocol is not significantly affected, thereby proving that
the design of this protocol can effectively mitigate the negative impact of dataset size imbalance on
protocol efficiency. Especially, the overall runtime of the protocol is more related to the cardinality of
the smaller dataset and has very low relevance to the cardinality of the larger dataset.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

11 of 29

At the same time, this experiment also found that under balanced dataset conditions, the runtime
of the PSI-CA protocol based on the DH key exchange mechanism and the unbalanced PSI-CA protocol
based on Cuckoo filter does not differ significantly. This indicates that when the sizes of the sets are
similar, both protocols can exhibit comparable performance, providing an efficient solution.

5.6. Summary of This Chapter

This chapter presents the development and analysis of an Unbalanced PSI-CA Protocol that
utilizes Cuckoo filter to efficiently handle datasets with significant size disparities. The protocol is
designed to overcome the limitations observed in traditional PSI-CA protocols such as Cristofaro’s,
which struggles with efficiency under unbalanced conditions.

Experimental analyses demonstrate the protocol’s robustness, showing minimal runtime increases
even as dataset sizes grow significantly, which marks a substantial improvement over traditional
methods. The protocol proves particularly effective in real-world scenarios where dataset imbalances
are common, providing a reliable solution that ensures privacy and efficiency.

In essence, this chapter confirms the efficacy of integrating Cuckoo filter into PSI-CA protocols,
offering enhanced performance and security, making it a valuable addition to the field of data privacy
and secure computation.

However, in this protocol, the receiver still has to bear the burden of complex cryptographic
computations and storing the Cuckoo filter. The next chapter will focus on optimizing this aspect.

6. Unbalanced PSI-CA Protocol Based on Single Cloud Assistance

The previous chapter has proven that the unbalanced PSI-CA protocol based on Cuckoo filter is
more suitable for practical scenarios, especially under unbalanced conditions, this protocol effectively
resolves the performance limitations of the PSI protocol constructed using the DH key exchange
mechanism in handling unbalanced datasets. However, there is still room for improvement in this
protocol. It is observed that in this protocol, small health app developer (receiver) need to store filter
and perform complex cryptographic operations, which can be a significant burden for mobile devices
with limited computing power and storage space. A series of encryption operations and storing filter
received from the other party becomes a heavy load. To address this issue, it is considered to transfer
most of the receiver’s computational and storage tasks to cloud servers. By delegating tasks to cloud
servers, receiver can significantly reduce computational and storage pressure, especially for small
health app developer with limited capabilities.

This section will introduce cloud computing technology, which allows small health app developer
with limited computing power and storage space to outsource their private data and request cloud
platforms to perform related computations. Currently, whether for individual users or large enterprises,
entrusting data storage and computation tasks to cloud services has become a common practice. Based
on the introduction above, as shown in Figure 2, this chapter proposes a second unbalanced PSI-CA
protocol.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

12 of 29

Server:X = {xl,x2 ...,xnl} Client:Y = {y1,¥7 e, Y, }
Randomly permute elements in X Randomly permute elements in Y
R . .
a«—Zq vj,1 sRJSnz
Bj < Z,
@ rl and Y -=0'vys.nyi} W=HO)
v
vi1<j<n,
_ B B @
< ®C={C,, G0, G, |G =13P1 1P} o
®C ={¢,.C;' .. C,'I¢] = (5P« 1)) w sum |
» cloud sever >
large medical institution small health app
developer
® cF ® return
@ vil<is<n, R ,:<° sum-k
. ,1<j<n
CF.insert((H(x;))® * %) J J 2
) . item; = C;'V/Pi
Vi,i1<i<k

if CF.check(item;) then

CF.insert(Epyc(a) @HY) sum = sum + 1

Figure 2. Unbalanced PSI-CA Protocol Based On Single Cloud Assistance

6.1. Definition of Main Participants and Related Symbols

1. large medical institution represents the party with a larger dataset and greater computational
and storage capabilities.
2. small health app developer represents the party with a smaller dataset and lesser computational
and storage capabilities.
3. cloud server: Represents an auxiliary server that assists the receiver in obtaining intersection’s
cardinality operations, undertaking most of the computational and storage pressures.
4. X and Y represent the dataset of the large medical institution and the small health app developer
respectively.
5. Y' represents the obfuscated dataset sent by the small health app developer to the large medical
institution, used to confuse the cloud server and prevent it from obtaining the accurate cardinality
of the intersection.k represents the cardinality of the set Y.
6. « represents the private key of the dlarge medical institution in the Diffie-Hellman encryption
algorithm.
7. rq represents the random number generated by the small health app developer, used to blind the
data.
8. B represents the random number generated by the small health app developer for the Diffie-
Hellman encryption algorithm.
9. H represents the hash function negotiated for use by the small health app developer and large
medical institution.
10. CF represents the Cuckoo Filter, CF.insert represents the operation to add an element to the
Cuckoo filter, CF.check represents the operation to check if a specified element exists in the filter.
11. X; represents the i-th element of the set X. Similarly, Y;, C;, etc., also represent similar meanings.
12. C ={c1,c,...,cn} represents the set of 1, ciphertexts sent by the small health app developer to
the large medical institution.
13. C’ represents the set of 1, ciphertexts sent by the large medical institution to the small health
app developer
14. item; represents the result obtained through a series of exchange and decryption operations, used
to retrieve the filter to obtain the cardinality of intersection.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

13 of 29

15. sum represents the variable used to help the small health app developer obtain the cardinality of
the intersection, where sum — k represents the cardinality of the intersection.

6.2. Protocol Process

6.2.1. Preprocessing

1. Security parameter negotiation: Each role discusses the necessary security parameters, all parties
share the large prime g used in the DH cryptographic algorithm. The small health app developer
and the large medical institution negotiate to generate rq and the hash function H.

2. The small health app developer negotiates with the large medical institution to create an obfus-
cated dataset Y': This data set is completely useless data, which means that its elements cannot
belong to either the small health app developer or the large medical institution collection..

3. Large medical institution generates a private key: The large medical institution generates its own
private key «, for use in the Diffie-Hellman encryption algorithm.

4. Data scrambling: The small health app developer and the large medical institution each scramble

their own datasets X and Y.
5. Small health app developer data preprocessing: The small health app developer calculates

hi = H(y,), generates np random numbers §;, and calculates ; x r1.

6.2.2. Outsourcing

1. Large medical institution sends data to the cloud server: The large medical institution uses its
private key « to perform the operation CF.insert((H(x;))* x r{), creates a Cuckoo filter CF, and
sends it to the cloud server.

2. Small health app developer sends data to the cloud server: The small health app developer sends
the random numbers §; and h; X 1 to the cloud server. After receiving the data sent by the small

health app developer, the cloud server calculates C; = rlﬁj X h].ﬁ /. At this point, the cloud server
has saved the small health app developer’s blinded data.

6.2.3. Cardinality Calculation

1. Cloud server sends data: The cloud server sends the blinded data C; to the large medical
institution.

2. Large medical institution processes data: Upon receiving C;, the large medical institution uses its
private key « to calculate C]’. = C;?‘, and sends the result back to the cloud server.

