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Abstract: Aquifer karstic structures, due to their complex nature, present significant challenges in accurately
mapping their intricate features. Traditional methods often rely on invasive techniques or sophisticated equipment,
limiting accessibility and feasibility. In this paper, we propose a new approach to non-invasive, low-cost 3D
reconstruction using a camera that observes the light projection of a simple diving lamp. Our method capitalizes
on the principles of structured light, leveraging the projection of light contours onto the karstic surfaces. By
capturing the resultant light patterns with a camera, we reconstruct three-dimensional representations of the
structures. The simplicity and portability of the equipment required make this method highly versatile, enabling
deployment in diverse underwater environments. We validate our approach through extensive field experiments
conducted in various aquifer karstic settings. The results demonstrate the efficacy of our method in accurately
delineating intricate karstic features with remarkable detail and resolution. Furthermore, the non-destructive
nature of this technique minimizes disturbance to delicate aquatic ecosystems while providing valuable insights
into the subterranean landscape. This innovative methodology not only offers a cost-effective and non-invasive
means of mapping aquifer karstic structures but also opens avenues for comprehensive environmental monitoring
and resource management. Its potential applications span hydrogeological studies, environmental conservation

efforts, and sustainable water resource management in karstic terrains worldwide.

Keywords: Structured light method; active 3D reconstruction; cone estimation; underwater karst aquifer

1. Introduction

Access to water has become one of the most pressing challenges facing humanity today. Yet water
is abundant on a global scale: the oceans are an inexhaustible reserve, provided that salt and water
are separated. Unfortunately, desalination methods are still too energy-intensive to be used profitably
on a large scale. Pending a possible scientific breakthrough, we are therefore relying essentially on
freshwater resources, which account for 2.5% of the world’s water [1] (Figure 1).
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Figure 1. Earth’s water distribution.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0002-0089-9330
https://orcid.org/0000-0001-5791-8953
https://orcid.org/0000-0003-0151-1446
https://doi.org/10.20944/preprints202405.0041.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 May 2024 doi:10.20944/preprints202405.0041.v1

20f 34

Only 1.2% of this freshwater is accessible at the surface, although it is now very polluted. Of
the remainder, 68.7% is trapped in glaciers and ice caps and 30.1% is found underground. This
groundwater, which represents 0.76% of the world’s resources, is extremely valuable. Groundwater is
the result of a long and natural process of filtration through the various layers of soil, which means
that its quality is generally considered to be very good. This groundwater is stored in aquifers, most of
which are karstic.

Aquifer karstic structures, due to their complex and porous nature, present significant challenges
in accurately mapping their intricate features. Traditional methods often rely on invasive techniques
or sophisticated equipment, limiting accessibility and feasibility. In this paper, we propose a novel,
non-invasive approach utilizing structured light projection in conjunction with a camera and a diving
light to effectively map aquifer karstic formations. First part presents the main methods in underwater
mapping. Second part details materials and methods of our original approach based on the princi-
ples of structured light, leveraging the precise projection of light contours onto the karstic surfaces.
By capturing the resultant light patterns with a camera, we reconstruct detailed three-dimensional
representations of the subsurface structures. Third part presents results to validate our approach by
simulation of an aquifer galley first and finally through extensive outdoor experiments conducted in a
particular equivalent aquifer karstic environment : The results demonstrate the efficacy of our method
in accurately delineating intricate karstic features with remarkable detail and resolution. Furthermore,
the non-destructive nature of this technique minimizes disturbance to delicate aquatic ecosystems
while providing valuable insights into the subterranean landscape. This innovative methodology not
only offers a cost-effective and non-invasive means of mapping aquifer karstic structures but also
opens avenues for comprehensive environmental monitoring and resource management. Its potential
applications span hydrogeological studies, environmental conservation efforts, and sustainable water
resource management in karstic terrains worldwide.

2. Main Methods

Underwater mapping is a valuable tool in a wide range of applications, including marine biology,
geology, archaeology, and the offshore industry. Various methods and sensors are employed to obtain
3D reconstructions of the environment, with data typically collected by divers, ROVs, or AUVs. In most
cases, this involves performing surveys with downward-facing sensors and reconstructing the seafloor
surface. The studies conducted by [2,3] provide comprehensive reviews of the various underwater 3D
reconstruction methods. This synthesis of methods is illustrated in Figure 2.
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Figure 2. Review of 3D Reconstruction Methods in Underwater Environments.

Sensors used for 3D reconstruction can be classified into two main categories:

* active sensors: these sensors physically interact with the environment by emitting a signal or
wave, such as sound waves in the case of sonars or light waves in the case of lidars.

® passive sensors: these sensors do not modify the environment, and the most commonly used ones
for 3D reconstruction are camera-based.

Time-of-flight methods are the most direct methods for 3D reconstruction. They work on the same
principle as a rangefinder: emitting a signal or wave and retrieving its echo. Knowing the speed of the
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signal thanks to the nature of the wave and the propagation medium, it is possible to proportionally
deduce the relative distance between the sensor and the observed element from the measurement of
the time elapsed between the emission of the wave and the return of the echo.

Among time-of-flight methods, those based on acoustic waves are by far the most used because
their propagation is favored by the medium. They offer an interesting coverage capacity in front of the
size of the areas to be studied in underwater mapping.

In addition and to allow the localization of 3D data during the measurement, most underwater
navigation algorithms are based on acoustic positioning systems such as Doppler Velocity Log (DVL)
and Ultra-short baseline (USBL) [4,5]. Multibeam sonars (MBS) are on the other hand adapted to
bathymetric mapping (measurement of the seabed relief) [6] but much less to structured (non-flat)
environments such as karst aquifers.

[7,8] presents a 3D model of the Zacaton cenote (a water-filled cave at least 300 meters deep)
using sonar data collected by the DEPTHX (Deep Phreatic THermal eXplorer) vehicle. It is a NASA
autonomous underwater vehicle measuring just over 2m and weighing over a ton, prefiguring among
the robots that could explore underwater environments on other planets. Its sensors consist of a DVL,
a sonar, an IMU and its movements are ensured by six motors allowing it to move in all directions.

