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Abstract: We study in detail the influence of different chemical potentials (baryon, charged, strange, and neutrino)

on how and how fast a free gas of quarks in the zero-temperature limit reaches the conformal limit. We discuss

the influence of non-zero masses, the inclusion of leptons, and different constraints, such as charge neutrality,

zero-net strangeness, and fixed lepton fraction. We also investigate for the first time how the symmetry energy of

the system under some of these conditions approaches the conformal limit. Finally, we briefly discuss what kind

of corrections are expected from perturbative QCD as one goes away from the conformal limit.
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1. Introduction and Formalism

In the zero temperature limit, baryons start to overlap at a few times saturation density and,
through some mechanism that is not yet understood, quarks become effectively deconfined [1]. In this
work we discuss dense matter in terms of baryon chemical potential µB, instead of baryon (number)
density nB, as the former (together with other chemical potentials, such as charged µQ or strange µS) is
the fixed or independent quantity in the grand canonical ensemble. The correspondence between nB
and µB is model dependent, but, at finite temperature, the µB at which deconfinement takes place is
expected to be even lower (see e.g., [2]), which highlights the importance of studying quark matter.
We are particularly interested in understanding the conformal limit, the asymptotically high µB at
which matter can be described by a free (non-interacting) gas of massless quarks. For this reason, in
the present work, we focus on modelling quark matter only and for the time being restrict ourselves to
the zero-temperature limit.

To describe the quarks, we make use of a free Fermi gas under different assumptions. To start, we
describe them simply by a massless gas, then introduce different non-zero quark masses, and vary
independently the baryon, charged, and strange chemical potentials. We further link the chemical
potentials by imposing charge neutrality and/or zero net strangeness. We also discuss the role played
by leptons, discussing β equilibrium and the role played by neutrinos (with chemical potential µν). We
investigate large µB and different µQ and µν, as these are important for astrophysical scenarios, such
as neutron stars and neutron-star mergers. On the other hand, we investigate the effects of µS, which
is important for discussions related to relativistic heavy-ion collisions and the early universe [3].

We also discuss the symmetry energy of quark matter for some of the constraints we study and
investigate how it changes as we approach the conformal limit. Several works have addressed the
symmetry energy of quark matter [4–7]. This physical quantity is defined as the difference of energy
per baryon E/NB (or energy density per baryon density ε/nB) of fully isospin asymmetric matter δ = 1
and isospin-symmetric matter δ = 0:

Esym =
Eδ=1

NB
− Eδ=0

NB
=

εδ=1

nB
− εδ=0

nB
, (1)
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where δ was originally defined for matter with neutrons and protons in terms of densities ni as

δ =
nn − np

nn + np
. (2)

In this case and also when one is considering up and down quarks, δ can also be written as

δ = −2YI = 1 − 2YQ (non − strange matter) , (3)

with fractions Yi summing over i = baryons and/or quarks and defined in terms of particle isospin
QIi and electric charge Qi

YI =
∑i QIi ni

∑i ni
, YQ =

∑i Qini

∑i ni
, (4)

with baryon (number) density nB = ∑ ni, where the quark densities are divided by 3.
However, it is important to note that, as discussed in Ref. [8] and Appendix A of Ref. [9], in the

presence of hyperons (or in our case strange quarks), Equation (3) does not apply. For this reason, we
restrain to the discussion of symmetry energy for the 2-flavor case (with up and down quarks).

When leptons are included, we assume β equilibrium, in which case electrons and muons have
chemical potential µe = µµ = −µQ. In the special case that (electron and muon) neutrinos are trapped,
µν is determined by fixing the lepton fraction

Yl =
∑lep nlep

∑i ni
, (5)

usually hold equal to the canonical value 0.4, to simulate conditions created in supernova explosions
[10].

Finally, we briefly discuss the effects of interactions in the case that they are week enough to
be discussed perturbatively, i.e., using perturbative Quantum Chromodynamics, pQCD). At large
temperatures and/or quark chemical potentials, the strong coupling becomes small enough to allow an
infinite number of terms to be approximated by a finite number of terms to describe interactions [11].
At zero temperature, pQCD corrections have been calculated up to next-to-next-to-next-to-leading
order (N3LO) [12,13] with non-zero quark masses included until next-to-next-to-leading order (N2LO)
[14–16] .