3. Cloud server processes data: After receiving C]{ from the large medical institution, the cloud

server calculates item i = Cyﬁj and uses the result to search CF. If item]- exists in CF, then sum is
incremented by 1 (initial value of sum is 0).

4. Obtaining the intersection cardinality: The small health app developer obtains the cardinality of
the intersection by calculating sum — k, where k is the cardinality of the set Y'.

6.3. Correctness Analysis

If Xi = Yj, then H(xi) = H(y]), SO itemj _ Cj(l/ﬁj — C;x*l/.Bj = (Tlﬁj % hfj)l/ﬁ]*tx . h;x —
r®x H(x;)* ="« H(y;)"

Thus, through this scheme, the small health app developer can accurately obtain the cardinality
of the intersection of both parties.

6.4. Security Analysis

In the design of this protocol, the primary security objective is to ensure that, even in a partially
trusted cloud environment, neither the small health app developer’s data nor the large medical institu-
tion’s data can be accessed or inferred by unauthorized entities. Specifically, since other participating
parties are unaware of the large medical institution’s private key &, they cannot deduce the data

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

14 of 29

held by the large medical institution. Similarly, since other parties do not know the small health app
developer’s private random number rq, they cannot deduce the small health app developer’s data.

However, this scheme has inherent security risks, primarily because it does not withstand collu-
sion attacks. If the large medical institution and the cloud server collude, they can jointly deduce the
small health app developer’s data. This is possible because the cloud server possesses the blinded data
h; x r1, and if the large medical institution leaks the private key r; to the cloud server, then both the
cloud server and the large medical institution could deduce the small health app developer’s original
data hj. Collusion attacks are a security threat where two or more distinct entities (for example, users,
systems, or service providers) secretly cooperate to undermine or circumvent security mechanisms
and privacy measures. In cloud computing environments, cloud service providers and cloud users
may collude to steal or infer other users’ sensitive data stored on the cloud. In the medical scenario of
this article, the intersection represents the patient’s sensitive data, and leaking this information will
cause very serious damage.

6.5. Experimental Analysis

6.5.1. Data Storage Volume

In the research of this paper, the experimental analysis of the unbalanced PSI-CA protocol based
on single cloud assistance revealed a key issue: when the small health app developer needs to receive
a Cuckoo filter from the large medical institution, this poses a significant challenge for receivers with
limited storage capacity. This challenge is magnified when facing large datasets.

To understand this issue deeply, a series of experiments were conducted to measure the volume of
Cuckoo filter needed by the small health app developer under different data sizes. The input data size
for the experiments was provided by the large medical institution, reflecting the various data volumes
that might be encountered in actual application scenarios. As shown in Table 3, the paper meticulously
recorded the specific sizes of Cuckoo filter under different input data volumes, revealing the intrinsic
relationship between data volume and filter size. Through experiments, it was discovered that as the
data volume in the large medical institution increased, the storage burden on the small health app
developer under the original protocol also increased accordingly, with the size of the Cuckoo filter
directly impacted by the input data volume. Especially in the context of the large medical institution
containing extensive patient data, this storage pressure is particularly evident.

Table 3. Size of Cuckoo Filter at Different Data Volumes

Data Set Count Size of Cuckoo Filter (MB)

215 0.535

217 2.363

220 21.678
222 93.645
223 194.436
224 403.201
227 3571.206
228 7372.835
229 15206.421

Therefore, based on the above analysis and experimental results, it is clear that when the data
volume in the large medical institution is excessively large, in other words, when the number of
users reaches a certain level, the feasibility of a simple unassisted unbalanced PSI-CA protocol based
on Cuckoo filter significantly decreases. This is because the unbalanced PSI-CA protocol based on
Cuckoo filter requires small health app developers to directly receive and process massive Cuckoo filter,
which poses a significant challenge for small health app developers with limited storage resources,
particularly mobile devices. Small health app developer devices often do not have enough storage

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

15 of 29

space to accommodate these large-volume filter data, let alone process these data to complete PSI-CA
operations.

In this context, the introduction of a cloud server scheme shows its unique advantages. By
transferring the storage of the filter to the cloud server, the burden on the small health app developer
is greatly reduced. By this means, even in situations with a massive number of users and large data
volumes, the scheme can still maintain efficient operations and ensure the smooth completion of
PSI-CA operations.

In summary, through experimental and theoretical analysis, this section concludes that in scenarios
with large-scale users and massive data volumes, the introduction of a cloud server scheme is more
feasible and efficient than the unbalanced PSI-CA protocol based on Cuckoo filter.

6.5.2. Protocol Running Time

For this protocol, as shown in Table 4, the paper conducted experiments and recorded the running
time of the protocol under various data volume combinations. Because preprocessing can be completed
offline, the running time of the protocol refers to the total time of the outsourcing process and the
intersection process. Table 4 also compares the running times of the unbalanced PSI-CA protocol based
on Cuckoo filter and the unbalanced PSI-CA protocol based on single cloud assistance. Here, Protocol
1 refers to the unbalanced PSI-CA protocol based on Cuckoo filter, and Protocol 2 refers to unbalanced
PSI-CA protocol based on single cloud assistance.

Table 4. Running Times of Protocol 1 and Protocol 2 Under Different Data Volume Combinations

Small Health Large Medical In- Protocol 1 Running Protocol 2 Running

App Developer stitution Dataset Time (seconds) Time (seconds)
Dataset Size Size

210 215 0.1685 0.1658
210 217 0.1663 0.1693
210 220 0.1641 0.1658
210 225 0.1840 0.1731
215 215 5.2725 4.0627
215 217 5.5104 42464
215 220 5.2807 4.3202
215 225 5.5166 46118
217 217 21.1474 17.056
217 220 21.2865 16.731
217 225 21.9713 18.5417
220 220 171.5354 130.0498
220 225 186.9644 140.0193

From the experimental analysis, the following conclusions can be drawn: In cases of smaller data
volumes, the performance differences between the two protocols are not significant. However, as the
data volume increases, the running time differences between different protocols gradually become
apparent. This is because, at certain specific levels, the proportion of communication time is relatively
high when the data volume is small, significantly impacting the results. For larger data volumes,
where computation time dominates, Protocol 2, by placing computational tasks on the more powerful
cloud server, gradually widens the running time difference from Protocol 1. Overall, the use of cloud
resources in the unbalanced PSI-CA protocol based on single cloud assistance significantly reduces
running times, especially when dealing with large-scale datasets.

6.6. Summary of This Chapter

This chapter introduces an unbalanced PSI-CA protocol based on single cloud assistance, which
utilizes cloud computing to reduce the computing and storage pressure of the small health app
developer compared with previous protocols. Additionally, in the absence of collusion between the

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

16 of 29

large medical institution and the cloud server, the protocol effectively protects data from unauthorized
access, ensuring the confidentiality of the data and the privacy of the small health app developer,
making it highly suitable for scenarios where the cloud server is fully trusted.

However, it cannot be denied that although this scheme significantly reduces the computational
and storage burden on the small health app developer, its security against collusion attacks is insuffi-
cient. In the medical scenario of this article, the intersection represents the patient’s sensitive data, and
leaking this information will cause very serious damage.When the possibility of collusion between
the cloud server and large medical institution cannot be completely ruled out, the protocol faces
security risks and will require further security enhancement measures. Therefore, the next chapter will
introduce a more secure solution to address the security deficiencies of the current scheme, ensuring
the security and privacy of small health app developer data and large medical institution data in
environments where not all parties are fully trustworthy. In other words, the new scheme can resist
collusion attacks.

