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Leonardo Chiatti 

ASL Medical Physics Laboratory, Via Enrico Fermi 15, 01100 Viterbo (Italy); leonardo.chiatti@asl.vt.it 

Abstract: Two distinct measures of information, connected respectively to the amplitude and phase 

of the wave function of a particle, are proposed. There are relations between the time derivatives of 

these two measures and their gradients on the configuration space, which are equivalent to the wave 

equation. The information related to the amplitude measures the strength of the potential coupling 

of the particle (which is itself aspatial) with each volume of its configuration space, i.e. its tendency 

to participate in an interaction localized in a region of ordinary physical space corresponding to that 

volume. The information connected to the phase is that required to obtain the time evolution of the 

particle as a persistent entity starting from a random succession of bits. It can be considered as the 

information provided by conservation principles. The meaning of the so-called "quantum potential" 

in this context is briefly discussed. 

Keywords: Information; nature of the wave function; Schrödinger equation; quantum particle; 

quantum potential 

 

1. Introduction 

In this short communication we attempt to revisit the concept of the wave function of a quantum 

particle, proposing an entirely informational definition of it. We will do this by introducing two 

distinct measures of information, functions of the point and the instant, on the configurational space 

C of the particle, enlarged with the addition of the time coordinate t. These two measures are 

connected respectively to the amplitude and phase of the wave function. The information related to 

the amplitude measures the strength of the potential coupling of the particle (defined in aspatial 

terms) with each volume of its configurational space, i.e. its tendency to participate in an interaction 

localized in a region of ordinary physical space corresponding to that volume. It substantially 

coincides with the quantum entropy for a pure state introduced in [1]. 

The information connected to the phase is that required to convert the time evolution of the 

particle from a random succession of bits to a persistent state, in order to account for the existence of 

conserved quantities (spin, charge, momentum, etc.) associated with the free evolution of the particle. 

These two measures of information become the components, respectively imaginary and real, of 

a complex information. The well known wave equation for the non-relativistic scalar particle 

(Schrödinger equation) is then rewritten as a relation between the time derivative and the spatial 

gradient of this complex information, the latter defined as a row vector. In this new form, the wave 

equation appears as a complex (vectorial) generalization of the ordinary Hamilton-Jacobi equation, 

with the addition of a term of divergence of the spatial gradient. In particular, the divergence of the 

quantum entropy gradient is weighted by the reciprocal of this entropy; this weight constitutes a sort 

of "coupling constant" between each region of C and the particle (in itself aspatial), with respect to its 

possible localization in these regions. The term of the wave equation generated by this coupling is 

the so-called "quantum potential", which appears in the hydrodynamical representation of this 

equation [2]. 

This form of the dynamical equation, therefore, makes explicit the coupling, in a potential sense, 

of the quantum particle with each volume of its configuration space. This coupling is actualized when 

a quantum jump, induced by an interaction in a region of ordinary physical space corresponding to a 

given volume of C, localizes the particle in that volume. 
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We want to underline that although, for reasons of simplicity, we will limit our considerations 

in this note to the case of a single particle, they are immediately generalizable to systems with any 

number of particles and configurational spaces of any dimensionality. 

We will develop this note according to the following plan. In Section 2 we recall the essential 

notions of particle and interaction, underlining that the space-environment of the particle 

(configurational space) is not the same as that of interactions (ordinary physical space). The actual 

model is proposed in Section 3. Section 4 is divided into various subsections dedicated to the analysis 

of individual aspects of the model; the general sense is to show its continuity with the quantum 

formalism usually accepted and taught. In Section 5 we present the rewriting of the Schrödinger 

equation for a single non-relativistic scalar particle and discuss the meaning of the various terms that 

appear in it. In Section 6 we report some concluding remarks. 

2. Particles and Interactions 

In this communication we do not intend to delve into the problem of the ontology of quantum 

particles. For our purposes we will adopt a minimalist definition, according to which a quantum 

particle is the maximal set of physical quantities encoded in its wave function, which would be 

conserved if motion were free. This means that these quantities are compatible, and that in the 

absence of external forces they would be constants of motion with values definite or not depending 

on the initial conditions actually chosen. Energy, momentum, spin, isospin, etc. are examples of such 

quantities, which in systems with many interacting particles combine according to specific rules to 

give total conserved quantities. The spatial or spatiotemporal position cannot be included among 

these quantities because, even in the absence of external forces, it is not a constant of motion. As a 

consequence of this definition, the particle does not have a definite spatial position. 