2. Results

We describe in detail the free Fermi gas formalism we use in this work (for quarks and leptons) in
Appendix A. We begin our discussion by ignoring the contribution of leptons to the thermodynamical
quantities (later we include different possibilities and discuss them). In the figures that follow, the
pressure P and baryon density nB are normalized by respective values of a free gas with the same
number of quark flavors included, but with quark masses mi = 0 and µQ = µS = 0. Simple analytical
equations for the pressure of all the massless cases discussed in this work are derived in Appendix B.
We start our discussion considering only one chemical potential, and then expand our discussion to
two and three chemical potentials.

2.1. One Chemical Potential µB

We start by comparing the quark mass effect on nB versus µB in the left upper panel of Figure 1.
Because in this case µQ and µS are zero, all quarks present the same chemical potential µi = µu = µd =

µs =
1
3 µB. Due to our normalization (thermodynamical quantities divided by the massless case with

the respective number of flavors), all massless cases have constant value 1. Nevertheless, this does
not mean that they are the same (if not normalized). To discuss the effect of quark masses, we start
with 1 flavor with mass corresponding to the Particle Data Group (PDG [17]) mass of the up (m = 2.3
MeV) or down (m = 4.8 MeV) quarks, then we look at the 2-flavor case with PDG masses for both light
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quarks. After that, we look at 3-flavors and use first only non-zero mass for the strange quark (with
PDG value of m = 95 MeV) and then the PDG (from hereon “realistic”) masses for the 3 quarks.
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Figure 1. Baryon density (upper panel) and pressure (lower panel) of quarks with different number of
flavors and different masses normalized by the respective massless cases.

We find that the introduction of realistic quark masses decreases the density for low µB, with the
s-quark mass affecting the density until larger µB (up to 621 MeV) than the two light quarks (up to 55
MeV). To calculate these thresholds, we use throughout this paper the criteria of a deviation of 10%
from the black line with value 1. For P versus µB, shown in the lower panel of Figure 1, the lines are
very similar in shape (to the ones in the upper panel of the figure). The introduction of realistic quark
masses decreases again P for low µB, with the s-quark mass affecting the pressure until larger µB (up
to 834 MeV) than the two light quarks (up to 77 MeV).

2.2. Two Chemical Potentials µB and µQ

Now, we abandon the unphysical 1-flavor case, and continue with 2- and 3-flavor cases. The
2-flavor case has recently become more relevant for dense matter because it has been shown that the
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core of neutron stars can harbor 3-, as well as 2-flavor quark matter [18]. For this case we add another
(charged) chemical potential, breaking some of the degeneracy in the quark chemical potentials:
µup = 1

3 µB + 2
3 µQ, µdown = µstrange = 1

3 µB − 1
3 µQ. Once more, we normalize thermodynamical

quantities dividing by the respective values of the same quantity for a free gas with the same number
of quark flavors included, but with mi = 0, in addition to µQ = 0. Following this procedure, we aim at
determining how the conformal limit and its deviation depend on µQ.

When µQ is determined by charge neutrality, the results even for the massless case depend on the
number of flavors. In this case, only the 3-flavor case is coincidentally equal to the µQ = 0 case (see the
explanation following Equations (A29)–(A32) in Appendix B). For 2-flavor, this is not the case, and the
pressure is lower than in the µQ = 0 case, establishing a new lower conformal limit (see upper panel of
Figure 2). Expressions for the pressure for each particular chemical potential case (always keeping
mi = 0 for simplicity) can be found in Appendix B. Compare e.g., Equations (A17) and (A26).
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Figure 2. Cont.
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Figure 2. Pressure (upper panel) and charged chemical potential (middle panel) of quarks with 2
chemical potentials normalized by the respective massless case with one chemical potential, µB. The
charged chemical potential is determined by charge neutrality. For massless 3-flavor quarks, the cases
with and without µQ coincide. Lower panel: Pressure of quarks with 2 chemical potentials, being µQ

fixed to different values, normalized by the respective massless case with one chemical potential, µB.