Another method using acoustics is described by [9], which shows the results of an AUV perform-
ing limited penetration, inside an underwater cave using a mechanically scanned imaging sonar (MSIS
for mechanically scanned imaging sonar). The results, obtained only for localization, show that it is
possible to use this type of technology in our karst environment.

Efficient for obtaining bathymetry and macro-characteristics of habitats, these sensors nevertheless
provide little information on fine characteristics (micro-bathymetry), do not allow to recover the texture
of the environment and are very expensive.

Still in the class of time-of-flight methods, those based on electromagnetic waves, such as LiDAR,
offer access to a very dense reconstruction of the seabed. However, on the other hand, they are reserved
for very local observations, because the propagation of these waves are limited by the medium as we
explained in the constraints. They are therefore not adapted to our situation.

The other class of methods is the triangulation method that we favor. These methods require at
least two devices (or 2 different views) which will provide distance information from the same point,
and thus form a triangle between the 2 devices and the point to be measured.

There are several ways to perform this triangulation, including:

*  Multi-view triangulation involves taking multiple views of the same scene. By knowing the
disparities of each viewpoint, it is possible to project the points of the scene onto different "image"
planes, and thus triangulate the points of the scene to obtain a depth map. This technique is based
on epipolar geometry explained in [10] with two possible approaches:

— the use of a binocular stereo system where the relative positions of the two cameras are
known. It is possible to make the system active, by using a structured light projector to add
discriminant points or features related to the observed environment and thus facilitate the

matching of points between the two images for triangulation.
- the method known as Structure from Motion (SfM) involves taking a sequence of sequential

images of an object or scene, typically from a single camera. To obtain a metric reconstruction,
it is necessary to know the camera trajectory to resolve the scale ambiguity.

¢ structured light triangulation relies on an emitter-receiver system. The emitter is a light source
(laser or not) that projects a pattern (distinctive patterns) onto a scene observed by the receiver,
a camera. Using the positions of the camera and the projector, it is possible to triangulate the
discriminant points brought by the light in the scene captured by the camera [11].

Regarding structured light triangulation methods, they are very accurate, but are generally only used
to reconstruct small areas or objects. This is because light is quickly absorbed in water; therefore, we
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must be close to the target to best detect the projected light. Additionally, structured light sensors are
not yet well suited for mobility and are therefore mostly used statically for the moment.

Cameras, on the other hand, have the advantage of being inexpensive, providing dense data as
well as texture. However, most camera-based methods operate in open areas with natural lighting (or
with artificial lighting that completely illuminates the workspace) and generally try to reconstruct the
ground or small objects.

For example, [12,13] propose a 3D reconstruction method based on a stereo pair for archaeological
objects in shallow water and in very poor conditions. Special filters are implemented to solve the noise
problems caused by these poor conditions. This static 3D measurement is fused with a 3D map of the
excavation area obtained using a scanning sonar. [14] performs a dense reconstruction of submerged
structures at very high depths (up to 6000 meters) with a stereo system mounted on a controlled
manipulator arm. The imposition of a known trajectory allows to know the different positions of the
cameras to calculate a precise 3D model of the scene.

[15] reconstructs coral reefs with a wide-baseline stereo system using high-resolution video and a
dense reconstruction method.

Our context is different from these works since we are in total darkness in a structured and
extended environment whose content appears as the diver or robot moves.

[16] presents a description of the problems related to metrology in the underwater environment.
The importance of calibrating the stereo pair underwater is emphasized, taking into account the
refraction problems related to the medium. The detection of interest points is done on sufficiently
bright images allowing a robust matching then used for a 3D reconstruction. The comparison of the
object measurements obtained is made with a reference metrology and gives good results but in statics.

The work of [17] is directly related to our theme. The objective is to reconstruct a karstic underwa-
ter tunnel of Woodville Karst Plain in Florida using a new approach to stereovision generating a 3D point
cloud of the cave. In their method, after calibration and rectification of the highly distorted images,
they extract the contours of the artificial light projected into the cave which creates a cone of light
illuminating part of the walls. These contours are then used as inputs in their stereovision algorithm.
The displacement is estimated by visual odometry (ORB-SLAM) and allows a 3D reconstruction of a
portion of the cave of about one hundred meters but without specifying the comparison of the result
with a known ground truth.

For an even more optimal mapping of this underwater gallery, [18] have developed a SLAM
method where they fuse this stereo method with a sonar and an inertial measurement unit, thus
improving the accuracy of their measurements.

[19] uses a SFM method coupled with multi-view stereo photography to perform measurements
of silting areas at the outlet of water transport pipelines to the seabed. The accuracy of their method
allows a robust estimation of these elements useful for monitoring these areas but also remains static
measurement.

[20] provides an overview of calibration and underwater image processing methods in structured
light. [21] proposes a method of 3D reconstruction in underwater environments combining a SLAM
approach and dense reconstruction using a stereo system embedded on the Aqua2 robot whose
IMU allows localization. The results are mainly on coral reefs and partially on the reconstruction of
underwater cavities. The question of the accuracy of the measurements with respect to a ground truth
remains. [22] proposes an application of 3D reconstruction for underwater archeology. The system
consists of two monochrome cameras and a sinusoidal light pattern projector. A combination of 3D
reconstruction in structured light and SLAM-based visual odometry is proposed. All mounted on an
ROV whose IMU data complements that of visual odometry. The first results are obtained on objects
in a controlled environment. A test is then carried out over a dozen meters to follow a pseudo pipeline.
But the size of the system is too large for an application in underground galleries.
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[23] uses Ariane’s thread to enable the movement and guidance of a BlueRov robot. This learn-
ing method gives good results for localisation and assisted piloting. The next steps envisaged are
autonomous navigation and then mapping of the cavities studied (but already explored by divers).

[24] proposes a real-time monocular 3D reconstruction method for underwater environments.
It relies on optical flow tracking of characteristic seabed points and uses Delaunay triangulation to
complete the seabed estimation. The method assumes a nearly planar seabed but remains unclear
about the achieved metric accuracy.