The aspatial packet of physical quantities that constitutes the particle is manifested as a whole 

in a single interaction event, in which the wave function of the particle is created or annihilated (and 

possibly replaced by a new wave function). This event, which constitutes a so-called "quantum jump", 

occurs in a single volume of ordinary space, at a definite instant. The simultaneous manifestation in 

different spatially separated volumes would be in fact incompatible with the local nature of the 

conservation principles. Let us consider for example the case of a particle A with momentum P which 

manifests itself in two spatially separated and distinct regions V1, V2 by means of two releases of 

momentum p1, p2 such that P = p1 + p2. This would mean that, at the moment of the interaction, in the 

volume Vi, where i = 1 or 2, the impulse P would enter and the impulse pi would exit. Within this 

volume there would therefore be the disappearance of the impulse P – pi. 

In other words, even though, according to our definition, the particle does not have a definite 

spatial position, it can nevertheless manifest itself integrally (as a whole) in a certain spatial region 

by means of a quantum jump induced by the interaction with other particles or systems. This means 

that ordinary space coordinates label possible interactions between particles, not some “position” 

actually occupied by the particle between two successive quantum jumps. Space is, in other words, 

the environment of interactions, not that of particles. 

A special case is that of the negative interaction [3–5], i.e. the fact that an expected manifestation 

of the particle does not actually occur. Non-manifestation preserves the aspatial nature of the particle 

and with it the phase relation of its wave function. An example of negative interaction is offered by 

the particle crossing a double slit, made on an absorbing screen. The negative interaction with the 

screen annihilates the wave function of the incident particle and creates a new one, different from 

zero only in the two regions occupied by the slits. The new function preserves the phase relation with 

the old one. The phase relation between the two components transmitted by the two slits produces 

the well known self-interference effects downstream of the screen [6]. 

3. The Model 

Let us consider a positive or zero real function | 0 | defined on the enlarged configurational 

space of a quantum system. We indicate with  the square root of the average value of the square of 

this function on a volume V of the configurational space: 
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 
V

V
2

0   (1)

We introduce two complex-valued functions hf(V), hb(V) defined by two distinct conditions. The 

first condition is that their sum is real and corresponds to the information acquired by ascertaining 

the localization of the quantum system in V: 

         VpVVVhVh bf loglog
2

   (2)

Eq. (2) is satisfied if | 0 |2 is identified as the probability density on the configurational space C 

and: 
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 (4)

is the information expected for the localization event C  V.  

If there were no conservation principles, the time evolution of the system starting from an initial 

condition would be an entirely random, transient process with decreasing probability. The 

conditional information associated with the confirmation of the existence of the system at a given 

time t would therefore grow with t. Denoting as pV(t) the integral of the localization probability 

density over the entire configurational space, under the condition that at time 0 the system is localized 

within V, the information associated with the existence of the system at time t is defined as –log(pV(t)). 

After this premise, the second condition is that the differential d(hf(V) – hb(V))/2i, where i is the 

imaginary unit, represents in this case the increase undergone, in the time interval dt, by the 

information associated with the existence of the system.  

The effect of the conservation principles is to add, in the same interval, an exactly opposite 

decrease of information -, so that the total change in information in the interval is zero. The total 

information is then conserved in t, and this ensures the conservation of the probability of existence, 

thus guaranteeing the persistence of the system at all times following the initial condition. We must 

therefore have: 

       
  constantV
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VhVh
d bfbf 
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


2
0

2
 (5)

The quantity  is therefore defined up to an additive constant, which we will ignore in the 

following. From the conditions (2) and (5) it follows that, in the limit V  0 and therefore (V)  | 

0 |: 

     iVhiVh bf  00 log;log  (6)

where  is now a function of the point x in which V is contracted and the instant t. Therefore: 

 Vhh bf

2

0log   (7)

It is then possible to define two functions of the point and the instant: 
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which are identifiable with the "forward" and "backward" wave functions of the quantum system, 

solutions respectively of the retarded and advanced Schrödinger equation. We note that, as a 

consequence of the relations (6), the functions (8) do not depend on V; they only depend on point and 

instant. Eqs. (8) provide an informational interpretation of the wave function.     

4. Remarks 

4.1. Born Rule 

Let us consider the transition   a11, with: 

ij

i

jiiia    ;  (9)

We assume that  is normalized to 1 on C. Before the transition we have: 

       
V

ff VVVhh
22

0,0, ;log    (10)

After the transition we have: 
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V
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2
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Therefore the information acquired with the transition is: 
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In the limit V  C one has 2  1/V, 2  | a1 |2/V, and then: 

     2

10,0,1,1, log ahhhh ffff   (13)

Eq. (13) identifies | a1 |2 as the conditional transition probability. This identification constitutes 

the well-known Born rule. 