When adding quark masses, µQ determined by charge neutrality lowers the pressure (in com-
parison to the respective massless case and to the massless case with µQ = 0) such that it goes to the
respective conformal limit at larger µB. Using again the criteria of 10% deviations from the respective
conformal limit, the s-quark mass affects pressure until µB = 839 MeV and the two light quark masses
until µB = 118 MeV.

Nevertheless, one issue about this approach should be noted: we are comparing very small
values of µQ with very large values of µB. See the middle panel of Figure 2 for a comparison. This
is particularly the case for 3-flavors of quarks, and (except for extremely low µB) this behavior is
independent of the quark masses. For small values of µB, both for 2 and 3-flavors, the dependence of
µQ and µB can be predicted in fair agreement with Equation (A25). For this reason, next, we add a
fixed charged chemical potential to study how it affects the conformal limit, which translates into an
increase in pressure (see e.g., the different lines for 3-flavor quark matter with realistic masses in the
lower panel of Figure 2), specially at low values of µB. For massless quarks and µQ = −20 MeV, the
pressure is always above the conformal limit for µQ = 0, independently of the number of flavors. Once
the quark masses are finite, the pressure decreases, specially in the 3-flavor case. For larger absolute
values of µQ, the pressure becomes larger, even going above the conformal case (with and without
µQ). For example, for the 3-flavor case with realistic quark masses and µQ = −50 MeV, the pressure
deviates 10% (of the µQ = 0 conformal limit) at µB = 698 MeV and for µQ = −100 MeV at µB = 415
MeV (the latter one from above). Finally, there is one important remark regarding the behavior of the
normalized pressure: in the lower panel of Figure 2, it is shown that this physical quantity decreases
for small values of µB; however, this behavior doesn’t mean that the pressure itself (not normalized)
is not a monotonically increasing function of µB. Here, we must remember that our normalization is
carried out by dividing the thermodynamical quantities (such as pressure) by the massless case with
the respective number of flavors, and the free Fermi pressure of this system of massless quarks used
for normalization scales as µ4

B; therefore, in those ranges of µB where P for massive quarks increases
at a lower rate than µ4

B, the normalized pressure decreases without implying any thermodynamical
inconsistency.
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2.3. Three Chemical Potentials µB, µQ, and µS or µν

Going further, we can add another (strange) chemical potential and constrain it, e.g., to strangeness
neutrality. The issue is that at zero temperature strangeness neutrality means that there are no
strange quarks, and the 3-flavor reduces to the 2-flavor case. For this reason, we fixed µS instead to
specific values. µS breaks the degeneracy in the remaining quark chemical potentials: µup = 1

3 µB +
2
3 µQ, µdown = 1

3 µB − 1
3 µQ, µstrange = 1

3 µB − 1
3 µQ + µS. Once more, we normalize thermodynamical

quantities dividing by the respective values of the same quantity for a free gas with the same number
of quark flavors included, but with mi = 0, in addition to µQ = 0.

Fixing µS increases the pressure, similar to fixing µQ. Compare, for example, the massless 3-flavor
case in the upper panel in Figure 3 and lower panel in Figure 2 and note that the pressure for a given µB
is now much higher. When quark masses are added, the similarity disappears, because µS only affects
the strange quarks, which do not appear for low values of µB, unless the µS value is larger than the
strange quark mass, which corresponds to our case of µS = 100 MeV. For µS = 50 and µS = 100 MeV,
the 10% deviation from the conformal limit takes place at µB = 1743 and µB = 4227 MeV, respectively
(both from above).

Now we consider the case in which additionally µQ ̸= 0, determined to reproduce charge
neutrality (middle panel of Figure 3). For massless 3-flavor quarks, the cases with charge neutrality
and without µQ coincide. When masses are introduced, the curves are still very similar (to the upper
panel for the µQ = 0 case), except at very small µB, where the quark masses are comparable to both µB
and µQ. For µS = 50 and µS = 100 MeV, the 10% deviation from the conformal limit takes place at
µB = 1743 and µB = 4227 MeV, respectively (both from above).

