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Abstract: This paper presents a statistical approach to identify the underlying roughness characteristics in

synthetic aperture radar (SAR) intensity data. The physical modeling of this kind of data allows the use of the

Gamma distribution in the presence of fully-developed speckle, i.e., when there are infinitely many independent

backscatterers per resolution cell, and none dominates the return. Such areas are often called “homogeneous”

or “textureless” regions. The G0
I distribution is also a widely accepted law for heterogeneous and extremely

heterogeneous regions, i.e., areas where the fully-developed speckle hypotheses do not hold. We propose three

test statistics to distinguish between homogeneous and inhomogeneous regions, i.e., between gamma and G0
I

distributed data, both with a known number of looks. The first test statistic uses a bootstrapped non-parametric

estimator of Shannon entropy, providing a robust assessment in uncertain distributional assumptions. The second

test uses the classical coefficient of variation (CV). The third test uses an alternative form of estimating the CV

based on the ratio of the mean absolute deviation from the median to the median. We apply our test statistic to

create maps of p-values for the homogeneity hypothesis. Finally, we show that our proposal, the entropy-based

test, outperforms existing methods, such as the classical CV and its alternative variant, in identifying heterogeneity

when applied to both simulated and actual data.

Keywords: SAR; heterogeneity; entropy; coefficient of variation; hypothesis tests

1. Introduction

Synthetic Aperture Radar (SAR) technology has become essential for environmental monitoring
and disaster management. It provides valuable images under various conditions, including day or
night and weather situations [1,2]. However, the effective use of SAR data depends on a thorough
understanding of its statistical properties because it is corrupted by speckle. This noise-like interference
effect is inherent in SAR data due to the coherent nature of the imaging process [3].

Speckle in intensity format is non-Gaussian. Thus, SAR data require reliable statistical models for
accurate processing. The G0 distribution, which is suitable for SAR data, includes the Gamma law as
the limiting case for fully-developed speckle [4] and provides flexibility with fewer parameters for
analysis.

Our work aims to improve the identification of potential roughness features in SAR intensity
data. Physical modeling of SAR data allows the use of the Gamma distribution in the presence of
fully-developed speckle, where an infinite number of independent backscatterers per resolution unit is
assumed, commonly referred to as homogeneous regions.

In this context, we present a set of three novel test statistics that aim to distinguish between
homogeneous and non-homogeneous returns, particularly between gamma and G0 distributed data,
assuming the number of looks is known. We use properties such as entropy and coefficient of variation.

Entropy is a fundamental concept in information theory with far-reaching applications in pattern
recognition, statistical physics, image processing, edge detection and SAR image analysis [5–9]. Shan-
non introduced it in 1948 [10] for a random variable to measure information and uncertainty. Shannon
entropy is a crucial descriptive parameter in statistics, especially for evaluating data dispersion and
performing tests for normality, exponentiality and uniformity [11,12]. Entropy estimation is challeng-
ing, especially when the model is unknown. In these cases, non-parametric methods are used. Spacing
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methods have been discussed as a non-parametric approach in Refs. [13,14]. This strategy is flexible
and robust because it does not enforce a model or parametric constraints.

The coefficient of variation (CV), introduced in 1896 by Pearson [15], is a relative dispersion
measure widely used in various fields of applied statistics, including sampling, biostatistics, medical
and biological research, climatology and other fields [16–19]. It facilitates the comparison of variability
between different populations and is particularly valuable for relating variables with different units.
This is because when the primary purpose is to compare the variations of several variables, the
standard deviation can only serve as an adequate measure of variation if all variables are expressed
in the same unit of measurement and have identical means. If these conditions are not met, then the
CV is the relative measure that is usually used in real applications. The variable with the highest CV
value has the largest relative dispersion around the mean value [20]. The coefficient of variation is the
primary measure of heterogeneity in SAR data [21,22]. We study two ways of estimating the coefficient
of variation.

The other parameter we study is the Shannon entropy. Different roughness levels materialized
as models for SAR data, have different entropy values, but this fundamental quantity can also be
estimated in a model-agnostic way. We exploit this property and design a bootstrap-improved non-
parametric estimator for the Shannon entropy.

We devise test statistics based on these three estimators: the classical coefficient of variation, a
robust version, and the Shannon entropy estimator. We apply these test statistics to generate maps
of evidence of homogeneity that reveal different types of targets in the SAR data. We show that our
proposed method is superior to existing approaches with simulated data and SAR images.