3. Materials and Methods

The complete development of our method is detailed in Figure 3 and is based on three main
blocks :

Camera calibration

T Images o.f calibration Zhang's calibration method J
pattern at different poses 7 7

3D local reconstruction

. . Image of light projec-
Light projector calibration The distorsion b ted onto the 3D surface
parameters
. . . to be reconstructed
n images of light projected
onto a plane at different poses
Y
Extraction of 2D points
v from the light contour
Extraction of the n closed |
2D contours of the projec- The 2D points
ted light in the n images Gl v
| Th:al:;r:gsm Calculation of the 3D
The n closed contours camera rays of the 2D points
parameters i
Generation of n 3D point J The camera rays
clouds belonging to the cone v
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The n 3D point clouds Th tersections between the
e cone
v arameters cone and the camera rays
Estimation of the cone | P |
from the n 3D point clouds \J The inte+rsections
Choice of the right in-
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intersects the cone twice

'

3D reconstruc-
tion of extrac-
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Figure 3. Flowchart of the camera + projector method.

e calibration of the camera is used to estimate its intrinsic parameters, including radial distortion,
* calibration of the projector consists of estimating the geometric parameters of the cone (vertex
O », direction d, half-angle of opening «),
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* local 3D reconstruction based on the camera / projector triangulation leading to a 3D point cloud
expressed in %, the camera frame.

This triangulation is illustrated in Figure 4. It shows our system, with one camera and light projector.
To simplify the figure, the light is projected onto a plane, but you can imagine that the procedure
has to be applied to non-planar surfaces such as the walls of a gallery. Once the light contour has
been detected in the image, the associated camera ray is calculated for each point on the contour.
The Figure 4 shows two points X’ and Y’ belonging to the contour detected in the image and the
rays associated with them. In the configuration shown in the Figure 4, the ray associated with X’
(respectively Y’) intersects the cone at two points X; and X (respectively Yq and Y>). To calculate
these intersections we need to know the angle of aperture & and the transformation between the
references of the cone and the camera called T( 5 )

Still on the Figure 4, the intersections which correspond to the 3D points of the contour (X7 and
Y ) are shown in green and those which should not be taken into account (Y1) are shown in red. The
point X is not shown, but we can imagine that it would be red and beyond the area of the plane in the
Figure 4. For a given ray; it is therefore necessary to identify whether it is the first intersection or the
second intersection that belongs to the observed light contour.

This method of selecting intersections requires a study of the geometric relationships between the
cone and the camera.

Projector
frame

"world" frame

W

Camera
frame y,

3

Figure 4. Diagram of the system consisting of the light projector represented by a cone of revolution
and the camera observing the light projection on a plane.
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3.1. Cone Parameters

3.1.1. Cone of Revolution

The cone of revolution, referred to as a cone in the remainder of this document, is associated with
its surface of revolution and not with its solid, as may be the case in certain applications. The terms we
will use to define the relationship between a point and the cone are as follows:

* apoint belonging to the cone is a point which belongs to the surface of the cone,

* apoint inside the cone is a point which belongs to the solid bounded by the surface of the cone,

* apoint outside the cone is a point which does not belong to the solid bounded by the surface of
the cone.

This surface is generated by the revolution of a line, called the generatrix, which we will note g
and which passes through a vertex, in this case O ».

The revolution takes place around a fixed axis which also passes through the vertex and which
turns out to be an axis of symmetry of the cone, the direction of which is defined by the unit vector d.

If a plane not passing through O 4 is orthogonal to the axis of symmetry, then its intersection
with the cone is a circle.

Thus, the angle formed by 4 and the axis of symmetry is constant and corresponds to the half-angle
of the cone opening a €]0; 5 |.

The cone is represented in Figure 5 with the orthonormal base (O », X%, ¥ 5, z), oriented such
that z 5 = d, which defines the & reference frame associated with the cone.

Figure 5. Parametrisation of the cone using its generatrices. With this parametrisation, we can find the
closest generatrix to an external point M and thus find the orthogonal projection H of this point on the
cone.

The generatrix g4 has the unit direction vector w which is set by a new angle 6 € [0;27t[ (Figure 5).
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In the cone frame &7, we can simply express the vector wy 5, which then depends only on the
angles § and « :
sin(a) cos(0)
wi gz = |sin(a)sin(0) (1)
cos(a)

This vector can be used to express all the points on the surface parametrically.

T
Let X{g} = [xx{g,} YX () ZX{L@}} be a point X expressed in the reference frame . Then,
if X belongs to the cone we have :

XX g, = Lsin(a) cos(6)
X{@} = ZW{@} = yx{y} = lsin(oc) sin(@) (2)
ZX( gy = I cos(a)

with [ a real parameter whose absolute value defines the distance between X/ 5} and the cone vertex.
However, with | € R, the parametric equation defines a "double cone". However, since the cone
models our light projector, we are only interested in the upper part of the "double cone", i.e. when the
parameter [ € RT.

3.1.2. Orthogonal Distance

This parametrisation of the cone will help us to write the equation for the orthogonal distance
between a point and the cone, an equation that will be useful for cone estimation.
Let M be a point outside the cone and H its orthogonal projection on the cone (see Figure 5).
The angle 6} is the angle that gives the generatrix of the cone closest to M. This generatrix, called
gH, passes through H and has the unit direction vector wy whose expression in the & reference frame
is:
sin(a) cos(0y)
wiH{zy = |sin(a)sin(0y)
cos(a)

T
If we also express M in & with M{g} = [xM{g,} YM{ 5, ZM{Q}} , we obtain the following

expressions:
Y™,
Ay = arctan <{f}>

M )

3)
H{p) = (M{p)"  wh(p))WH{»)

If M, g}T ~wh () < 0 then the projected point is in the lower part of the cone. As we are only
working with the upper part of the cone, when this condition is true, the nearest point is the vertex of
the O % cone (see example Figure 6). The orthogonal distance h is therefore :

VM)~ Hip)) (M)~ Hi))  $iM ) 011, 20

\/M{Q}TM{L@} SiM{gz}TwH{gz}<0

h= (4)
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Figure 6. Example showing the closest points on the upper part of the cone (in red) to points outside
the surface of the cone (in blue).