When a fixed value of µQ is used, it increases the pressure further, specifically at low µB (see lower
panel of Figure 3). For µQ = µS = 50 and µQ = µS = 100 MeV, the 10% deviation from the conformal
limit takes place at µB = 2070 and µB = 4723 MeV, respectively (both from above).
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Figure 3. Cont.
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Figure 3. Pressure and charged chemical potential of quarks with 2 or 3 chemical potentials, including
the strange chemical potential, normalized by the respective massless case (with one chemical potential,
µB). The charged chemical potential is either zero (upper panel), determined by charge neutrality
(middle panel), or fixed (lower panel). For massless 3-flavor quarks, the cases with charge neutrality
and without µQ coincide.

Next, we investigate the effects of having much larger values of µQ and µS, comparable to µB,
for 3 flavors of quarks in the upper panel of Figure 4. As expected, the changes due to the additional
chemical potentials take place at much lower µB (notice the different scale in the y-axis of the figure)
and practically all the curves are above the one chemical potential (µB) conformal limit. An exception
is the case with large (negative) µQ (and µS = 0) because, according to Equations (A1) and (A5),
quarks can only exist after a given µB = 381 MeV, at which the momentum ki and P become finite (see
Equation (A28) for the massless case). In this case, the pressure differs from the one chemical potential
conformal limit by more than 10% until µB = 10 583 MeV. In the case of large µS, quarks can exist at
any µB and the pressure differs from the one chemical potential conformal limit by more than 10%
until µB = 44 237 MeV. When we combine large µS and (absolute value of) µQ, the pressure differs
from the one chemical potential conformal limit by more than 10% until µB = 48 897 MeV. In this case,
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the curve in the upper panel of Figure 4 begins only at µB = 1000 MeV. This can be understood once
more from Equations (A1) and (A5). The same effect can also be seen (although more subtle) in the
bottom panel of Figure 2, where the fixed µQ cases start at µB = −µQ.
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Figure 4. Upper panel: Pressure of quarks with 2 or 3 large chemical potentials, normalized by the
respective massless case with one chemical potential, µB. Lower panel: Pressure of quarks and leptons
with 2 or 3 chemical potentials, normalized by the respective massless case with one chemical potential,
µB. For β-equilibrium with leptons, µQ is determined by charge neutrality. When neutrinos are present,
their chemical potential µν is determined by fixing the lepton fraction, Yl .

Finally, we investigate changes due to the inclusion of a free gas of leptons (electrons and muons)
in β equilibrium (and participating in the fulfillment of charge neutrality). As it can be seen in the
lower panel of Figure 4, the inclusion of leptons doesn’t change the pressure. The picture changes
though when lepton number is fixed. In this case, which also includes neutrinos, the pressure is
considerably higher because the large amount of negative leptons forces the appearance of a large
amount of up quarks, changing considerably the quark composition of the system. The grey full line
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shows a kink for µB ∼ 400 MeV, when the muons appear. Note that the difference in massless versus
massive quarks is still very pronounced when Yl is fixed.

2.4. Symmetry Energy

As already discussed, we calculate the symmetry energy only for the 2-flavor case, for which
it was originally defined. We fix nB in this case (instead of µB as we have been doing) because the
symmetry energy is defined for a given nB, but limit the x-axis to approximately the corresponding
range from the previous figures. Figure 5 shows that the curves are a monotonically increasing function
of density. The light quark masses don’t affect the results. Notice that the latter statement applies to
every thermodynamical quantity that is not normalized by the respective conformal limit (and does
not include derivatives). Numerically, we define δ = 0 as the 2-flavor µQ = 0 case (corresponding to
the 2-flavor lines in Figure 1) and δ = 1 as the 2-flavor YQ = 0 case (with µQ ̸= 0 corresponding to the
2-flavor lines in the top and middle panels of Figure 2).
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Figure 5. Symmetry energy of quarks with 1 or 2 chemical potentials as a function of baryon density
for different masses. The two curves overlap.