The article is structured as follows: Section 2 deals with statistical modeling and entropy estimation
for intensity SAR data. Section 3 outlines hypothesis tests based on non-parametric entropy and
coefficients of variation estimators. In Section 4 we present experimental results. Finally, we draw
conclusions in Section 5.

2. Background

2.1. Statistical Modeling of Intensity SAR Data

The primary models for intensity SAR data include the Gamma and G0
I distributions [23]. The first

is suitable for fully-developed speckle and is a limiting case of the second model. This is interesting
due to its versatility in accurately representing regions with different roughness properties [24]. We
denote Z ∼ ΓSAR(L, µ) and Z ∼ G0

I (α, γ, L) to indicate that Z follows the distributions characterized
by the respective probability density functions (pdfs):

fZ(z; L, µ | ΓSAR) =
LL

Γ(L)µL zL−1 exp{−Lz/µ}1R+
(z) (1)

and

fZ(z; α, γ, L | G0
I ) =

LLΓ(L − α)

γαΓ(−α)Γ(L)
· zL−1

(γ + Lz)L−α
1R+

(z), (2)

where µ > 0 is the mean, γ > 0 is the scale, α < 0 measures the roughness, L ≥ 1 is the number of
looks, Γ(·) is the gamma function, and 1A(z) is the indicator function of the set A.

The rth order moments of the G0
I model are

E
(
Zr | G0

I
)
=

(γ

L

)r Γ(−α − r)
Γ(−α)

· Γ(L + r)
Γ(L)

, (3)
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provided α < −r, and infinite otherwise. Therefore, assuming α < −1, its expected value is

µ =
(γ

L

)Γ(−α − 1)
Γ(−α)

· Γ(L + 1)
γ(L)

= − γ

α + 1
. (4)

Although the G0
I distribution is defined by the parameters α and γ, in the SAR literature [25] the

texture α and the mean µ are usually used. Reparametrizing (2) with µ, and denoting this model as G0
I

we obtain:

fZ
(
z; µ, α, L | G0

I
)
=

LLΓ(L − α)[
− µ(α + 1)

]αΓ(−α)Γ(L)
zL−1[

− µ(α + 1) + Lz
]L−α

. (5)

2.2. The Shannon Entropy

The parametric representation of Shannon entropy for a system described by a continuous random
variable is:

H(Z) = −
∫ ∞

−∞
f (z) ln f (z)dz, (6)

here, f (·) is the pdf that characterizes the distribution of the real-valued random variable Z.
Using (6), we obtain the Shannon entropy of ΓSAR in (1) and G0

I in (5):

HΓSAR(L, µ) = L − ln L + ln Γ(L) + (1 − L)ψ(0)(L) + ln µ, (7)

HG0
I
(µ, α, L) = L − ln L + ln Γ(L) + (1 − L)ψ(0)(L) + ln µ − ln Γ(L − α)

+ (L − α)ψ(0)(L − α)− (1 − α)ψ(0)(−α) + ln(−1 − α) + ln Γ(−α)− L, (8)

where ψ(0)(·) is the digamma function. Figure 1, shows the entropy of G0
I as a function of µ when

α ∈ {−∞,−20,−8,−3}. Notice that it converges to the entropy of ΓSAR when α → −∞, as expected.
The more heterogeneous (large α values) the SAR region is, the larger the entropy (or degree of
disorder) is.

HΓSAR
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Figure 1. HG0
I

converges to the HΓSAR when α → −∞, with L = 8.
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2.3. Estimation of the Shannon Entropy

The problem of the non-parametric estimation of H(Z) has been studied by many authors,
including [11,26–28]. Their proposals use estimators based on differences between order statistics:
spacings.

Vasicek [26] introduced one of the first non-parametric estimators based on spacings. Under the
assumption that Z = (Z1, Z2, . . . , Zn) is a random sample from the distribution F(z), the estimator is
defined as:

ĤV(Z) =
1
n

n

∑
i=1

ln
[ n

2m

(
Z(i+m) − Z(i−m)

)]
,

where m < n/2 is a positive integer, Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the order statistics, and Z(i+m) −
Z(i−m) is the m-spacing, in which Z(i) = Z(1) if i < 1, Z(i) = Z(n) if i > n.

Several authors have explored adaptations to Vasicek’s estimator. We consider three estimators
known for their superior performance [24]:

• Correa [27]:

ĤC(Z) = − 1
n

n

∑
i=1

log
∑i+m

j=i−m(j − i)
(

Z(j) − Z(i)

)
n ∑i+m

j=i−m

(
Z(j) − Z(i)

)2 , (9)

where Z(i) = (2m + 1)−1 ∑i+m
j=i−m Z(j), m < n

2 , Z(i) = Z(1) for i < 1 and Z(i) = Z(n) for i > n.
Based on simulations, he showed that his estimator has a smaller mean square error than Vasicek’s
approach.