7. Unbalanced PSI-CA Protocol Based on Dual cloud Assistance

The previous single-server solution, which efficiently delegated computationally intensive en-
cryption operations such as exponentiation and storage-intensive Cuckoo filter to the cloud server, has
indeed alleviated the computational and storage burdens on the small health app developer to a certain
extent. This is particularly advantageous for small health app developers with limited computing and
storage capabilities, allowing them to operate beyond their hardware constraints. However, security
analysis reveals that the unbalanced PSI-CA protocol based on single cloud assistance has inherent
security risks, specifically when collusion between the cloud server and large medical institution is
possible, thus compromising its adequacy in protecting small health app developer data privacy.

As shown in Figure 3, to preserve the advantages of the previous scheme—mnamely reducing
computational and storage pressures on the small health app developer—while addressing these
security issues, this chapter proposes a new solution. This design aims to enhance the security during
data processing, especially against potential collusion attacks.

Server:X = {x;,%; ..., X, } Client:Y = {y1,¥5 ... Yn, }
Randomly permute elements in X Randomly pezmure elements inY
R acly
uu—Zq Vj,1<j<n,

R
/’)i:zq'“’f“zq
1Lyt =a—1y;

® Epc(@ and Y =0'uys.yid BT HOD

q/w,}

i @
@)= {C”Llrc”l,Zl e €1y €1y = C'y o= Epic(rijhjo;)

o Epkcmjhjwﬁ\ @
1,

)y
hj®)) cloud sever

O return
sum-k

=G4
\C'ai ~ o

'
,Cam

small health app
developer

@ VvVil<sisn
CF.insert(Epyc(a) * D)
Vi,il1<i<k

CF. insert(Eka (a) a*H(y'i)) cloud sever
H2

C'y= {6”2,1'(:"2,2' C”z,nzw"z,/ = C’z,jllﬁl = Epkc("z/'hjﬁj)

® sum=20
vil<j<n,

ml/ﬂ,}

item; = C, ;" *C",;
if CF.check(item;) then
sum =sum+1

Figure 3. Unbalanced PSI-CA Protocol Based on Dual cloud Assistance

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

17 of 29

7.1. Definition of Main Participants and Related Symbols

1. large medical institution represents the party with a larger dataset and greater computational
and storage capabilities.
2. small health app developer represents the party with a smaller dataset and lesser computational
and storage capabilities.
3. cloud server Hj: Acts as an auxiliary server for the small health app developer, handling the
majority of computation and storage pressures.
4. cloud server H: Another auxiliary server handling substantial computational and storage
demands.
5. X and Y: Represent the dataset of the large medical institution and the small health app developer,
re{spectively.
6. Y represents the obfuscated dataset sent by the small health app developer to the large medical
institution, used to confuse the cloud server and prevent it from obtaining the accurate cardinality
of the intersection.k represents the cardinality of the set Y.
7. a: Represents the private key of the large medical institution used in the Diffie-Hellman encryp-
tion algorithm.
8. H: The hash function agreed upon by the small health app developer and the large medical
institution for use.
9. CF: Represents the Cuckoo Filter, where CF.insert denotes the operation to add elements, and
CF.check checks for the presence of specific elements.
10. wj: Random exponentials generated by the small health app developer for cloud server Hy, B;
for cloud server H.
11. a: A secret value held by the small health app developer.
12. r1,;: Random numbers used by the small health app developer for sending obfuscated data to
cloud server Hy, and r, ; for Hy whereryj + 15 = a.
13. C1: The ciphertext collection sent from cloud server Hj to the large medical institution, and Cp
from Hy; Cy ; and G, are specific elements within these collections.
14. C{ and Cj: Processed ciphertext collections returned to H; and H, from the large medical
institution; C} ; and C’ are specific elements within these collections.
15. C{ and CY': Fmal processed ciphertext collections at Hy and H, after receiving data from the
large medical institution; C{ ; and C; ; are specific elements within these collections.
16. item;: Represents the result of multiplying C/ . 'jand Cy; used to query the filter.
17. sum represents the variable used to help the small health app developer obtain the cardinality of
the intersection, where sum — k represents the cardinality of the intersection.

7.2. Protocol Process

7.2.1. Preprocessing

1. Discuss security parameters: Each party discusses the necessary security parameters—the large
prime g used in DH encryption and the small health app developer’s public key pk. required for
the Paillier encryption system. The small health app developer and the large medical institution
negotiate the creation of hash function H.

2. The small health app developer negotiates with the large medical institution to create an obfus-
cated dataset Y': This data set is completely useless data, which means that its elements cannot
belong to either the small health app developer or the large medical institution collection.

3. small health app developer sends E, (2): The small health app developer generates its private
secret number a and sends E_(a) to the large medical institution.

4. large medical institution generates private key: The large medical institution creates its private
key «, used for the DH encryption algorithm.

5. Data scrambling: The small health app developer and the large medical institution each shuffle
their respective datasets.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

18 of 29

6. small health app developer calculates hashes and generates random numbers: The small health
app developer computes h; = H(y;) and generates n; random numbers B, wj, r1j, r2j, and
computes r1h;j, rojh; where r1j + 12 = a.

7.2.2. Outsourcing

1. small health app developer sends data to cloud servers: The small health app developer sends
r1jhj, wj to cloud server Hy, and ry;hj, B; to cloud server Hy. Hy computes Cyj = Epy, (rljh]-wj),
and Hp computes Cp; = Ep, (r2;hjB;). At this point, H; and H, hold the small health app
developer’s obfuscated data.

2. large medical institution sends data to cloud servers: Using E_(a), the large medical institution

performs the filter insertion operation CF.insert(Epkc (a)xH(xi)) to generate a Cuckoo filter and
sends it to cloud server Hy. H; stores the filter sent by the large medical institution.

7.2.3. Intersection

1. H; and H, send data: H; and Hj each send their respective collections C; and C, to the large
medical institution.

2. large medical institution processes data: Upon receiving the data, the large medical institution
uses its private key a to compute C{,]- = Cﬁ‘,j = Epx, (r1jhjw;)* and sends the results back to Hj. It
also processes C) e C5 i = Ek (r2hiB;)* and sends the results back to Hy.

3. Hj processes data: After receiving data from the large medical institution, H; uses the random

n/w, ,
number w; to calculate Cy ; = Cl,j/w] = Ep. (rljh]-wj)”‘*l/“'l and sends the results to Hy.

4. H, processes data: Upon receiving data from H; and the large medical institution, H; calculates

n/g;) s s , s
Gy = Cz,j/ﬁ] = Epkc(rzjhjﬁj)“*l/ﬁf. H; checks if item; = Cy; « C); exists in CF. If item; exists in

CF, then sum is incremented by 1 (initial value of sum is 0).
5. Obtaining the intersection cardinality: The small health app developer obtains the cardinality of
the intersection by calculating sum — k, where k is the cardinality of the set Y'.