3. Discussion and Conclusions

Perturbative corrections to a free gas of quarks due to interactions always bring down the pressure
to lower values. Although these corrections have been calculated to higher orders for massless and
massive (strange) quarks, they cannot accurately be carried out to low baryon chemical potentials
µB (or, interchangeably, low baryon densities nB in the zero-temperature limit). For example, for the
relevant regime of densities inside neutron stars, µB ≤ 1500 MeV, pQCD predicts that the pressure is
lower than 80% of the free gas value (see for example Figure 1 of Ref. [15]) but with a very large band
going all the way to P = 0.

In this work, we have investigated the equation of state of a free gas of quarks focusing on how
the conformal limit is reached when different chemical potentials are varied and different constraints
(e.g., , for laboratory vs. astrophysics) are considered. This is done by using combinations of 1, 2, or 3
chemical potentials out of the 4 we consider, each related to a possible conserved quantity: baryon
number B (µB), electric charge (µQ), strangeness (µS), and lepton number (µν). We have also derived
expressions for massless quarks under different conditions to illustrate our discussion.

We have studied the effects of using different quark masses (including PDG values), number of
flavors, and different ways to fix the various chemical potentials considered. The latter procedure
implies enforcing charge neutrality and, when leptons were included, β equilibrium. When leptons
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(electrons, muons, and their respective neutrinos) are present, the pressure in not altered. An exception
is the case in which the lepton fraction is fixed. For different cases, we have quantified the deviation
from the one-chemical potential (massless) conformal limit by verifying at which µB the pressure
deviates by more than 10%. This value varied from µB = 77 to 48 897 MeV. This shows that one must
be careful about making statements concerning comparisons with "the" conformal limit. Finally, we
have shown that the conformal limit of the symmetry energy is monotonically increasing and does not
depend on quark masses.
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The following abbreviations are used in this manuscript:

perturbative Quantum Chromodynamics (pQCD), Particle Data Group (PDG).

Appendix A. General Expressions

For each quark flavor i, we can write

µi =
1
3

µB + QiµQ + QSi µS, (A1)

where 1/3 has been used as the baryon number and Qi and QSi are the electric charge and strangeness
of each quark. µB, µQ, and µS are the baryon, charged, and strange independent chemical potentials of
the system. In our formalism, the isospin chemical potential µI = µQ [8].

The general expressions for (number) density, energy density and pressure of a relativistic free
Fermi gas of particles i using thee natural system of units are

ni =
gi

2π2

∫ ∞

0
dki k2

i ( fi+ − fi−), (A2)

εi =
gi

2π2

∫ ∞

0
dkiEik2

i ( fi+ + fi−), (A3)

Pi =
1
3

gi
2π2

∫ ∞

0
dki

k4
i

Ei
( fi+ + fi−), (A4)

where gi = 6 is the spin and color degeneracy factor, ki is the momentum,

Ei =
√

k2
i + m2

i ≥ 0, (A5)

is the energy of the state, mi the mass, f± the distribution function of particles and antiparticles
fi± = (e(Ei∓µi)/T + 1)−1, with µi being the particle chemical potential, and T the temperature.

In the T = 0 limit, antiparticles provide no contribution, f− = 0, and f+ = 1 up to the Fermi
momentum, ki = kFi , Ei = µi and the integrals for the above thermodynamic quantities are evaluable
analytically

ni =
gi

6π2 k3
Fi

, (A6)

εi =
gi

2π2

[(
1
8

m2
i kFi +

1
4

k3
Fi

)√
m2

i + k2
Fi
− 1

8
m4

i ln
kFi +

√
m2

i + k2
Fi

mi

]
, (A7)
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Pi =
1
3

gi
2π2

[(
1
4

k3
Fi
− 3

8
m2

i kFi

)√
m2

i + k2
Fi
+

3
8

m4
i ln

kFi +
√

m2
i + k2

Fi

mi

]
. (A8)

Appendix B. Massless Quarks

For the massless particle case, the expressions above further reduce to

ni =
gi

6π2 k3
Fi
=

gi
6π2 µ3

i , (A9)

εi =
gi

8π2 k4
Fi
=

gi
8π2 µ4

i , (A10)