• Ebrahimi et al. [29]:

ĤE(Z) =
1
n

n

∑
i=1

log
[

n
cim

(
Z(i+m) − Z(i−m)

)]
, (10)

where

ci =


1 + (i − 1)/m if 1 ≤ i ≤ m,

2 if m + 1 ≤ i ≤ n − m,

1 + (n − i)/m if n − m + 1 ≤ i ≤ n.

• Al-Omari [30]:

ĤAO(Z) =
1
n

n

∑
i=1

log
[

n
ωim

(
Z(i+m) − Z(i−m)

)]
,

where

ωi =


3/2 if 1 ≤ i ≤ m,

2 if m + 1 ≤ i ≤ n − m,

3/2 if n − m + 1 ≤ i ≤ n,

in which Z(i−m) = Z(1) for i ≤ m, and Z(i+m) = Z(n) for i ≥ n − m.

These estimators are asymptotically consistent, i.e., they converge in probability to the true value
when m, n → ∞ and m/n → 0. However, we will use improved bootstrap-improved versions because
we need them to perform well with small samples.

2.4. Enhanced Estimators with Bootstrap

We use the bootstrap technique to refine the accuracy of non-parametric entropy estimators. In
this approach, new data sets are generated by replicate sampling from an existing data set [31].

Let us assume that the non-parametric entropy estimator Ĥ = θ̂(Z) is inherently biased, i.e,:

Bias
(
θ̂(Z)

)
= E

[
θ̂(Z)

]
− θ ̸= 0. (11)
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Our bootstrap-improved estimator is of the form:

H̃ = 2θ̂(Z)− 1
B

B

∑
b=1

θ̂b(Z(b)),

where B is the number of observations obtained by resampling from Z with replacement. Applying
this methodology, the original estimators of Correa, Ebrahimi and Al-Omari are now referred to as the
proposed bootstrap-improved versions: H̃C, H̃E, and H̃AO, respectively.

We analyzed the performance of these estimators with a Monte Carlo study: 1000 samples from the
ΓSAR distribution of size n ∈ {9, 25, 49, 81, 121}, with µ ∈ {1, 10} and L = 5. The results are consistent
with other situations. We used B = 200 bootstrap samples and the heuristic spacing m =

[√
n + 0.5

]
,

as recommended in the literature.
In Figure 2 we show the bias and mean squared error (MSE) of the original non-parametric

entropy estimators and their respective bootstrap-enhanced versions. Bootstrap-enhanced estimators
have smaller bias and MSE, especially for sample sizes below 81. The results of the simulation can be
found in Table 1.
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Figure 2. Bias and MSE of the entropy estimators for the ΓSAR, with L = 5.

Table 1. Bias and MSE of the entropy estimators for the ΓSAR, with L = 5.

Bias MSE

µ n ĤC ĤE ĤAO H̃C H̃E H̃AO ĤC ĤE ĤAO H̃C H̃E H̃AO

9 −0.210 −0.280 −0.377 −0.106 −0.054 −0.156 0.140 0.173 0.236 0.121 0.116 0.133
25 −0.071 −0.112 −0.149 −0.033 0.004 −0.035 0.032 0.040 0.050 0.032 0.033 0.033
49 −0.036 −0.060 −0.081 −0.020 0.015 −0.006 0.016 0.019 0.021 0.016 0.017 0.017
81 −0.009 −0.026 −0.039 0.002 0.031 0.018 0.008 0.009 0.010 0.009 0.010 0.009

1

121 −0.001 −0.013 −0.022 0.004 0.030 0.023 0.005 0.006 0.006 0.006 0.007 0.007

9 −0.227 −0.297 −0.394 −0.119 −0.060 −0.156 0.146 0.180 0.247 0.126 0.117 0.136
25 −0.088 −0.129 −0.166 −0.052 −0.013 −0.050 0.040 0.048 0.059 0.040 0.035 0.039
49 −0.017 −0.043 −0.064 0.001 0.035 0.012 0.016 0.017 0.019 0.018 0.019 0.017
81 −0.008 −0.025 −0.038 0.001 0.031 0.019 0.009 0.009 0.010 0.009 0.011 0.010