7.3. Correctness Analysis

1/wj 11/ ,
If x; = yj, then H(x;) = H(y;), which implies that Ci’,]- * Cé’,]- = C;,],/w’ * C;,j/ﬂ/ = Epkc(rl]-hjw]-)"‘*l/“’f *

Epi, (rajhiB))* " Pi = Epi (rijhja) s Epr, (rajhja) = Ey [ahj(ryj + 1)) = Epi (ahja) = Ep () HGD),
Thus, through this scheme, the small health app developer can accurately obtain the cardinality
of the intersection of both parties.

7.4. Security Analysis

Firstly, we consider the security ofsmall health app developer’s data in the set.In considering
security against collusion attacks, it is generally assumed that there is an adversary who possesses
the perspective and information of all participating parties except for the protected entity. This
means the adversary can access, control, or receive information and resources from all participants
except for the small health app developer. In this scenario, the adversary attempts to compromise the
system’s security or privacy by aggregating these insights, such as revealing sensitive data of the small
health app developer. If, in this context, the adversary still cannot learn or infer the small health app
developer’s data, then it is proven that the data and privacy of the small health app developer are
sufficiently secured against collusion attacks.

This section defines a game where the security objective is to maintain confidentiality of the data
within the set under semi-honest and collusion conditions. The game for securing the small health app
developer’s data set is as follows:

1. The small health app developer runs the preprocessing algorithm, sharing the cryptographic
hash function H and the large prime g4 used in the protocol with the adversary.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

19 of 29

2. The small health app developer simulates the outsourcing algorithm and sends their (encrypted)
input to the adversary.

3. The small health app developer and the adversary simulate the intersection algorithm and
discard any output.

4. The adversary is asked to output a guess i of the small health app developer’s input y.

The game is analogized to a deterministic one-way function, such as a public key encryption
scheme. Let S be the simulated messages of the small health app developer during the game. Let a
one-way function adversary A’ be given the information (public key) pk and function (ciphertext) ¢
(encrypted y). The advantage of the adversary Adv 4 is defined as the difference between the successful
guesses of A and A'. If this advantage is negligible in the security parameter A, then the outsourced
private set intersection is considered secure. That is, let Advsy = Pr[A(S) = y| — Pr[A'(pk,c) = y|. If
Advy < m, then the protocol is said to be secure.

Specifically, after the steps mentioned above, Hj, Hy, and the large medical institution have a
complete view of the process. However, under the two-server architecture, as illustrated in Figure 3:

1. In step four of Figure 3, since r1; and r;; are unknown to the adversary, i; cannot be derived. The
adversary can only attempt exhaustive guessing, thus making Adv 4 negligible.

2. In subsequent steps, as A does not know the small health app developer’s private key for the
Paillier encryption system, it is impractical to decrypt the ciphertexts, making it even more chal-

a*l/wj "

lenging to derive ;. For instance, item; = C{; x Cy; = C{/]_l/wj * Céljl/ﬂf = Epi, (rijhjw;)
Epk, (r2jh; ﬁj)“*l/ Fi, and since the private key used in Paillier’s system by the small health app

developer is unknown, decrypting this compound is complex and hence /; remains secure.

From the analysis above, it is evident that the advantage of Adv 4 is negligible. Therefore, if both
cloud servers collude with the large medical institution, they cannot deduce the small health app
developer’s original data.

Next, consider the security of the data in the large medical institution’s set. Obviously, apart from
the large medical institution itself, none of the parties know the large medical institution’s private key
«, hence even if both cloud servers colluded with the small health app developer, they cannot derive
the original data from CF.

It is particularly noted that due to the prevalence of attacks on hash functions, further security
enhancements are recommended by protecting the hashed data as the raw data.

In addition, due to the existence of obfuscated dataset Y’, two cloud servers cannot know the set
cardinality of the large medical institution and the small health app developer.

In conclusion, the dual-server scheme successfully resists collusion attacks under semi-honest
conditions. By thoroughly integrating considerations for security and privacy into the protocol design,
both the small health app developer’s and the large medical institution’s data are assured of robust
protection. This solution not only provides an effective mechanism for private set intersection but also
demonstrates resilience against potential collusion threats.

7.5. Experimental Analysis

7.5.1. Data Computation Volume

When evaluating the performance of these protocols, the computational load borne by the small
health app developer is undoubtedly a critical factor. Since all three protocols have been introduced,
this section specifically focuses on the computational volume of the small health app developer to
accurately gauge and compare the efficiency of the three distinct protocols in operation. Specifically,
this section will conduct a detailed analysis and comparison of the main computational tasks that
the small health app developer must execute across these protocols, to fully assess each protocol’s
demand on the small health app developer’s computational resources. This analysis will primarily
focus on the types of operations involved, aiming to clarify which protocol demonstrates relative

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

20 of 29

advantages in reducing the small health app developer’s computational burden, thus providing a solid
basis for selecting the most appropriate protocol. Below is an analysis of the main types of operations
involved in each protocol, focusing primarily on the outsourcing and intersection processes, as the
preprocessing can be completed offline. .

1. unbalanced PSI-CA protocol based on Cuckoo filter: Two rounds of modular exponentiation

operations and filter retrieval.
2. unbalanced PSI-CA protocol based on single cloud assistance: A single round of multiplication

operations .
3. unbalanced PSI-CA protocol based on dual cloud assistance: Two rounds of multiplication

operations .

An analysis of the single-instance time consumption for these four operations offers a practical
insight into the computational volume differences:

1. Modular Exponentiation Operation: Representing computation-intensive operations, modular
exponentiation becomes particularly time-consuming. On a standard hardware setup, the time
required for a single modular exponentiation operation depends primarily on the size of the
numbers involved and the efficiency of the algorithm.

2. Multiplication Operation: Compared to modular exponentiation, multiplication operations exe-
cute much faster on modern computing systems, even when involving large numbers. Therefore,
whether it’s a single round of multiplication in the single-cloud protocol or two rounds in the
dual-cloud protocol, the processing times are relatively short.

3. Cuckoo Filter Retrieval: Although relatively quick, the retrieval operation for a Cuckoo filter
involves memory access, which may make it slightly slower than simple arithmetic operations.
The exact time required for this operation depends on the size of the filter and the efficiency of
the implementation.

After a detailed analysis and comparison, this section has conducted a thorough exploration of
the key computational tasks executed by the small health app developer across the three different
protocols. These tasks include modular exponentiation, multiplication operations, and Cuckoo filter
retrieval By assessing these types of computations and their specific time consumptions, the following
conclusions can be drawn:

1. Unbalanced PSI-CA Protocol Based On Cuckoo Filter: Primarily relies on two rounds of
modular exponentiation and, which are computation-intensive, especially when dealing with
large numbers, making it the most time-consuming of all the operations reviewed.Additionally,

the filter retrieval operation is also involved.
2. Unbalanced PSI-CA Protocol Based On Single Cloud Assistance : By executing a single round

of multiplication, it significantly alleviates the computational burden on the small health app
developer. Multiplication operations, even for large numbers, can be done quickly.

3. Unbalanced PSI-CA Protocol Based On Dual cloud Assistance: Includes two rounds of multi-
plication operations, also aiming to distribute the computational pressure on the small health
app developer. Although it involves two rounds of multiplication, due to the inherent efficiency
of the operation, the total processing time remains within an acceptable range.