4.2. Existential Information 

In the absence of conservation principles it should be: 

   
 tpd

i

VhVh
d V

bf log
2








 
 (14)

where pV(t) would be the probability of existence of the system somewhere at time t, conditioned by 

the presence of the system within the volume V at time 0. From (5) it follows that (14) equals d, then 

pV(t) = pV(0)exp[-(V)] = exp[-(V)]. In fact, the probability that the system is somewhere in C at time 

0 is by construction 1, because at that instant the system is in V; therefore is pV(0) = 1. In the limit V  

0 this relation becomes pV0(t) = exp[-(x, t)], where x is the point in which V is contracted. In the 

same limit:  
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If the system is stationary and admits a wave function: 

  tiex    (16)

where x is the generic point on the configuration space and  is a real number independent on that 

point and on time, then  = /t from (8). Furthermore, from Planck's law we have  = E/ħ, where E is 

the total energy of the system. Therefore  = Et/ħ and pV0(t) = exp(-Et/ħ). This last expression is the 

same one that would be obtained by applying the Wick rotation t  -it to the phase factor in (16) [7]. 
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In addition, the expression (15) equates  = E/ħ. The information added in the interval (0, t) is nothing 

else than the de Broglie phase  and the Planck constant h sizes the bit of this information, as 

evidenced by the relation pV0(t) = exp(-Et/ħ), that identifies this bit as ħln2. The quantization of the 

information of existence in time then takes the well known form of the uncertainty principle (Et)min  

h.  

4.3. Compatibility with Quantum Mechanical Rules 

As we have seen, it is not generally possible to ascribe a position to the particle. It is the 

discontinuous transition of the particle from one wave function to another (quantum jump) that is 

localized. It is localized exactly in time, partially (depending on the diffusion of the outgoing wave 

packet) in space. The problem can be made quantitative as follows. Let us first observe that from the 

relations already seen: 


i

iia   (17)

 
2

*2


C

iii dVaProb   (18)

If we make the further hypothesis of the existence of a linear Hermitian operator Ô such that: 

 OOoO iii
ˆˆ;ˆ   (19)

then follows: 




OoaO
i

ii
ˆˆ 2

   (20)

In this sense it is possible to associate the operator Ôwith a physical quantity having a spectrum 

oi, p(oi) = | ai |2. If this quantity is the energy ( HO ˆˆ  ), i.e. the time rate of information of existence, 

a stationary state: 

tie   0  (21)

must be an eigenfunction of Ĥ . This is only possible if tiH  ˆ . In such a case the eigenvalue is 

ħ, in accordance with Planck's law. The relativistic transformation of the four-momentum (E/c, 0)  

(E/c, p) then implies the transformation between operators:  ( ti  /c, 0)  ( ti  /c, xi   ), from 

which the impulse operator xip   is obtained.  

It follows that the energy of a non-relativistic material point subject to the potential V takes on 

the operatorial form: 

 
V

m

i
iHV

m

p
E x

t 



2

ˆ
2

22 
  (22)

From (22) the equation of motion: 

 V
m

i xt  2
2

2


  (23)

follows, that we consider in the next Section. 

5. Schrödinger equation 

In this Section we use the notation of ref. [1], with the additional position ħ = 1. We start from 

the equation that in that article defines quantum entropy (in the language of this article, the spatial 

localization information): 
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log
2

1
QS  (24)

where ρ = exp(2R) = |  |2 is the probability density on the configurational space. We also indicate by 

S the existential information , defined in units ħ = 1. It is then possible to introduce the complex 

energy: 

Qtt SiSΞ   (25)

as time derivative of the complex information S + iSQ. We can further define the momentum as the 

row vector:  

 QSiSΣ  ;  (26)

The dynamical equation is the dispersion relation that connects the quantities (25), (26). Let us 

consider the simplest case: that of a scalar particle in a non-relativistic regime. The corresponding 

quantum dynamical equation is the Schrödinger equation (23). We can write it in the form: 

 







 ΣD

m
VΣΣ

m
Ξ

2

1

01

11

2

1
 (27)

where: 
















QS

i
iD ;  (28)

it is a two-component divergence vector to which we will return later. 