10

121 0.004 −0.007 −0.017 0.008 0.037 0.027 0.006 0.006 0.006 0.006 0.008 0.007

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2024                   doi:10.20944/preprints202405.0304.v1

https://doi.org/10.20944/preprints202405.0304.v1


6 of 21

2.5. Coefficient of Variation and a Robust Alternative

The population CV is defined as a ratio of the population standard deviation (σ) to the population
mean (µ):

CV =
σ

µ
, µ ̸= 0. (12)

The CV can be easily estimated as the ratio of the sample mean to the sample standard deviation.
We explore a robust alternative to estimate the CV, as described by [32]: the ratio between the

mean absolute deviation from the median (MnAD) and the median, two well-known robust measures
of scale and location, respectively. The sample version for the MnAD is defined as n−1 ∑n

i=1 |xi − Q̂2|,
where Q̂2 is an estimate for the median of the population, for example, the sample median.

3. Hypothesis Testing

We aim to test the following hypotheses:{
H0 : The data come from the ΓSAR law,

H1 : The data come from the G0
I distribution.

We are testing the hypothesis that the data are fully-developed speckle versus the alternative of
data with roughness. As for the parametric problem, once it is not possible to define the hypothesis
H0 = α = −∞, it is impossible to solve this problem with parametric inference alternatives (such as
likelihood ratio, score, gradient, and Wald hypothesis test). The proposed tests to solve this physical
problem in SAR systems are described below.

3.1. The Proposed Test Based on Non-Parametric Entropy

For a random sample Z = (Z1, Z2, . . . , Zn) from a distribution D, a test statistic is proposed.
It is based on an empirical distribution that arises from the difference between non-parametrically
estimated entropies H̃(Z) and the analytical entropy of ΓSAR (7) evaluated at the logarithm of the
sample mean, where L ≥ 1 is known.

Hence, the entropy-based test statistic is defined as:

S(Z; L) = H̃(Z)−
[
HΓSAR(L) + ln Z

]
. (13)

This test statistic aims to assess the behavior of the data under the null hypothesis using the
empirical distribution. If the data represent fully-developed speckle, the density should center around
zero, i.e., S(Z; L) ≈ 0. Otherwise, the empirical distribution would shift from zero under the alternative
hypothesis, suggesting significant differences and heterogeneous clutter.

The comparison between the bootstrap-improved estimators is shown in Table 2, where the test
accuracy under the null hypothesis is presented alongside running times. The test accuracy is evaluated
through 1000 simulated samples of different sizes, with each size replicated 100 times using bootstrap
resampling.

The processing time is an important feature, especially considering the application of these
estimators to large datasets of SAR images, as seen in Section 4.

As visible from Table 2, the accuracy of the test results across the three estimators shows similarities
in specific sample sizes. However, practical scenarios in SAR image processing often involve small
sample sizes, typically obtained over windows of size 7 × 7.
It is also noteworthy that the H̃AO estimator exhibited the shortest processing time, followed by H̃E

and H̃C. Considering this aspect, we select the H̃AO estimator for subsequent simulations. Henceforth,
the test statistical (13) will be denoted as: SH̃AO

(Z; L).
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Table 2. Test accuracy and processing time for each bootstrap-improved estimator.

Estimator L n S(Z; L) Time (s)

25 −0.00152 22.53
49 0.00515 40.35
81 0.00625 63.93

2

121 0.00751 97.06
25 −0.04332 22.25
49 −0.01659 33.42
81 −0.00393 50.94

H̃C

8

121 0.00261 97.35

25 0.02204 4.66
49 0.03452 5.55
81 0.03195 6.89

2

121 0.03012 7.90
25 0.00801 4.81
49 0.01654 5.43
81 0.03036 6.38

H̃E

8

121 0.03137 7.46

25 −0.01935 4.61
49 0.00786 5.19
81 0.01995 6.70

2

121 0.01741 7.41
25 −0.04020 4.74
49 0.00047 5.35
81 0.01176 6.21

H̃AO

8

121 0.02019 7.48

We now verify the normality of the data generated by the SH̃AO
(Z; L) test. Figure 3 shows the

empirical densities obtained by applying the SH̃AO
(Z; L) test to different sample sizes drawn from the

ΓSAR distribution, where L takes values {3, 5, 8, 11} and µ = 1. Additionally, Table 3 summarizes the
main descriptive statistics, including mean, standard deviation (SD), variance (Var), skewness (SK),
excessive kurtosis (EK) and Anderson–Darling p values for normality. Results with p values greater
than 0.05 do not indicate a violation of the normality assumption. A low variance, skewness, and
excessive kurtosis of almost zero indicate limited dispersion, asymmetry, and a light tail. Normal Q–Q
plots confirm no evidence against a normal distribution, as shown in Figure 4.