Through the meticulous assessment of each protocol’s computational types and their time con-
sumptions, it is evident that both the unbalanced PSI-CA protocol based on single cloud assistance
and unbalanced PSI-CA protocol based on dual cloud assistance exhibit excellent performance in
reducing the small health app developer’s computational burden, particularly in the efficient execution
of multiplication operations. In contrast, the unbalanced PSI-CA protocol based on Cuckoo filter,
while potentially offering stronger security provisions, shows some deficiencies in efficiency and
timeliness. Therefore, when choosing an appropriate protocol, a balance should be struck based on
actual performance requirements and security needs.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

21 of 29

7.5.2. Protocol Running Time

After introducing all three protocols, this section primarily discusses the running times of the
protocols. The running time of a protocol is an important benchmark for evaluation in this paper
because it directly reflects the protocol’s efficiency in practical operations. The factors affecting the
running time of the protocol include computational time and communication time. As shown in
Table 5, experiments were conducted to record the running times of the protocols under various data
volume combinations.Table 5 also places the running times of the unbalanced PSI -CA protocol based
on Cuckoo filter, unbalanced PSI-CA protocol based on single cloud assistance, and unbalanced PSI-CA
protocol based on dual cloud assistance side by side for comparative analysis. Here, Protocol I refers
to the unbalanced PSI-CA protocol based on Cuckoo filter, Protocol II refers to the unbalanced PS-CAI
protocol based on single cloud assistance, and Protocol III refers to the unbalanced PSI-CA protocol
based on dual cloud assistance.

Table 5. Running times of the three protocols under different data volume combinations

Data Volume Protocol 1 Protocol 1T Protocol III
Running Time (s) Running Time (s) Running Time (s)
2100215 0.1539 0.1543 0.1612
210217 0.1569 0.1573 0.1742
2101220 0.1616 0.1611 0.1736
210225 0.1693 0.1683 0.1868
215215 4.9239 3.8223 4.3904
215217 5.0232 3.9145 49128
215|220 5.1709 4.0267 4.6099
215225 5.4172 42233 4.8281
2171217 20.0930 15.6768 18.2058
2171220 20.6841 16.1281 20.2155
217|225 21.6690 16.8939 20.0528
220220 165.4731 129.0516 148.7145
220225 173.3531 135.2534 165.9464

It is noteworthy that the preprocessing stages of all three protocols can be completed offline,
meaning they do not directly contribute to online operation delays. Therefore, the recorded running
times in this paper refer to the total time of all processes excluding preprocessing. Specifically, in
Protocol I, this primarily refers to the total duration of the intersection process; in Protocols II and I1I, it
refers to the total duration of both the outsourcing and intersection processes.

Through experimental analysis, the paper draws the following conclusions: At smaller data
volumes, the performance differences between the three protocols are not significant. However, as
the data volume increases, the differences in running times between the protocols become apparent.
Generally, the unbalanced PSI-CA protocol based on Cuckoo filter tends to have the longest running
time, while the unbalanced PSI-CA protocol based on single cloud assistance has the shortest running
time, and the performance of the unbalanced PSI-CA protocol based on dual cloud assistance is in the
middle. This phenomenon can be explained by the complexity of data handling and the differences in
communication overhead among the protocols. The unbalanced PSI-CA protocol based on Cuckoo
filter, due to its direct and unoptimized calculations, is less efficient when handling large volumes
of data. Nevertheless, at very small data volumes, where the proportion of communication time is
relatively high, the impact of data transmission costs on total running time becomes significant. In such
cases, the unbalanced PSI-CA protocol based on Cuckoo filter does not necessarily appear inefficient
because other protocols might be even less efficient in data transmission. Especially in environments
with poor network conditions or limited data transfer rates, the lower communication demands of the
unbalanced PSI-CA protocol based on Cuckoo filter might, in some cases, lead to better performance.

Moreover, the running times of the unbalanced PSI-CA protocol based on single cloud assistance
and the unbalanced PSI-CA protocol based on dual cloud assistance are significantly reduced through

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

22 of 29

distributed computing and the use of cloud resources, especially when dealing with large-scale datasets.
In summary, choosing the appropriate protocol requires a comprehensive consideration of factors
such as data volume, computational resources, and network environment. In practical applications,
understanding the performance characteristics and suitable scenarios of each protocol is crucial for
optimizing data processing workflows and enhancing efficiency.

7.6. Summary of This Chapter

The protocol leverages the computational and storage resources of two cloud servers, significantly
reducing the burden on the small health app developer by lowering its computational and storage re-
quirements and enhancing the system’s efficiency and availability. Through distributed computing and
security measures such as homomorphic encryption, it ensures the privacy of data during transmission
and processing, adequately protecting sensitive information of both the small health app developer and
the large medical institution. This solution not only improves the operational efficiency of devices with
limited resources but also effectively prevents collusion attacks. Consequently, the unbalanced PSI-CA
protocol based on dual cloud assistance excels in private set intersection operations, ,demonstrating
both high efficiency and security.

7.7. Extensions

To enhance the practicality of the scheme, this section will explore two key aspects from an
engineering practice perspective: the design of the PSI-CA network and the design of the data update
mechanism.

First, the design of the PSI-CA network focuses on building an efficient, secure, and scalable
network architecture to support large-scale PSI-CA computations.

Second, the design of the data update mechanism involves how to update the data sets stored on
the cloud servers without interrupting the service. This is particularly crucial for PSI-CA computation
scenarios that require frequent data updates.

7.7.1. PSI-CA Network

As previously described, the small health app developer delegates PSI-CA computations to two
cloud servers. In practice, a vast network of cloud servers can be built to support this delegation. The
basic system description is as follows.

¢ Access and Authentication of Cloud Servers: Any server can apply to become a cloud server,
also known as a server assistant. These servers must undergo a series of certification processes
(including hardware performance verification, security vulnerability scanning, and compliance
checks) to ensure they meet security and performance standards. Servers that pass the certifica-
tion but later violate regulations will be blacklisted and removed. The system maintains platform
security and trust through mechanisms such as regular security scans and real-time monitoring,

with any violations leading to immediate removal and further investigation of the server.
* Mechanism for Selecting Server Assistants: When needing to perform PSI-CA, small health app

developers choose two cloud servers based on their performance (such as processing power,
storage capacity, and network bandwidth), stability, security capabilities, and compliance with
regulations, among other hard and soft factors. Cloud servers with high availability promises

are preferred to minimize the risk of failures.
¢ Execution Mechanism for PSI-CA Operations: The PSI-CA network supports small health app

developer flexibility and system scalability; small health app developers can execute PSI-CA
on different large medical institutions by merely changing E,;(a) and obfuscated dataset Y,
without needing to redesign the entire system. This design enhances small health app developer
flexibility and the system’s efficiency, reliability, and security.

This system design not only achieves the delegation of PSI-CA computations but also introduces
multiple cloud servers into the network, thereby enhancing the system’s flexibility and stability.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024

23 of 29

Additionally, by implementing authentication and maintaining a blacklist for cloud servers, the system
can better guarantee the credibility of the cloud servers, enhancing overall security. This flexible yet
secure system design provides small health app developers with more options and makes PSI-CA
operations more adaptable to various practical requirements.