3.1.3. Quadratic form of the Cone

To obtain this relationship, we must first note that if the angle between the vectors (X — O 5 ) and
dor (X — O4) and —d is equal to the angle «, then the point X belongs to the cone. This is equivalent
to the following scalar product:

(X-—0p)"d=£|X - 0| cos(a)

When squared, the expression becomes :

(X ~05)7d)" = (IX ~ 0.5 cos())?

S((X-05)"d)((X - 05)"d) = (X - 05)" (X — 05) cos*(a)
S(X-045)Tdd"(X - 045) — (X —05)T(X —045)cos?(a) =0
S(X—045)T [ddT - cos2(a)13] (X-04)=0

Q

We thus obtain a quadratic function of the cone in the general case, directly showing the parameters d,
« and O 5 which define it:
Q(X) = (X-0)"QX - 0) ©)
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This gives the relationships between the point X and the cone :

« If 9(X) = 0 then X belongs to the cone (6a)
+ If 9(X) < 0 then X is inside the cone (6b)
« If 9(X) > 0 then X is outside the cone (6¢c)
« If 9(X) = 0and (X — 0»)Td > 0 then X belongs to the 6d)
upper part of the cone
« If 9(X) < 0and (X — O»)"d > 0 then X is inside the ()
upper part of the cone
« If 9(X) > 0or (X — 0O4)Td < 0 then X is outside the (6

upper part of the cone

3.2. Projector Calibration

Projector calibration is an essential step, since it involves estimating the parameters of the cone
used in our method and in the equations we have seen so far. As a reminder, the parameters of the
cone to be estimated are its vertex O 5, its direction vector d and its half-angle of aperture «.

Since O 4 and d represent the relative pose of the cone with respect to the camera, the projector
must be fixed with respect to the camera during calibration and during any experimentation. Fur-
thermore, if the projector has a variable half-angle aperture, it is also necessary to ensure that this is
fixed.

3.2.1. 3D Point Generation for Cone Estimation

The first step in the calibration method is to generate a cloud of 3D points belonging to the cone.
To achieve it, the chosen method is to capture several light projection images on a flat surface.

This light projection is the result of the intersection between the projector cone and the flat surface,
which is by definition a conic. In our case, it will be an ellipse because we want a closed shape. The
projection of this ellipse into the image is also an ellipse.

If we can estimate the relative pose of this surface with respect to the camera and extract the light
contour in the image, which is an ellipse, then we can obtain the real ellipse from the ellipse in the
image.

To estimate the relative pose, we attached a chessboard pattern to the surface to estimate its
relative pose. This relative pose is obtained by estimating the homography between the calibration
pattern and the image plane [25]. As the camera is calibrated, rotation and translation can be estimated
from the homography.

To extract the ellipse from the image, we again use the contour detection method presented in
[26,27].

Then, from the contour points obtained, we estimate the best ellipse using the method of [28]
which is based on least squares optimisation.

It is therefore possible to obtain n elliptical sections of the cone from n images taken at different
distances from the surface. For each ellipse extracted in an image, we obtain the ellipse in the surface
via the estimated homography between the image plane and this surface. The estimated relative pose
allows us to obtain the elliptical section, i.e. the set of 3D points expressed in the camera frame of
reference belonging to the ellipse of the surface.

Figure 8 shows an example where the camera has captured three images of an ellipse surrounding
a chessboard pattern on the flat surface in three different poses. This is equivalent to obtaining three
elliptical sections of the same cone.
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Figure 7. Example of detecting the contour of a halo of light on a wall using a chessboard to estimate
the plane pose. The contour is in green and the adjusted ellipse in blue.

Figure 8. Method for obtaining several elliptical sections of the cone.

Consequently, if we have obtained # elliptical sections where m 3D points are extracted per section,
we generate a cloud of n x m 3D points belonging to the cone.

3.2.2. Cone Estimation
The aim is now to estimate the cone that best approximates the 3D point cloud. This is done by
geometric fitting, i.e. by minimising the orthogonal distances between the 3D points and the cone.
Let p be the vector containing the six parameters of the cone, which are :

e the three coordinates of its vertex O o,
* the two angles yaw and pitch in ZYX-Euler convention of its direction vector d, the angle roll not

being necessary since a cone has an axis of symmetry,
® its opening half-angle «.

To estimate the p vector, we use the Levenberg-Marquardt (LM) iterative method [29]. For the first
iteration, we need to choose an initial parameter vector p. This could be the null vector, for example.
In practice, we will use measurements taken with a caliper for the various parameters of p,.
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At each iteration 7, LM receives a solution vector p; and the function for calculating the vector of
orthogonal distances to be minimised. Our function first calculates the rotation and translation of the
cone relative to the camera from O 4 and the yaw and pitch angles of the vector p;. It then expresses
the 3D points in the cone reference frame and calculates the orthogonal distance vector between the
3D points and the cone using the equation 4.

So from p; and this function, LM returns a new solution vector p; , ;.

When the difference between the sum of the squared orthogonal distances obtained with p; and
the calculus obtained with p; ; is less than an arbitrary threshold, this means that LM has reached
convergence at iteration j. The best solution in the least squares sense is therefore the vector p..

It is important to note that there are an infinite number of cones that share the same elliptical
section. On the other hand, there is only one cone that passes through an elliptical section and through
a point outside that section. Consequently, this minimisation can only work if we have at least two
elliptical sections.

3.3. Intersection with a Ray

Now that we know how to determine the cone parameters using our calibration method, the
next step is to be able to calculate the intersections between a camera ray and the cone. We are only
interested in the intersections with the top of the cone.