After checking the data’s normality, we examined the proposed test’s abilities in terms of size and
power. Under H0, the distribution of the test statistic is asymptotically normal. Therefore, the p values
are calculated as 2Φ(−|ε|), where Φ is the standard Gaussian cumulative distribution function, and ε

is the standardized test statistic given by:

ε =
H̃AO(Z)−

[
HΓSAR(L) + ln Z

]
σ̂

.

We have nominal levels of 1 %, 5 %, and 10 %. In terms of size, 1000 simulations were used for
different sample sizes from the ΓSAR distribution, with varying values of L, and µ = 1. In all cases, the
nominal level was achieved. We assessed the test power using 1000 simulations for different sample
sizes from the G0

I distribution, with µ = 1, and α = −2. The power generally improves with increasing
sample size and number of looks. The results are shown in Table 4.
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Figure 3. Empirical densities obtained from SH̃AO
(Z; L) test under the null hypothesis.

Table 3. Descriptive analysis of SH̃AO
(Z; L), with L ∈ {3, 5, 8, 11} and µ = 1.

L n Mean SD Var SK EK p-Value

25 −0.0280 0.1547 0.0239 −0.0076 0.4734 0.0022
49 −0.0003 0.1053 0.0111 −0.0562 0.2610 0.0582
81 0.0124 0.0796 0.0063 −0.0124 0.0536 0.5278

121 0.0187 0.0630 0.0040 0.0337 −0.1826 0.5894

3

200 0.0215 0.0490 0.0024 0.0625 −0.0473 0.0860

25 −0.0379 0.1669 0.0278 0.0007 0.1420 0.3267
49 −0.0015 0.1150 0.0132 −0.1025 0.1998 0.2582
81 0.0145 0.0869 0.0075 0.1008 0.5297 0.1121

121 0.0198 0.0687 0.0047 0.0127 0.0222 0.2919

5

200 0.0236 0.0529 0.0028 −0.0467 0.0977 0.3346

25 −0.0464 0.1680 0.0282 −0.0121 0.0980 0.6477
49 −0.0031 0.1202 0.0144 0.1282 0.2000 0.0038
81 0.0137 0.0883 0.0078 −0.0279 0.2554 0.5567

121 0.0200 0.0738 0.0055 −0.0089 0.0686 0.7502

8

200 0.0260 0.0546 0.0030 0.0716 −0.0349 0.3771

25 −0.0442 0.1735 0.0301 −0.1422 0.2413 0.0981
49 −0.0019 0.1201 0.0144 −0.0503 0.1464 0.9576
81 0.0127 0.0917 0.0084 −0.0172 0.0333 0.3179

121 0.0239 0.0729 0.0053 −0.0127 0.2102 0.0596

11

200 0.0234 0.0572 0.0033 −0.0233 0.1072 0.6740
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Figure 4. Normal Q–Q plots for n = 121.

Table 4. Size and Power of the SH̃AO
(Z) test statistic.

Size Power

L n 1% 5% 10% 1% 5% 10%

25 0.0160 0.0620 0.1070 0.6900 0.8450 0.8340
49 0.0100 0.0480 0.0960 0.6890 0.8920 0.8480
81 0.0120 0.0490 0.1080 0.6260 0.8750 0.8540

3

121 0.0090 0.0690 0.1190 0.5680 0.8620 0.8230

25 0.0210 0.0660 0.1130 0.9120 0.9620 0.9880
49 0.0100 0.0460 0.1080 0.9470 0.9820 0.9960
81 0.0120 0.0560 0.1070 0.9580 0.9900 0.9960

5

121 0.0150 0.0640 0.1150 0.9420 0.9780 0.9950

25 0.0210 0.0650 0.1080 0.9930 0.9950 0.9970
49 0.0060 0.0470 0.0860 0.9980 1.0000 0.9970
81 0.0120 0.0490 0.1000 0.9930 0.9980 0.9990

8

121 0.0150 0.0650 0.1220 0.9970 0.9990 0.9980

25 0.0130 0.0610 0.1000 0.9990 0.9990 0.9990
49 0.0100 0.0450 0.0920 0.9980 0.9990 0.9990
81 0.0170 0.0530 0.1050 1.0000 1.0000 1.0000

11

121 0.0160 0.0680 0.1180 0.9980 1.0000 0.9980
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3.2. The Proposed Test Based on Coefficient of Variation and a Robust Alternative

In addition to the SH̃AO
(Z; L) test, we also propose a test statistic based on the classical CV. This

test statistic is defined as follows:

TCV =
S
Z

, (14)

where S and Z are the sample standard deviation and mean, respectively.
Similarly, we use another test statistic based on the ratio of the MnAD to the median. This statistic

is given by:

TCVMnAD =
MnAD
Median

. (15)

We proceed to identify suitable models for these estimators of the CV, and then form test statistics.
The situations in which the use of CV and CVMnAD may be appropriate, i.e., when the observations

are positive, the log-normal (LN) and the inverse Gaussian distribution (IG) are often more appropriate
than the Gamma and Weibull distributions [33,34].