By substituting (25), (26) and (28) into (27) and developing, we have a complex scalar expression. 

By separating the real part of this expression from the imaginary one we have the two real equations: 

 
V

S

S

mm

S
S

Q

Q

t 






2

1

2

2

 (29)

0
2








m

S

m

SS
S Q

Qt  (30)

The relation (29) is the Hamilton-Jacobi equation with the quantum corrector (so-called 

"quantum potential"); Eq. (30) is a rewriting of the continuity equation (in terms of ref. [1] it is SQ = -

R). Considered together, (29) and (30) are notoriously equivalent to the Schrödinger equation (23) 

with  = exp(R + iS) [2].  

We now come to the physical meaning of the terms that appear on the right side of (27). The first 

term, quadratic in Σ, is manifestly a complex generalization of the expression for kinetic energy. Its 

real part is the kinetic energy commonly understood which, added to the potential V, provides the 

total classical energy distributed on the configurational space as a consequence of the "propagation of 

the particle". The imaginary part provides the second term of (30), which expresses the contribution 

of the coupling between the gradients of the two information S, SQ to the temporal variation of SQ. 

The third term of (27) is a scalar product that measures the local inflow (or outflow) of 

momentum (26) into (from) the configurational space. The first addend of the scalar product is related 

to the S-momentum, the second addend is related to the SQ-momentum. This latter is multiplied by 

the reciprocal of SQ, which acts as a coupling constant, dependent on the point and the instant, to this 

contribution. It is in fact intuitive that the coupling will be greater where the particle localization 

density ρ is greater (and therefore SQ is lower); it will instead be smaller where ρ is smaller (and 

therefore SQ is larger). 

The two addends of the scalar product give rise respectively to the third addend of (30), which 

measures the contribution of S to the temporal variation of SQ, and to the quantum potential in (29). 
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The latter constitutes the kinetic energy corrector derived from the inflow (outflow) of the momentum 

related to SQ. This contribution represents an unknown effect in classical physics. In accordance with 

the aspatial nature of the particle, it is affected by variations in boundary conditions throughout the 

space, for example the opening or closing of a slit. 

In [8] the wave function is modeled as the exchange of a pair of charges Q between individual 

points in space and an extra-spatial actuator. It is possible to connect the two narratives through the 

following transformations, relating to non-normalized wave functions: 

       
2

ImIm;
2

ReRe
 





QQQQ

bfbf   (31)

Or: 

22

0
22 







 








 


 QQQQ
  (32)

 









QQ

QQ
tg   (33)

The derivation of the usual hydrodynamical representation (29), (30) of (23) starting from a 

notion of particle as an entirely delocalized entity demonstrates that it is not necessary to consider 

the so-called drift velocity: 

mm

S
v xx 







 (34)

as the speed of a corpuscle actually present on spacetime, in some way "guided" by . Even putting 

aside the inevitable non-locality that this driving process would exhibit both in the case of multi-

particle systems in the presence of entanglement and of single-particle systems (due to the non-local 

nature of the quantum potential), Eq.(34) cannot be associated with the trajectory of a charge.  

It is easy to realize this by observing that, if this were the case, for the electron of the ground 1s 

state of atomic neutral hydrogen (nascent hydrogen) one should have 0v


; that is, it should be at 

rest with respect to the nucleus. The single hydrogen atom should therefore possess an electric dipole 

moment  e ħ2/me2, easily observable but never actually observed. This moment would be zero only 

if averaged over the directions of space, as it would be if the averaging operation were performed on 

many atoms. The zero value of the electric dipole moment of each single hydrogen atom instead 

confirms the standard quantum mechanical predictions, which do not involve corpuscles. 

One could think of maintaining the concept of trajectory of a charge by hypothesizing the 

existence of a stochastic motion superposed on (34), able to rebuilding the 1s state as a temporal 

average [9]. In that case, the time average of the electric dipole moment of the single hydrogen atom 

would be zero. The problem with such a hypothesis, however, is that the velocity of the atomic 

electron would be then  c  108 cm s-1. The time it takes for the electron to cross the atomic radius 

( 10-8 cm) would be then  10-16 s. Current technology based on laser pulses having width of the order 

of an attosecond (10-18 s) permits the monitoring of the electronic motion with a time resolution a 

hundred times bigger [10]. Nonetheless, to our best knowledge, no reports of significant deviation of 

the electronic motion from the behavior expected on the basis of quantum mechanical predictions 

can be found in the relevant literature. Of course, it is possible to argue that such deviations occur 

below the currently accessible time scale. Note, however, that the attosecond scale is only two orders 

of magnitude higher than the Compton scale, on which the valence electron ceases to exist and the 

electron-positron field coupled to the electromagnetic field appears [11]. The residual space for a 

stochastic solution therefore appears to be very limited.  