In summary, under the existing framework, small health app developers can delegate computing
and storage tasks to different cloud servers and perform PSI-CA operations on various large medical
institutions by using different random numbers , E;(a) and and obfuscated dataset Y'. This method
allows small health app developers to more flexibly use multiple resource nodes and optimize task
distribution, thereby further enhancing the overall performance and security of the privacy protection
scheme.

7.7.2. Data Updates

To further enhance the practicality of the scheme, this paper also designs a data update mode
compatible with the scheme, making the overall scheme more practical and reliable.

¢ Data Updates on the Large Medical Institution’s Side:

As shown in Figure 4, the update details of the large medical institution are as follows:

Z=\2,2,..,2,,
oYk, 1<k<n,
2y = Epie (@) ©H)

QU = {ul,uz e U Uy = (updatek,z’k)]

»
»

large medical institution clom:I Zever

® If update, == INSERT then
If w<0.95then
CF.Insert(z'})
Else

Ask the large medcial institution to
generatea new filter CF'

If update, == DELETE then
CF.Delete(z'},)

Figure 4. Data Updates on the Large Medical Institution’s Side

Definition of main participants and related symbols:

1. Large medical institution: Represents the large medical institution that wants to encrypt

and upload updated data to cloud server H;.
2. Cloud server Hj: Represents the cloud-assisted server H, that assists the large medical

institution in completing update operations.

d0i:10.20944/preprints202405.0307.v1

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

24 of 29

Z represents the set of data to be updated, z; represents the k-th element of Z.

w represents the load factor of the filter.

z; represents the data zj after encryption processing.

update, represents the operation index, used to determine whether the update operation is

AR

an insertion or deletion.
7. U represents the set of data sent by the large medical institution to the cloud-assisted server

Hj, uy, represents the k-th element of U.
Update process:

1. The large medical institution has a set of elements Z it wants to insert or delete. These

elements are blinded before being sent to cloud server H,. Specifically, z = Ei (a)vH (),
2. In addition to sending the blinded elements, the large medical institution afso sends an

identifier variable update, to inform the small health app developer whether the operation

is an insertion or a deletion.
3. During an insertion operation, Hj first checks whether the current filter’s load factor w

exceeds 0.95.
4. If the load factor w is greater than 0.95, then H must request the large medical institution

to generate a new filter using all elements to maintain high spatial and lookup efficiency of

the filter.
5. If the load factor w is less than or equal to 0.95, then H, can directly insert the element into

the current filter CF.
6. In a deletion operation, H, removes the specified element from the filter CF, a process that

does not require generating a new filter.
¢ Data Updates on the Small Health App Developer’s Side:

As shown in Figure 5, the update details of the small health app developer are as follows:

l= [zl,z2 ...,zng}
) y @Vk,l < k < N3
. b,) 7y=H(z)

cloud sever
H

8 Ifk>nythen

Caleulate and save the result according to the data,
[f k<, then
Delete the corresponding data according to k

<yl
_ (i, datdy)) whenk &1 small health app
v Uz

developer

doudsever O Similar operation {0 Hl
H2

Figure 5. Data Updates on the Small Health App Developer’s Side

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

25 of 29

Definition of main participants and related symbols:

1. Small health app developer: Represents the small health app developer who wants to

perform data updates.
2. Cloud server H;: Represents the cloud-assisted server H; that assists the small health app

developer in completing update operations.
3. Cloud server H; Represents the cloud-assisted server Hj that assists the small health app

developer in completing update operations.
4. Z represents the set of data to be updated, zj represents the k-th element of Z.
5. z} represents the data after being processed by the hash function H.
6. krepresents the data index, used to determine the type of update, either insertion or deletion,

and to retrieve the updated data based on the index.
7. When adding data, datey represents the data processed through the dual-cloud scheme and

sent to the two cloud-assisted servers. When deleting, datey is null.
8. V represents the set of data sent by the small health app developer to the cloud-assisted

server Hj, vy represents the k-th element of V.
9. V' represents the set of data sent by the small health app developer to the cloud-assisted

server Hy, U]/C represents the k-th element of V'.
Update process:

1. The small health app developer has a set of elements Z it wants to insert or delete. In both
cases, the small health app developer blinds each element and sends them to H; and H;

respectively.
2. The small health app developer sends a data index K to inform the cloud servers about the

type of update, whether it is an insertion or a deletion. If the index is less than 75, it indicates
a deletion operation. In this case, datay is null, and H; and H; delete the corresponding

data based on the index.
3. If the index is greater than n,, it indicates an addition operation, and the corresponding

calculation results and index are saved.
4. After completing a batch of deletion and addition operations, the relative order of the

indices also needs to be adjusted. The update process is illustrated in Figure 5.

8. Conclusions and Future Work

8.1. Work Summary

Privacy computing is a technology framework aimed at protecting individual privacy during the
process of data use and sharing. It ensures that data can still be effectively utilized without disclosing
specific content through various algorithms and protocols. Among many applications of privacy
computing, Privacy Set Intersection (PSI-CA) is a common requirement, which allows two or more
parties to compute the cardinality of the intersection without revealing their private data.

Traditional PSI-CA protocols are primarily designed for cases where data sets are relatively
balanced in size, which often does not apply in real scenarios. In many practical situations, the size
disparity between participants’ data sets is significant, necessitating the use of unbalanced PSI-CA pro-
tocols. These protocols are specifically designed to handle such disparities, optimizing computational
efficiency and privacy protection to cater to a wider range of practical needs. By adopting unbalanced
PSI-CA protocols, not only is the processing efficiency improved, but more precise control over data
protection is also offered, thus finding broader application in various data-sensitive industries. This
paper proposes three protocols: the unbalanced PSI-CA protocol based on Cuckoo filter, the unbal-
anced PSI-CA protocol based on single cloud assistance, and the unbalanced PSI-CA protocol based
on dual cloud assistance. Here, the unbalanced PSI-CA protocol based on Cuckoo filter addresses
performance issues of traditional PSI-CA protocols in handling unbalanced data sets. On this basis, the
unbalanced PSI-CA protocol based on single cloud assistance transfers most of the computational and
storage burdens from the small health app developer to the cloud, enhancing practicality. Faced with

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024

d0i:10.20944/preprints202405.0307.v1

26 of 29

the possibility of collusion attacks, the unbalanced PSI-CA protocol based on dual cloud assistance
employs security mechanisms such as homomorphic encryption to effectively resist these attacks. The
main contributions of this paper are summarized as follows:

1. Addressing the shortcomings of traditional PSI-CA protocols when dealing with significant data
size disparities among participants, this paper proposes the first protocol, namely the unbalanced
PSI-CA protocol based on Cuckoo filter.

2. Given the complexities of cryptographic operations and storage demands of the small health app
developer in the unbalanced PSI-CA protocol based on Cuckoo filter, this paper introduces a
unbalanced PSI-CA protocol based on single cloud assistance. This protocol effectively transfers
the majority of computational and storage burdens from the small health app developer to the

cloud.