A ray is a half-line that can be expressed parametrically using the following equation:

X(t) =0 +tu )

with O the starting point of the ray, u its unit direction vector and t a positive real number such that
X(0) = O. Note that we will only deal with cases where the point O is outside the cone. This is
because the starting point of the camera rays is the optical centre in our situation. The point O can
nevertheless be inside the lower part of the cone.

If X(t) is an intersection point, then it belongs to the cone. Therefore, to determine the intersec-
tions, we can simply calculate the values of t which cancel the general polynomial of the cone (see 5)
after replacing X by the expression for X () :

QX(1) = (X(1) —02)"Q(X(t) —0») =0

S (0+tu—02)"QO+tu—045)=0

& P Qu)+t2u"Q(0 - 05))+(0-05)'QO-045) =0
a= uTQu

& at? 4 bt +c=0with{ b =2u"Q(0 - 04)
c=(0-04)"Q(0-04)=9Q(0)

3.4. Projection of the Generatrices of the Cone in the Image

To understand the relationship between a point on the cone and its projection into the image, we
need to look at the projections of the generatrices of the cone. Since the cone represents the projector,
we will only consider the upper half of the cone, which means that the generatrices can be limited to
the half-lines that start at the vertex O 4. Note that the study is limited to the case where the cone is
oriented in the same direction as the camera, as required by our method. Geometrically, this condition
is satisfied if the angle called y between z¢ and d = z  is in the interval |5 — a; — T + «[ (see Figure 9).
In practice, for the camera to be able to see the light projection, the angle u will be close to 0.
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Plan image

zZ¢

Og¢

Figure 9. Representation of the camera / cone pair in an orthogonal projection 2D view where the
projection axis is perpendicular to z » and z¢. The relative orientation of the cone with the camera
can be defined here by a single angle called . This is only true if we consider that the camera has an
infinite field of view and is therefore symmetrical about its axis defined by z (the cone is basically
symmetrical about its axis defined by z 5 = d).

3.4.1. Calculating the Projections of the Generatrices of the Cone

Let us call I'ly the plane which passes through the optical centre Oy and through at least one
generatrix of the cone. The intersection of this plane with the image plane is the line /.

Let X’ be a point in the image such that X’ = K%/, with u the direction vector of the camera
ray associated with X’. If X’ is the projection into the image of a 3D point belonging to a generatrix
resulting from the intersection between the cone and the plane ITg, then X’ belongs to the line /.
However, if X belongs to the line /g, it is not necessarily the projection of a point on the cone. To obtain
the equation of /g, the simplest way is to select two points belonging to one of the generatrices (or the
generatrix) through which the I, passes, then project them into the image to find the parameters of
the line. The same result would be obtained by projecting two points of the plane Il which do not
belong to the same camera radius. However, knowing the line /, is not enough to understand the
projection of a generatrix.

Observation When I1, Is Not Tangent to the Cone

When the plane I, is not tangent to the cone, it passes through two generatrices 4 and g, with
41 chosen as the generatrix closest to the optical centre O (see Figure 10).

Iy
N
11
g
%;2 nr
g Y8
Xl ’_ij{ﬂi I,"
S ==~ /N ‘:-‘!1“)2'\
e Wiy, ! .-
g T P u [ .- O Y»
Ze -
91 0292
s Yc
O:g\

Figure 10. Representation of the plane Il when it is not tangent to the cone passing through the optical
centre and the two generatrices g; and .
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The direction vectors of these two generatrices are w1 and w such that :

sin(a) cos(67) sin(a) cos(6;)
wi{py = |sin(a)sin(61) | et wa(zy = |sin(a)sin(62)
cos(a) cos(a)

with 0 (respectively 6,) the angle between the vector wy (respectively wy) projected in the plane
X Y 5 and the vector x4 (see Figure 10). As the plane I, is chosen here as not tangent to the cone,
we have 6; # 60,. In this configuration, if X’ is a point on the line £, then it can be both the projection
of a point X belonging to g1 and of a point X, belonging to 4. The generatrix g; therefore contains
the first intersections of the camera ray with the cone, while g contains the second intersections.

Calculating the Two Special Generatrices When Tl Is Tangent to the Cone

There are only two orientations for which the plane I, is tangent to the cone. When this happens,
then 8; = 6, and the generatrices g and g are superimposed. The two possible cases are illustrated in
Figure 11. The two angles 04 and 65 define the two generatrices g4 and gp through which pass the
two planes tangent to the cone I'ly, and Ilg,. It is important to note that the angles 64 and 6 depend
solely on the parameters of the cone and its pose relative to the camera T _,¢), which means that
they are unique and fixed for a given configuration.

MWA

(a)

(b)

Figure 11. Representation of g, (a) and Ilg, (b), the only two planes tangent to the cone passing
through the optical centre.
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To determine these two angles, we will use a plane tangent to the cone called 1 which passes
through a generatrix g whose direction vector is w defined by an angle 6. It is represented in Figure 10
passing through the generatrix g purely for reasons of visibility. The orientation of the plane Il is
characterised by the unit normal vector nt such that :

cos(a) cos(0)
nr(py = | cos(a)sin(0) (8)
—sin(a)

We are therefore looking for the two solutions of 6 so that the plane It is superimposed on the plane
I1g, or Ilg,. This superposition only occurs when the plane I passes through the optical centre O«
and therefore when the vector nt is orthogonal to the vector (O« - O 5). We are therefore looking for 0
when :

cos(a) cos(0)

O(@”{gz}TnT{gJ} =0& |:x0<g'{gz} Y0s 5y Zo%{g}} cos(oc? s(in)(e) =0 o
— S«

EX0i () cos(a) cos () + YO ( cos(w) sin(f) — 204 sin(a) =0

with O% () the optical centre expressed in the reference frame of the & projector. To solve the
equation 9 we pose :

s = cos(a) [;Zzzﬂ and t= l:jgg))] (10)

We can rewrite the equation 9 using the scalar product between the vectors s and ¢ and the angles
defined in Figure 12 :

Islllit]|=lls]

Ty 2 2 - ;
s't= cos(oc)\/xo%){ga} + Y04 (o cos(y) = 204 ) sin(a)