Pi =
1
3

gi
8π2 k4

Fi
=

1
3

gi
8π2 µ4

i , (A11)

reproducing εi = 3Pi.
Note that, in the case of massless free quarks, we can also write µi = ki. Therefore, we can write

the chemical potential for each quark flavor using Equation (A1)

µu =
1
3

µB +
2
3

µQ = ku , (A12)

µd =
1
3

µB − 1
3

µQ = kd , (A13)

µs =
1
3

µB − 1
3

µQ + µS = ks . (A14)

We use the convention that both the strangeness and µS are positive. Alternatively, one could use
both as negative without changing the results. Equations (A12) and (A13) are equal if µQ = 0.
Equations (A12)–(A14) are equal if µQ = 0 and µS = 0. The density and pressure of each quark flavor
can be written further as

ni =
µ3

i
π2 =

k3
i

π2 , (A15)

Pi =
µ4

i
4π2 =

k4
i

4π2 . (A16)

Next, we discuss the pressure for specific conditions concerning number of flavors and chemical
potential constraints (not including leptons):

• 2-flavor, µQ = 0

P = Pu + Pd = 2Pu =
2µ4

u
4π2 =

µ4
B

162π2 =
µ4

B
1598.88

. (A17)

• 3-flavor, µQ = 0, µS = 0

P = Pu + Pd + Ps = 3Pu =
3µ4

u
4π2 =

µ4
B

108π2 =
µ4

B
1065.92

. (A18)

• 2-flavor, µQ fixed
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P = Pu + Pd =
1

4π2

(
µ4

u + µ4
d

)
=

1
4π2

[(
1
3

µB +
2
3

µQ

)4
+

(
1
3

µB − 1
3

µQ

)4
]

=
1

4π2

(
µ4

B
81

+
4µ3

B
27

2µQ

3
+

6µ2
B

9

4µ2
Q

9
+

4µB
3

8µ3
Q

27
+

16µ4
Q

81

+
µ4

B
81

−
4µ3

B
27

µQ

3
+

6µ2
B

9

µ2
Q

9
− 4µB

3

µ3
Q

27
+

µ4
Q

81

)

=
1

324π2

[
2µ4

B + 4µ3
BµQ + 30µ2

Bµ2
Q + 28µBµ3

Q + 17µ4
Q

]
. (A19)

• 2-flavor, µQ from charge neutrality

Starting from ∑i Qini = 0
2
3

nu −
1
3

nd = 0 , (A20)

2
3

µ3
u

π2 − 1
3

µ3
d

π2 = 0 , (A21)

2µ3
u = µ3

d , (A22)

2
(

1
3

µB +
2
3

µQ

)3
=

(
1
3

µB − 1
3

µQ

)3
, (A23)

2
1
3

1
3

µB − 1
3

µB = −2
1
3

2
3

µQ − 1
3

µQ , (A24)

µQ =
−
(

2
1
3 − 1

)
µB

2
4
3 + 1

= −0.07 µB . (A25)

We can then use Equations (A22) and (A25) to calculate the pressure

P = Pu + Pd =
1

4π2

(
µ4

u + µ4
d

)
=

1
4π2

(
µ4

u + 2
4
3 µ4

u

)
=

1
4π2

(
1 + 2

4
3

)
µ4

u =
1

4π2

(
1 + 2

4
3

)(1
3

µB +
2
3

µQ

)4

=
1

4π2

(
1 + 2

4
3

)[1
3

µB − 2
3

(
2

1
3 − 1

2
4
3 + 1

µB

)]4

=
1

4π2

(
1 + 2

4
3

)[2
4
3 + 1 − 2

4
3 + 2

3(2
4
3 + 1)

]4

µ4
B

=
1

4π2(2
4
3 + 1)3

µ4
B =

µ4
B

1721.59
. (A26)

• 3-flavor, µQ fixed, µS = 0

P = Pu + Pd + Ps =
1

4π2 (µ
4
u + µ4

d + µ4
s ) =

1
4π2 (µ

4
u + 2µ4

d) , (A27)
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because µd = µs are equal, resulting in