3. In response to potential collusion between the cloud and large medical institution in the un-
balanced PSI-CA protocol based on single cloud assistance, this paper proposes a unbalanced
PSI-CA protocol based on dual cloud assistance with security mechanisms like homomorphic
encryption, which effectively prevents collusion attacks while offloading computational and

storage burdens.
4. In view of the practical problems of the unbalanced PSI-CA protocol based on dual cloud

assistance, this paper also designs a PSI-CA network and a data update mode tailored for the
unbalanced PSI-CA protocol based on dual cloud assistance.

8.2. Protocol Summary

As shown in Table 6, this section provides a comprehensive summary and recommendations for
the three protocols discussed in this paper. The unbalanced PSI-CA protocol based on Cuckoo filter
offers high security but involves significant computational and storage demands, making it suitable
for clients with strong computational and storage resources. The unbalanced PSI-CA protocol based
on single cloud assistance, while being the fastest and offloading computational burdens to the cloud,
poses security risks as it cannot withstand collusion attacks, making it appropriate for scenarios where
the cloud is fully trusted. The unbalanced PSI-CA protocol based on dual cloud assistance offers an
ideal balance of runtime, security, and efficiency, making it the most versatile and practical option.

Table 6. Overall Performance Summary of the Three Protocols

Client Storage &
Protocol Security Computational Runtime
Burden
Unbalanced Requires storing
PSI-CA Protocol | High Security (No | Cuckoo filter and Longest
based on Cuckoo | collusion attacks) intensive &
Filter computation
Unbalanced o
PSI-CA Protocol Security R1s}< ° Shifted to cloud
. (Cannot resist Fastest
based on Single collusion attacks) server
Cloud Assistance
Unbalanced . .
PSI-CA Protocol High Secu.rlty Shifted to cloud
(Can resist Moderate
based on Dual collusion attacks) server
Cloud Assistance

8.3. Future Outlook

Although the protocols proposed in this document are applicable in most scenarios, there are still
several aspects that could be optimized for future development:

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

27 of 29

1. All protocols are designed for two-party unbalanced PSI-CA. Extending these protocols to
multi-party scenarios is an important future direction, given the practical needs for multi-party
computations.

2. The protocols are developed under a semi-honest security model. Extending their robustness to
malicious models, where adversaries may actively attempt to undermine the protocols, represents
a crucial area for further research.

3. The current protocols are focused exclusively on PSI-CA. In practical applications, there may be
a need to carry out other types of computations, such as PSI-SUM, etc. Expanding the protocols
to support a variety of computational types is another significant direction for future work.

References

1. Bald, P; Baronio, R.; Cristofaro, E.; Gasti, P; Tsudik, G. Efficient and secure testing of fully-sequenced human
genomes. Biological Sciences Initiative 2000, 470, 7-10.

2. Chen, H;; Laine, K.; Rindal, P. Fast private set intersection from homomorphic encryption. In Proceedings of
the Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp.
1243-1255.

3. Nagaraja, S.; Mittal, P; Hong, C.Y.; Caesar, M.; Borisov, N. {BotGrep}: Finding {P2P} Bots with Structured
Graph Analysis. In Proceedings of the 19th USENIX Security Symposium (USENIX Security 10), 2010.

4. Li, W, Liu, J; Zhang, L.; Wang, Q.; He, C. A Survey on Set Intersection Computation for Privacy Protection.
Journal of Computer Research and Development 2022, 59, 1782-1799.

5. Meadows, C. A More Efficient Cryptographic Matchmaking Protocol for Use in the Absence of a Continu-
ously Available Third Party. In Proceedings of the Proc. of the 7th IEEE Symposium on Security and Privacy,
Los Alamitos, CA, 1986; pp. 134-134.

6. Huberman, B.; Franklin, M.; Hogg, T. Enhancing Privacy and Trust in Electronic Communities. In
Proceedings of the Proc. of the 1st ACM Conference on Electronic Commerce, New York, 1999; pp. 78-86.

7. DeCristofaro, E.; Tsudik, G. Experimenting with Fast Private Set Intersection. In Proceedings of the Proc. of
Int. Conf. on Trust and Trustworthy Computing, Berlin, 2012; pp. 55-73.

8. Pinkas, B.; Schneider, T.; Zohner, M. Faster Private Set Intersection Based on OT Extension. In Proceedings
of the Proc. of the 23rd USENIX Security Symposium, Berkeley, CA, 2014; pp. 797-812.

9. Freedman, M.; Nissim, K.; Pinkas, B. Efficient Private Matching and Set Intersection. In Proceedings of
the Proc. of the 23rd Int. Conf. on the Theory and Applications of Cryptographic Techniques, Berlin, 2004.
Accessed: 2020-10-16.

10. Freedman, M.J.; Hazay, C.; Nissim, K,; et al.. Efficient Set Intersection with Simulation-Based Security.
Journal of Cryptology 2016, 29, 115-155.

11. Abadi, A.; Terzis, S.; Dong, C. O-PSI: Delegated Private Set Intersection on Outsourced Datasets. In
Proceedings of the Proc of the 27th IFIP International Information Security and Privacy Conference, Berlin,
2015; pp. 3-17.

12. Kissner, L.; Song, D. Privacy-Preserving Set Operations. In Proceedings of the Proc of the 25th Annual
International Cryptology Conference, Berlin, 2005; pp. 241-257.

13. Jarecki, S.; Liu, X. Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure
Computation of Set Intersection. In Proceedings of the LNCS 5444: Proc of the 6th Theory of Cryptography
Conference, Berlin, 2009; pp. 577-5%4.

14. Hazay, C.; Venkitasubramaniam, M. Scalable Multi-party Private Set-Intersection. In Proceedings of the
Proc of the 20th IACR International Workshop on Public Key Cryptography, Berlin, 2017; pp. 175-203.

15. Dou,J,; Liu, X.; Wang, W.; et al.. Efficient and Secure Calculation of Two-Party Sets in the Field of Rational
Numbers. Chinese Journal of Computers 2020, 43, 1397-1413.

16. Damgard, L; Pastro, V.; Smart, N.; et al. Multiparty Computation from Somewhat Homomorphic Encryption.
In Proceedings of the Proceedings of the 32nd Annual Cryptology Conference; Name, E., Ed., Berlin, 2012;
Lecture Notes in Computer Science, pp. 643-662.

17. Yao, A.C. Protocols for Secure Computations. In Proceedings of the Proc of the 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), Piscataway, NJ, 1982; pp. 160-164.

https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 doi:10.20944/preprints202405.0307.v1

28 of 29

18. Micali, S.; Goldreich, O.; Wigderson, A. How to Play Any Mental Game. In Proceedings of the Proc of the
19th ACM Symposium on Theory of Computing, New York, 1987; pp. 218-229.

19. Pinkas, B.; Schneider, T; Segev, G.; et al.. Phasing: Privateset intersectionusing permutation-basedhashing.
In Proceedings of the Proceedings of the 24th USENIX Security Symposium, USENIX Association, Berkeley,
CA, 2015; pp. 515-530.

20. Pinkas, B.; Schneider, T.; Weinert, C.; et al.. Efficient circuit-based PSI via cuckoo hashing. In Proceed-
ings of the Proceedings of the 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, Berlin, 2018; pp. 125-157.