Y

xr

Figure 12. Visualisation of the vectors t and s and their angles.
The angle y between the vectors s and # is therefore :
sin ()

“0% () 20% 5}

v = £ arccos( ) = L arccos( > tan(a))

2 2 2
14 X + X +
cos( )\/ Oy " V0w ) \/ Oc(z) " V0w 2
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As for the angle § which defines the orientation of the vector s, its expression is :
B= atanZ(ych{y},xocg{g})
The solution to equation 9 is therefore :
2047y
045 = B+ = atan2(yo. ,X0. ) £ arccos( tan(a)) (11)
' €2y 06 ) \/xz 2
Oc(zy  7O0% ()

Note that the two angles 84 and 6p only depend on the half-angle of the opening « of the cone and the
translation between the cone and the camera (translation expressed in the equation by O ( (@}). From
the expression of these two angles, we can obtain the expression of the two unit direction vectors w4
and wp of the two special generatrices g4 and gz. The projections of these two generatrices belong to
the lines /¢, and /¢, which are the intersections of the image plane with the planes I'ly, and Ilg,.

Splitting the Cone into Two Areas Using the Two Special Generatrices

Using the generatrices g4 and gg we can divide the cone into two surfaces as shown in Figure 13.
The cyan surface named S (resp. magenta surface named S;) contains the set of generatrices containing
all the first (resp. second) possible intersections between a camera beam and the cone, generatrices
previously named g1 (resp. g).

C=CLUCs

Figure 13. Representation in the image plane and in the cone of the areas containing the first intersec-
tions (in cyan) and the second intersections (in magenta).

In the image plane, this shows that we can delimit the areas where the camera rays can intersect
the cone. The cyan area, surrounded by the ellipse £/, contains the projections of part of the set of
3D points belonging to the surface S;. The magenta area contains the projections of the other part of
the set of 3D points belonging to the surface &; and contains the projections of the set of 3D points
belonging to the surface S;. These areas are bounded by :

e thelines /¢, and /g,.
e theellipse £/, which is the set of vanishing points of the generatrices. These points define a first
bound on all the projections of the generatrices.
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e the projection of the vertex O » into the image plane, named O’y,. It defines a second bound on
all the projections of the generatrices.

In the configuration illustrated in Figure 13, each generatrix projection is therefore a segment whose
limits are the vanishing point of the generatrix belonging to the ellipse £/, and the point O',,.

However, there are other configurations where the projections of the generatrices onto the image
plane are not segments but lines. Indeed, if zop , o1 =0 then the line passing through O & and O is
parallel to the plane, which implies that the projection of the vertex O 4 into the image plane is a point
at infinity (or ideal point) and that the lines /,, and /,, are parallel.

The case where zgp , 6y <O0is illustrated in Figure 14 which shows the lower part of the cone
behind the camera. This part is shown in brown and its projection in the image plane is also in brown.
This projection is obviously fictitious, as this part cannot be seen by the camera even if it had an infinite
field of view. The point Of@, also fictitious, is still the intersection of the lines /¢, and /,,, but this time
it is on the other side in comparaison of the Figure 13.

As for the magenta and cyan areas in the image plane, they are still delimited by the lines £, and
{4, and the ellipse £/, but extend towards infinity on the side where the lines /;, and /¢, diverge.

So if zp, ey S0 then each generatrix projection is a half-line whose only boundary is its
vanishing point belonging to the ellipse £/,. However, as we are working with real cameras and not
with the image plane, which is infinite, each generatrix will have a segment as its projection into the
image.

O% Ty

Figure 14. Representation in the image plane and in the cone of the areas containing the first intersec-
tions (in cyan) and the second intersections (in magenta) in the case where part of the cone (in brown)

is behind the camera.

This division of the cone into two surfaces leads to several results:

* Any ray associated with a point in the cyan area has as its unique intersection with the cone a 3D

point belonging to the surface S;.
* Any ray associated with a point in the magenta area has two intersections with the cone, the first

of which belongs to the surface &; and the second to the surface S,. These two intersections are

superimposed if the point in the magenta area belongs to the line /,, or to the line /.
* Any ray associated with a point outside the magenta area and the cyan area does not have any

intersection with the cone.

3.5. Intersection Selection and Triangulation

We now have everything we need to develop a method for determining which intersection to
choose when the ray associated with a pixel in the contour has two intersections with the cone. To
better understand the various stages of the procedure, let’s take as an example the 3D contour of light
whose associated 3D curve is circular and results from the intersection between a plane and the cone.
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The example of the circular contour is illustrated in Figure 13 which contains the following
elements:

e ('is the closed 2D curve corresponding to the contour in the image with X’ a 2D point on the
curve.

e (s our circular 3D curve corresponding to the contour of the light in the scene, with X a 3D
point on the curve which has X’ as its projection. The point X therefore corresponds to the correct
intersection between the cone and the camera ray associated with X”.

* The areas containing the first and second intersections with the cone are delimited by the two
generatrices g4 and gz which divide the cone into two surfaces S; and S;. They also divide C into
two curves, one in cyan called C; and the other in magenta called Cs.

* A and B are respectively the two intersections of g4 and gp with the curve C and are thus the only
two 3D points common to the curves C; and C,.

e The cyan curve named C’; and the magenta curve named C’; are respectively the projections of
the curves Cq and Cy.

e A’ and B’ are the projections of A and B and are therefore the only two points common to the
curves C'1 and C';. They belong to both the curve C" and the lines /g, and /g,. So, in theory, they
correspond to the two unique points of tangency of the lines £, , and /¢, with C'.

So, if we get the points of tangency A’ and B/, we will be able to divide the 2D curve C’ in two via the
line (A’B’). However, in practice :

e the curve C’ is discrete,

* the light contours are extracted in a perfectible way,

* the camera calibration and the cone estimation have uncertainties, so the lines £;, and /., also
have uncertainties.

All this means that the lines /¢, and /g, are not exactly tangent to the curve C’. The method for
determining the points A’ and B’ must therefore be adapted to this constraint.