P =
1

4π2

[(
1
3

µB +
2
3

µQ

)4
+ 2
(

1
3

µB − 1
3

µQ

)4
]

=
1

4π2

(
µ4

B
81

+
4µ3

B
27

2µQ

3
+

6µ2
B

9

4µ2
Q

9
+

4µB
3

8µ3
Q

27
+

16µ4
Q

81

+ 2
µ4

B
81

− 2
4µ3

B
27

µQ

3
+ 2

6µ2
B

9

µ2
Q

9
− 2

4µB
3

µ3
Q

27
+ 2

µ4
Q

81

)

=
1

324π2

(
3µ4

B + 36µ2
Bµ2

Q + 24µBµ3
Q + 18µ4

Q

)
. (A28)

• 3-flavor, µQ from charge neutrality, µS = 0

Starting again from ∑i Qini = 0

2
3

nu −
1
3

nd −
1
3

ns = 0 , (A29)

2
3

(
µ3

u
π2

)
− 1

3

(
µ3

d
π2

)
1
3
−
(

µ3
s

π2

)
= 0 , (A30)

2µ3
u − µ3

d − µ3
s = 0 , (A31)

but, since in this case µd = µs, we have:
µ3

u = µ3
d , (A32)

which implies (from Equations (A12) and (A13)) µQ = 0 and reproduces the 3-flavor case with µQ = 0,
µS = 0.

• 3-flavor, zero net strangeness

Starting from ∑ QSi ni = 0, at T = 0 this implies ns = 0, no matter if µQ = 0 or µQ ̸= 0. As a
consequence, this case reproduces the respective 2-flavor case.

• 3-flavor, µQ fixed, µS fixed

P = Pu + Pd + Ps =
1

4π2 (µ
4
u + µ4

d + µ4
s )

=
1

4π2

[(
1
3

µB +
2
3

µQ

)4
+

(
1
3

µB − 1
3

µQ

)4
+

(
1
3

µB − 1
3

µQ + µS

)4
]

. (A33)

Using the result from Equation (A28)

P =
1

324π2

(
3µ4

B + 36µ2
Bµ2

Q + 24µBµ3
Q + 18µ4

Q

)
+

1
4π2

(
µ4

S −
4

27
µ3

QµS −
4
3

µQµ3
S +

4
3

µBµ3
S +

4
27

µ3
BµS

+
6
9

µ2
Qµ2

S +
6
9

µ2
Bµ2

S −
12
27

µ2
BµQµS +

12
27

µBµ2
QµS −

12
9

µBµQµ2
S

)
. (A34)

• 3-flavor µQ = 0, µS fixed
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Using Equation (A34) with µQ = 0

P =
1

π2

(
1

108
µ4

B +
µ4

S
4

+
1
3

µBµ3
s +

1
27

µ3
BµS +

1
6

µ2
Bµ2

S

)
. (A35)

• 3-flavor, µQ from charge neutrality, µS fixed

Starting from ∑ Qini = 0
2
3

nu −
1
3

nd −
1
3

ns = 0 , (A36)

2µ3
u − µ3

d − µ3
s = 0 , (A37)

2
(

1
3

µB +
2
3

µQ

)3
−
(

1
3

µB − 1
3

µQ

)3
−
(

1
3

µB − 1
3

µQ + µS

)3
= 0 , (A38)

2µ3
B

27
+

12µ2
BµQ

27
+

24µBµ2
Q

27
+

16µ3
Q

27
−

2µ3
B

27
+

6µ2
BµQ

27
−

6µBµ2
Q

27

+
2µ3

Q

27
− µ3

S −
3µ2

BµS

9
+

6µBµQµS

9
−

3µ2
QµS

9
−

3µBµ2
S

3
+

3
3

µQµ2
S = 0 , (A39)

2µ2
BµQ

3
+

2µBµ2
Q

3
+

2µ3
Q

3
− µ3

S −
µ2

BµS

3
+

2µBµQµS

3
−

µ2
QµS

3
− µBµ2

S + µQµ2
S = 0 . (A40)

In the above expression, we still need to isolate µQ and replace in Equation (A34).
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