21. Pinkas, B.; Schneider, T.; Tkachenko, O.; et al.. Efficient circuit-based PSI with linear communication. In
Proceedings of the Proceedings of the 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Springer, Berlin, 2019; pp. 122-153.

22. Huang, Y.; Evans, D.; Katz, J. Private Set Intersection: Are Garbled Circuits Better Than Custom Protocols?
In Proceedings of the Proc of the 19th Network and Distributed System Security Symposium, Reston, VA,
2012. Accessed: 2020-10-21.

23. Naor, M,; Pinkas, B. Efficient oblivious transfer protocols. In Proceedings of the SODA, 2001, Vol. 1, pp.
448-457.

24. Dong, C.; Chen, L.; Wen, Z. When private set intersection meets big data: an efficient and scalable protocol.
In Proceedings of the Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 789-800.

25. Rindal, P; Rosulek, M. Improved private set intersection against malicious adversaries. In Proceedings of
the Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer
International Publishing, 2017, pp. 235-259.

26. Zhang, E.; Liu, EH,; Lai, Q.; et al. Efficient multi-party private set intersection against malicious adversaries.
In Proceedings of the Proceedings of the 2019 ACM SIGSAC conference on cloud computing security
workshop, 2019, pp. 93-104.

27. Pinkas, B.; Rosulek, M.; Trieu, N.; et al. PSIfrom PaXoS: Fast, malicious private set intersection. In
Proceedings of the Proceedings of the 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2020, pp. 739-767.

28. Orru, M.; Orsini, E.; Scholl, P. Actively secure 1-out-of-n OT extension with application to private set
intersection. In Proceedings of the Proceedings of Cryptographers’ Track at the RSA Conference. Springer,
2017, pp. 381-396.

29. Rindal, P; Schoppmann, P. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. IACR Cryptology ePrint
Archive, 2021. https://eprint.iacr.org/2021/266.

30. Schoppmann, P; Gascén, A.; Reichert, L.; et al. Distributed vector-OLE: Improved constructions and
implementation. In Proceedings of the Proceedings of the 26th ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2019, pp. 1055-1072.

31. Weng, C; Yang, K.; Katz,].; et al. Wolverine: Fast, scalable, and communication-efficient zero-knowledge
proofs for Boolean and arithmetic circuits. Cryptology ePrint Archive, 2020. https://eprint.iacr.org/2020/9
25.

32. Egert, R; Fischlin, M.; Gens, D.; Jacob, S.; Senker, M.; Tillmanns, J. Privately Computing Set-Union and
Set-Intersection Cardinality via Bloom Filters. European Journal of Operational Research 2015, 139, 371-389.

33. Ashok, V.; Mukkamala, R. A Scalable and Efficient Privacy Preserving Global Itemset Support Approximation
Using Bloom Filters. In Proceedings of the IFIP Conference on Data and Applications Security and Privacy,
2014, pp. 382-389.

34. Debnath, S.; Dutta, R. Secure and Efficient Private Set Intersection Cardinality Using Bloom Filter. In
Proceedings of the International Information Security Conference, 2015, pp. 209-226.

35. De Cristofaro, E.; Gasti, P; Tsudik, G. Fast and Private Computation of Cardinality of Set Intersection and
Union. In Proceedings of the CANS 2012. Springer, 2012, pp. 218-231.

36. Jarecki, S.; Liu, X. Fast Secure Computation of Set Intersection. In Proceedings of the SCN 2010. Springer,
2010, Vol. 6280, Lecture Notes in Computer Science, pp. 418—435.

37. Su, G.; Xu, M. A Survey on Secure Multi-party Computation Technology and Applications. Information
Communication Technologies and Policy 2019, pp. 19-22.

https://eprint.iacr.org/2021/266
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925
https://doi.org/10.20944/preprints202405.0307.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2024 d0i:10.20944/preprints202405.0307.v1

29 of 29

38. Li, A. Research on Multi-party Statistical Computations Based on Functional Encryption. PhD thesis, Wuhan
University of Technology, Wuhan, 2017.

39. Wang, H,; Dai, H.; Chen, S.; Chen, Z.; Chen, G. A Survey of Filter Data Structures. Computer Science 2024,
51, 35-40.

40. Yu, M.; Fabrikant, A.; Rexford,]. BUFFALO: Bloom filter forwarding architecture for large organizations.
In Proceedings of the Proceedings of International Conference on Emerging Networking Experiments and
Technologies, 2009, pp. 313-324.

41. Li, P; Luo, B.; Zhu, W.; et al.. Cluster-based distributed dynamic cuckoo filter system for Redis. International
Journal of Parallel, Emergent and Distributed Systems 2020, 35, 340-353.

42. Wang, F; Chen, H.; Liao, L.; et al.. The power of better choice: Reducing relocations in cuckoo filter. In
Proceedings of the Proceedings of International Conference on Distributed Computing Systems, 2019, pp.
358-367.

43. Gur, L,; Lis, D.; Dai, H.; et al.. Adaptive online cache capacity optimization via lightweight working set size
estimation at scale. In Proceedings of the Proceedings of USENIX Annual Technical Conference, 2023, pp.
467-484.

44. Reviriego, P.; Martinez, J.; Larrabeiti, D.; et al.. Cuckoo Filters and Bloom Filters: Comparison and
Application to Packet Classification. IEEE Transactions on Network and Service Management 2020, 17, 2690—
2701.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202405.0307.v1

	Introduction
	Background
	Motivation
	Main Work

	Related Works
	Design Framework of Private Set Intersection Protocol
	Design Framework Based on Public Key Encryption
	Design Framework Based on Garbled Circuits
	Design Framework Based on Oblivious Transfer

	PSI-CA

	Related Theories and Technologies
	Multi-Party Secure Computation Security Model
	Cuckoo Filter
	Paillier Homomorphic Encryption

	PSI-CA Protocol Constructed Based on DH Key Exchange Mechanism
	Protocol Process
	Exchange and Computation Stage
	Cardinality Calculation Stage

	Experimental Analysis
	Summary of This Chapter

	Unbalanced PSI-CA Protocol Based on Cuckoo Filter
	Definition of Main Participants and Related Symbols
	Protocol Process
	Preprocessing
	Cardinality Calculation

	Correctness Analysis
	Security Analysis
	Experimental Analysis
	Summary of This Chapter

	Unbalanced PSI-CA Protocol Based on Single Cloud Assistance
	Definition of Main Participants and Related Symbols
	Protocol Process
	Preprocessing
	Outsourcing
	Cardinality Calculation

	Correctness Analysis
	Security Analysis
	Experimental Analysis
	Data Storage Volume
	Protocol Running Time

	Summary of This Chapter

	Unbalanced PSI-CA Protocol Based on Dual cloud Assistance
	Definition of Main Participants and Related Symbols
	Protocol Process
	Preprocessing
	Outsourcing
	Intersection

	Correctness Analysis
	Security Analysis
	Experimental Analysis
	Data Computation Volume
	Protocol Running Time

	Summary of This Chapter
	Extensions
	PSI-CA Network
	Data Updates

	Conclusions and Future Work
	Work Summary
	Protocol Summary
	Future Outlook

	References