Once these two points have been obtained and the curve C’ has been divided in two, it remains to
determine which of the two curves is C'; or C’;. To do this, we need to look at the relative position of
the vertex O 5 in relation to the camera. Figure 15 shows that the vertex O 5 and the curve C'; lie in
the same half-space bounded by the plane passing through Oy and the line (A’B’). This property is
always true whatever the pose of the cone.

In the image plane, this property can be expressed by defining a point p,, ¢ such that p,, ; and the
curve C’; lie in the same half-plane bounded by the line (A’B’).

There are an infinite number of solutions for p,, ¢ in the image plane which satisfy this condition.
We have therefore forced p,, to belong to the circumscribed circle of the rectangle delimiting the
image, as can be seen in Figure 15. The segment between p,, and the centre of the image forms an
angle with the horizontal axis of the image called v. This gives :

pref =V w2+h2

sin(v)

cos(v)] (12)

with w and h respectively the width and height of the image in pixels. For the condition to be true, one
possible solution for v is to indicate the direction of O 4 relative to the optical centre O¢. To obtain
this angle, we orthogonally projected O g onto the plane normal to the camera axis passing through
Oy, which gives the point H 4 illustrated in Figure 15. This gives v which is the angle formed by the
vectors (Hgp — Oy) and xy :

Y02 (4 YO
(Hp — Og) = YO0 () donc v = arctan | —214¢ (13)
Y07 ()

0
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Calculating this angle v and the point p,,  allows us to deduce which of the two curves is C "

Figure 15. Illustrates how to obtain p,, , our reference point in the image plane which indicates the
relative position of the cone and which is used to obtain the curves C’'; and C’5.

Once the curves C’; and C’; have been obtained, it is then possible to obtain the 3D contour.
Indeed, if a point X’ belongs to C'q, then the first intersection of the camera ray associated with it must
be chosen, and if it belongs to C’5, the second must be chosen. This is because any point X’ of C'; is
the image of a 3D point X of C1, and any point X’ of C’; is the image of a 3D point X of C,.

3.6. Test of the Method in Simulation

Contour Simulation

To illustrate the different stages of the method, we will use a gallery model. Figure 16 shows the
camera represented by a pyramid and the projector represented by a cone positioned inside our model.
In our example, the axis of the cone is parallel to the axis of the camera. The vertex O 4 is positioned
above and to the right of the camera ; it belongs to the plane which passes through the optical centre
Oy and which is orthogonal to the camera axis. Consequently, the projection of O 4 in the image plane
is a point at infinity (an ideal point) and the projections of the generatrices all belong to lines parallel
to each other.

The 3D curve C is the intersection between the cone and the model. The set of 3D points on this
curve is thus obtained from the intersections of the generatrices of the cone with the model, and they
are shown in black in Figure 16. The number of 3D points is equal to the number of generatrices chosen
to represent the cone. These 3D points are then projected onto the image to obtain a set of 2D points
belonging to the curve curveProjCone. These 2D points are shown in black in Figure 16.

The idea now is to obtain the 3D points of the curve C from the 2D points of the curve C’. We will
assume that the parameters of the cone and the camera are known.
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Figure 16. The camera (represented by a pyramid) and the projector (represented by a cone) arranged
inside the model of our gallery to simulate a contour of light in an image. This contour is obtained by
projecting the intersections between the generatrices of the cone and the model into the image.

Calculating the Generatrices and the Lines Containing Their Projection

The first step is to calculate the direction vectors w4 and wg of the generatrices g4 and gg. To do
this, we need to calculate the angles 64 and 65 using the equation 11.

Once the direction vectors have been obtained, we select two 3D points on g4 and g, project
them into the image and compute the parameters of the lines /¢, and /. The two lines are defined by
their respective unit direction vectors u4 and ug and by A} and Bj, two points belonging respectively
to the two lines.

Determining the Points A’ and B’

We wish to obtain the points A’ and B’ which are theoretically the points of tangency of the lines
ly, and {4, with the curve C’. We will only present the approach for the point A’ since it will be the
same for B’.

A first solution would be to say that A’ is the point belonging to the line £, closest to the curve
C'. However, we have chosen a slightly more generic approach, the result of which is illustrated in
Figure 17. It consists of considering A’ as the point belonging to the line /,, which minimises the sum
of the squared distances between itself and the x% of the points on the curve C’ closest to the line /.
Let t be the parameter of the line. We are therefore looking for t such that :

n 1 _x! T I _x!
t= argmin{ ) (4 Xﬁlzx('j;l Xi) } with A’ = A} + tuu (14)
t i=1 i

Where :

*  X] are the x% of the points on the curve C’ closest to the line /g, .
e f:R3— RT isa function whose aim is to reduce the impact of the points X/ far from the line /g,
in minimisation.

Figure 17 shows the points A” and B’ obtained, with 40% of the points closest to /¢, in yellow and
40% of the points closest to /¢, in orange. Developing the sum to be minimised in 14 gives us :
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Since 2 must be positive, the polynomial at? + 2bt + ¢ has a minimum when its derivative cancels, i.e.
when :

20t +2b=0=t = —g
This gives :
A=A - ZuA (15)

Using the same procedure, we can obtain the point B’. This produces the line (A’B’) (see Figure 17)
which will be used to divide the curve C’ in two.

T4\’

AL,

Figure 17. Determining the points A’ and B’ for our previous example contour.

Separation of the Curve C’ for Intersection Selection

The points A’ and B’ are determined in a perfectible way in reality. We have therefore defined a
minimum distance around the line (A’B’) called e which the points of the curve C’ must respect. Points
whose distance orthogonal to the line is less than e are considered indeterminate and will therefore not
be taken into account in the 3D reconstruction of the contour. In practice, the value of e will depend on
the quality of the measurements taken.
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This separation of the C’ curve into two curves is illustrated in Figure 18 with C; in cyan and C';
in magenta.

N Pre f

Figure 18. Determining the curves C'1 and C’; for our previous example contour.