It is shown that the IG distribution is well approximated by the log-normal distribution, which
means that the IG distribution also does not share the problem of the non-existence of a fixed-width
confidence interval with the Gaussian case [35].

The biparametric LN distribution has density:

fZ(z; µLN, σLN) =
1

σLNz
√

2π
exp

{
− (ln z − µLN)

2

2σ2
LN

}
1R+

(z), (16)

with µLN is any real number, and σLN is positive.

3.3. Model Selection Criterion

We used the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) to
select the best-fitting distribution.

The AIC deals with the trade-off between the goodness-of-fit and the model’s simplicity in terms
of the number of model parameters [36]. The model or distribution with the lowest value of AIC is
chosen to be the best. The BIC assesses goodness-of-fit of a distribution or model, but avoids overfitting
by penalising additional degrees of freedom [37]. The model with the lowest BIC value is chosen as
the best.

The AIC and BIC results in Tables 5–8 indicate that the CV and CVMnAD data from different
distributed ΓSAR and G0

I synthetic sample sizes match the properties of an LN distribution. It is
important to note that this conclusion was drawn empirically based on a dictionary of analytically
tractable distributions and well-defined under biparametric, unimodal, asymmetric, and positive
distributions.

Figures 6–8 show empirical and fitted density plots, Q–Q plots, P–P plots, as well as empirical
and fitted cumulative distribution functions. They provide qualitative sources that confirm that the
LN distribution is the most appropriate distribution. As expected, both test statistics work well under
the null hypothesis. Under the alternative hypothesis, the P–P plot shows that CVMnAD is more robust
than CV, although both statistics suffer from the tail effect caused by the distributed G0

I data.
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Table 5. AIC and BIC values for evaluating the best distribution with CV data from ΓSAR.

Criterion n Normal Lognormal Gamma Weibull Inverse Gaussian

25 −38031.9 −38266.7 −38311.8 −36413.2 −38261.6
49 −47698.2 −47913.7 −47905.6 −45554.0 −47911.6
81 −55382.1 −55494.7 −55494.9 −53220.4 −55493.8

AIC

121 −61344.9 −61470.8 −61453.8 −58876.0 −61470.5

25 −38016.7 −38251.5 −38296.6 −36398.0 −38246.4
49 −47683.0 −47898.5 −47890.4 −45538.7 −47896.4
81 −55366.9 −55479.5 −55479.6 −53205.2 −55478.6

BIC

121 −61329.7 −61455.6 −61438.6 −58860.8 −61455.2

Table 6. AIC and BIC values for evaluating the best distribution with CV data from G0
I .

Criterion n Normal Lognormal Gamma Weibull Inverse Gaussian

25 8254.04 2186.31 3628.40 8383.58 2257.63
49 8821.79 1689.03 3483.10 9533.53 1835.29
81 8525.81 866.29 2853.31 9822.48 1057.91

AIC

121 8708.81 131.86 2341.06 10506.49 398.53

25 8269.27 2201.54 3643.63 8398.81 2272.86
49 8837.02 1704.26 3498.33 9548.76 1850.52
81 8541.04 881.52 2868.55 9837.72 1073.14

BIC

121 8724.04 147.09 2356.29 10521.72 413.76

Table 7. AIC and BIC values for evaluating the best distribution with CVMnAD data from ΓSAR.

Criterion n Normal Lognormal Gamma Weibull Inverse Gaussian

25 −38375.56 −39147.85 −39066.29 −36652.49 −39143.61
49 −48386.11 −48795.32 −48745.48 −46240.91 −48793.83
81 −56072.87 −56322.32 −56290.02 −53836.04 −56322.12

AIC

121 −62217.14 −62394.77 −62369.32 −59861.80 −62394.57

25 −38360.32 −39132.62 −39051.05 −36637.26 −39128.38
49 −48370.87 −48780.09 −48730.25 −46225.67 −48778.60
81 −56057.64 −56307.09 −56274.79 −53820.81 −56306.89

BIC

121 −62201.91 −62379.54 −62354.09 −59846.56 −62379.33

Table 8. AIC and BIC values for evaluating the best distribution with CVMnAD data from G0
I .