6. Conclusions 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2024                   doi:10.20944/preprints202405.0160.v1

https://doi.org/10.20944/preprints202405.0160.v1


 8 

 

In this note we propose a purely informational representation of both the wave function of a 

particle and the wave equation of which it is the solution. According to this proposal, two distinct 

measures of information appear, which can be considered respectively as the real and imaginary part 

of a complex information, and as such be connected to the amplitude and phase of the wave function. 

The imaginary part represents the information gained in a quantum jump that localizes the particle 

in a specific volume of its configurational space: the one corresponding to the region of ordinary 

space in which the interaction occurs. In this sense, it can be defined as the information linked to the 

spatial localization; it substantially coincides with the "quantum entropy" of ref. [1]. 

The real part represents the information provided by the conservation principles to guarantee 

the persistence of the particle during its propagation between two subsequent quantum jumps. In 

other words, it is the existential information necessary to guarantee the causal nature of that 

propagation interval, or the information contained in causality. This information is linked to the 

quantum phase and the action variable. From a foundational point of view, it appears relevant that 

causality is connected to the existence of the phase, and that the introduction of a corpuscle carrying 

the interaction charges is not required. This introduction, moreover, would seem to be dissonant with 

some aspects of known physics, as argued in Section 5. On the other hand, the connection between 

causality and phase wave allows us to account in a natural way for the self-interference effects 

highlighted by experiments such as that of double slit. 

The quantum phase is therefore a consequence of the aspatial nature of the particle, which "lives" 

in its own configurational space different from the ordinary physical space of our perception. The 

coordinates of the latter label not the possible positions of the particle, but the positions of the 

interactions in which it can participate. Only when the particle is projected onto a portion of its 

configurational space by an interaction that occurs in a region of ordinary space corresponding to 

that portion, it becomes "present" in that region. And this presence is completely ephemeral, because 

it is limited to the sole moment of the interaction. 

The two terms, real and imaginary, of the complex information are dynamically coupled by the 

evolution equations. The "quantum potential", corrector of the kinetic energy in the hydrodynamical 

representation of the wave equation, expresses part of the action of the imaginary term on the real 

one. It is not associated with some force acting on some "corpuscle", and simply describes the 

dynamical relationship between causality and coupling of the particle with space. This relationship 

is clearly exhibited in experiments in which the particle incides on an absorbing screen, on which one 

or more slits have been made. The cancellation of the wave function on the screen except in the areas 

corresponding to the slits is the informational translation of the fact that no exchange of conserved 

quantities constituting the particle has occurred with the screen; consequently, the causal 

propagation of these quantities (i.e. the propagation of the phase wave) continues only at the slits. 

This implies that the localization information is reshaped on the configuration space, so as to provide 

a non-zero wave amplitude only at the slits. While the non-transfer of impulse, spin etc. to the screen 

represents an objective physical fact, the reshaping of the amplitude - i.e. the infamous "collapse of 

the wave function" - necessary to limit the causal propagation of quantities only to the spatial regions 

occupied by the slits, belongs to the informational sphere, as the generation of a new initial condition 

on the propagation of the particle [12]. The same mechanism works in the case of an impact on the 

screen; since the exchange of conserved quantities occurs at the point of impact, those same quantities 

can no longer be exchanged elsewhere for the reasons seen in Section 2. It follows that the position 

information, as a function of the point, is reshaped in such a way as to guarantee the cancellation of 

the amplitude at all points of the configurational space other than the point of impact. It should be 

noted that the overall phenomenon thus defined involves the single experimental run, and does not 

represent a purely statistical effect on the set of initial preparations of the micro-system. 

In conclusion, we note that the real part of the complex information refers to a causal chain in 

the enlarged configuration space, which connects two actual interactions, while the imaginary part 

refers to the possible localizations in ordinary space. Actual interactions and localizations are 

synonymous with quantum jumps associated with micro-interactions, which represent objective 

physical facts in terms exemplified by the multiple slit screen experience. The information measures 
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here introduced are therefore relative to physical facts, as it seems to us they should be in a physical 

theory, and do not constitute a primary layer of reality. The proposed approach therefore does not 

appear functional in circumventing the ontological problem through "it from bit" strategies [13]. 
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