Criterion n Normal Lognormal Gamma Weibull Inverse Gaussian

25 −13302.39 −15575.23 −15158.42 −11933.35 −15565.03
49 −23265.27 −24529.72 −24284.47 −20986.94 −24522.28
81 −29908.19 −30960.38 −30747.90 −25233.41 −30946.54

AIC

121 −36496.78 −37128.07 −36991.41 −32366.52 −37123.20

25 −13287.16 −15559.99 −15143.19 −11918.12 −15549.80
49 −23250.04 −24514.48 −24269.24 −20971.71 −24507.05
81 −29892.96 −30945.15 −30732.67 −25218.17 −30931.31

BIC

121 −36481.55 −37112.84 −36976.18 −32351.28 −37107.97
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Figure 5. Goodness of fit plots for evaluating the best distribution with CV data from ΓSAR (under the
null hypothesis), with n = 49, L = 5, and µ = 1.
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Figure 6. Goodness of fit plots for evaluating the best distribution with CV data from G0
I (under the

alternative hypothesis), with n = 49, L = 5, µ = 1, and α = −3.
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Figure 7. Goodness of fit plots for evaluating the best distribution with CVMnAD data from ΓSAR (under
the null hypothesis), with n = 49, L = 5, and µ = 1.
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Figure 8. Goodness of fit plots for evaluating the best distribution with CVMnAD data from G0
I (under

the alternative hypothesis), with n = 49, L = 5, µ = 1, and α = −3.
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4. Results

This section presents the simulations we performed to evaluate the proposed test statistics’
performance, followed by applications to SAR data.

4.1. Simulated Data

Figure 9(a) shows the phantom with dimensions of 500 × 500 pixels. It was proposed by Gomez
et al. [38] as a tool to assess the performance of speckle-reduction filters.

Figure 9(b) shows the simulated image, where each small phantom displaying texture variations.
The observations are independent draws from the G0

I distribution (5), with L = 5 and varying α

and µ, annotated in the image for each quadrant. Light regions correspond to textured observations
(heterogeneous), while darker regions represent textureless areas (homogeneous).

The α parameter of the G0
I distribution is essential for interpreting texture characteristics. Values

near zero greater than −3 suggest extremely textured targets, such as urban zones [39]. As the value
decreases, it indicates regions with moderate texture (in the [−6,−3] region), related to forest zones,
while values below −6 correspond to textureless regions, such as pasture, agricultural fields, and water
bodies [40].

(a)

α = −1.5
µ = 20

α = −2.5
µ = 50

α = −8, µ = 2α = −6, µ = 1

α = −10, µ = 3 α = −3, µ = 100

α = −2
µ = 30

α = −20
µ = 4

(b)
Figure 9. Synthetic dataset: (a) Phantom. (b) Simulated image, varying α and µ, with L = 5.

We applied the three test statistics, namely SH̃AO
(Z; L), TCV, and TCVMnAD , to the simulated image

using local sliding windows of size 7 × 7, as shown in Figures 10(a)–(c).

(a) (b) (c)
Figure 10. Results of applying the test statistics: (a) SH̃AO

(Z; L), (b) TCV, and (c) TCVMnAD .

The resulting p-values for each test are shown in Figures 11(a)–(c). In Figures 12(a)–(c), maps
are depicted using a color table between black, gray levels, and white. All p-values above 0.05 are
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represented in white (indicating no evidence to reject the null hypothesis), while those below 0.05 are
shown in black (indicating evidence to reject the hypothesis). We notice that the SH̃AO

(Z; L) performs
significantly better than the other tests in identifying heterogeneous areas in the simulated image.

(a) (b) (c)
Figure 11. Map of p-values: (a) SH̃AO

(Z; L), (b) TCV, and (c) TCVMnAD .

(a) (b) (c)
Figure 12. Results for a threshold of 0.05 of the p-value: (a) SH̃AO

(Z; L), (b) TCV, and (c) TCVMnAD .

4.2. SAR Data

We evaluated the proposed test statistics using three SAR images: one of the coast of Jalisco,
Mexico (with a spatial resolution of 20 m both along azimuth and range directions) and two of Illinois,
USA (with a spatial resolution of 10 m both along azimuth and range directions), acquired by the
Sentinel-1B satellite operating in C-band, with VV polarization and intensity format. The first two
images have a size of 512 × 512 pixels, while the third has 1024 × 1024 pixels, and they contain
mountainous areas, agricultural regions, water bodies, and urban areas, as shown in Figures 13(a)–(c).

(a) (b) (c)
Figure 13. SAR images: (a) Coast of Jalisco, with L = 18. (b) Illinois-Region 1, with L = 36. (c)
Illinois-Region 2, with L = 36.
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The three statistical tests are applied to the SAR images using 7 × 7 local sliding windows, as
illustrated in Figures 14, 17 and 20.

The p-values obtained for each test are presented in Figures 15, 18 and 21, respectively.
In Figures 16, 19 and 22, the maps of p-values composed of a linear gradient of black and white

colors, represent the decisions at a 5 % significance level. Dark areas represent values below 0.05,
indicating evidence to reject the null hypothesis and suggesting heterogeneity in these regions. In
contrast, values above 0.05 are represented as white areas, indicating no evidence to reject the fully-
developed speckle hypothesis.

(a) (b) (c)
Figure 14. Results of applying the test statistics, Coast of Jalisco: (a) SH̃AO

(Z; L), (b) TCV, and
(c) TCVMnAD .

(a) (b) (c)
Figure 15. Map of p-values, Coast of Jalisco: (a) SH̃AO

(Z; L). (b) TCV. (c) TCVMnAD .

(a) (b) (c)
Figure 16. Results for a threshold of 0.05 of the p-value, Coast of Jalisco. (a) SH̃AO

(Z; L), (b) TCV, and
(c) TCVMnAD .
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(a) (b) (c)
Figure 17. Results of applying the test statistics, Illinois-Region 1: (a) SH̃AO

(Z; L), (b) TCV, and
(c) TCVMnAD .

(a) (b) (c)
Figure 18. Map of p-values, Illinois-Region 1: (a) SH̃AO

(Z; L), (b) TCV, and (c) TCVMnAD .

(a) (b) (c)
Figure 19. Results for a threshold of 0.05 of the p-value, Illinois-Region 1. (a) SH̃AO

(Z; L), (b) TCV, and
(c) TCVMnAD .

Using Shannon entropy is more meaningful than using the original and robust CV to capture
heterogeneity. It is justified that the dark areas of the maps based on the TCV and TCVMnAD show
coverage patterns similar to those reported for the SH̃AO

(Z; L) map. This suggests that although
CV-based tests may produce slightly less pronounced results than the entropy-based test, they still
demonstrate a comparable ability to detect heterogeneity within SAR images.
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(a) (b) (c)
Figure 20. Results of applying the test statistics, Illinois-Region 2: (a) SH̃AO

(Z; L), (b) TCV, and
(c) TCVMnAD .

(a) (b) (c)
Figure 21. Map of p-values, Illinois-Region 2: (a) SH̃AO

(Z; L), (b) TCV, and (c) TCVMnAD .

(a) (b) (c)
Figure 22. Results for a threshold of 0.05 of the p-value, Illinois-Region 2. (a) SH̃AO

(Z; L), (b) TCV, and
(c) TCVMnAD .

It is noticeable that the entropy and CV-based tools predicted heterogeneity regions and bound-
aries where the statistical properties of texture vary. The TCVMnAD test was shown to be an effective
edge detector. It emerges as a robust alternative to the classical CV test, making it less susceptible
to the influence of outliers and allowing it to produce more precise edges. Considering a higher
significance level may increase the sensitivity to edge detection but also increase the risk of detecting
false heterogeneous regions.

Additionally, assuming a 5 % threshold for p-values, in most cases, the heterogeneous regions
detected by the SH̃AO(Z; L) test were more extensive than those detected by the TCV and TCVMnAD tests.
This was mainly observable in Figures 12(a), 16(a), and 19(a).
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5. Conclusions

This article provides a practical and theoretical answer to the following physical question: How
to detect heterogeneity in SAR images, assuming that the SAR intensity follows the ΓSAR model. To
this end, we proposed three novel hypothesis tests, one from the Shannon entropy and two from
the variation coefficient variants. The performance of our proposals was evaluated using a Monte
Carlo study. The results showed that they were conservative in estimating the probability of a type
I error (false alarm rate) and the test power (probability of detection), which increases with sample
size. An application to three recent SAR images was performed. The results showed that the Shannon
entropy-based test was more robust than the CV-based tests. In addition, all tests could recognize
images with different textures and identify edges where the texture type changes.

Supplementary Materials: This article was written in Rmarkdown and is fully reproducible. The code and
data are accessible at https://github.com/rjaneth/identifying-heterogeneity-in-sar-data-with-new-test-statistics
(accessed on 30 April 2024).
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