To obtain C’; or C’, we had to use the point p,, £ (see equation 12) obtained via the angle v (see
equation 13) and apply the following two conditions:

X' €y if sign(n};,B,(X' - A')) = sign(nz;,B,(pref - A’))
X' € 'y if sign(nlp (X' — A")) = —sign (g (prer — A"))

with # 4/, the normal vector to the line (A’B’).

3D reconstruction

We now know which points X’ on the curve C’ belong to the curve C’; or the curve C’5. We can
therefore apply what was presented in the sections 3.3 and 3.5 to reconstruct these points in 3D.

Figure 19 takes the 3D scene from Figure 16 and adds the reconstructed 3D points. The calculated
differences between these reconstructed 3D points and the initial 3D points of our simulation (obtained
via the intersection between the generatrices of the cone and the gallery model) are below 10~8m,
which is very small. These deviations are due to numerical errors in the calculations at the various
stages. This proves that these reconstructed 3D points are the same as the initial 3D points and that
our method therefore works. We can now test the method with real data.
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Figure 19. The reconstructed 3D points added to the 3D scene of Figure 19 with the first intersections
in cyan and the second intersections in magenta.

4. Experiments in a Waterless Aqueduct

The local heritage offers us access, between two of our laboratory buildings, to the Saint-Clément
aqueduct (more commonly known as the Arceaux aqueduct) built in the 18th century. It is no
longer in use, but in dry periods it is an ideal experimental platform. The gallery is accessible
via trapdoors, which once closed plunge you into total darkness. This confined space recreates
experimental conditions similar to those in a karstic environment, but in a dry environment whose
dimensions are easy to measure. Indeed, the aqueduct is simply a long corridor whose left and right
walls are parallel and separated by a width of 62cm, which we measured with a laser rangefinder.

4.1. Our System

The camera used is the Nikon D7000 reflex and we set it to a focal length of 18 mm and a resolution
of 2464 x 1632.

The projector is the DIVEPRO M35 dive light with an aperture angle of 145° in air and 90° in
water. As the aperture angle is too large to capture the full projection of light in our experiment, a
custom-made plastic cylinder (obtained from the 3D printer) was added to reduce it, as can be seen
in Figure 21. Its internal diameter is the same as the diameter of the projector, i.e. 4 = 53,8 mm. The
cylinder protrudes from the projector by I = 93 mm (see Figure 20). We can therefore calculate the
half-angle of aperture a as a function of the lengths / and d :

d/2 269\ o
o= arctan<T> = arctan( 93 > =16,13

We will use this value to check the order of magnitude of future « values when we estimate the cone.

8mm—

Figure 20. The diving lamp and its angle of aperture.

The camera and projector are placed on a rigid support as shown in Figure 21. They had to be fixed
to the support because the slightest rotation of one in relation to the other alters the transformation
between the camera and the projector, which is estimated during the projector calibration.
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To get an idea of the magnitude of this transformation, we used a caliper to measure the transla-
tions between the camera and the projector along the camera’s x, y and z axes. The rotation between
the two is supposed to be small because we have chosen an identical orientation for both. Here is a
summary of the various measurements of the projector parameters (lengths in m):

a ~ 16,13°
Ougey~[02 0 —o007]
Hog,{%}H ~ 0,212m

deey~ o 0 1}T

Figure 21. The system used, consisting of a camera and a conical-shaped projector to which a black

cylinder has been added.

4.2. Camera Calibration Results

To calibrate our camera, we use the method of [30] with the help of eight images of a flat
chessboard test pattern measuring 7x10 squares and 36mm wide (see Figure 22). In each of the eight
images, the position of the test pattern relative to the camera is different, as can be seen in Figure 23,
which is a 3D representation of the test pattern in eight different positions. Here are the camera
parameters estimated via calibration:

Figure 22. Image of one of the eight chessboard patterns taken at different poses for camera calibration
using Zhang’s method.
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Figure 23. 3D view of the chessboard in its eight poses in relation to the camera.

e the intrinsic matrix K obtained is :

1908,56 0,0 1227,53
K= 0,0 1909,94 832,48
0,0 0,0 1,0

¢ theresulting focal length is 18.2 mm,

It can be seen that the orders of magnitude of the various camera parameters are consistent with the
manufacturer’s parameters. In addition, the average reprojection errors are of the order of 1/10 of a
pixel. This level of error is quite satisfactory for all eight shots, each containing 56 calibration points.

4.3. Projector Calibration Results

To calibrate the projector, i.e. estimate the parameters of the cone, we used a white wall on which
a chessboard pattern was hung. The first step is to obtain 3D points belonging to the cone by detecting
the contour of the light projected onto the wall, as explained in the section entitled 3.2. To maximise
the contrast of the light projected onto the white wall, the only light source in the room is the projector.

For this calibration, we captured five images of light projected onto the wall with the axis of the
cone almost orthogonal to the wall (see Figure 24). The shape of the projected light therefore resembles
a circle.

Each detected contour is transformed into an ellipse, shown in blue in Figure 24. To obtain
the ellipses we use the method detailed in [28] but iteratively with the RANSAC algorithm [31] to
eliminate certain outlying contour points. The contour points eliminated by RANSAC are shown in
red in Figure 24 while the points used to obtain the ellipses are in green.

Using the pattern detected in each image, we obtain the equations for the five planes. From
these five planes and the five ellipses obtained, the five elliptical sections are calculated. They are
represented in 3D in Figure 25 with the camera and the test pattern.
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Figure 24. 2 images of light projected onto the wall from the five where the axis of the projector is
almost orthogonal to the wall (images 1 and 5).

Figure 25. 3D view of the elliptical sections, the camera and the chessboard pattern. In the image on
the left, the elements are expressed in the pattern frame. In the image on the right, the elements are

expressed in the camera frame.

The image on the left shows all the elements expressed in the chessboard pattern frame, so you
can see the different camera positions used to capture the five images.

The image on the right shows all the elements expressed in the camera frame. It is in this frame of
reference that the elliptical sections must be expressed in order to estimate the cone.

We extract 3D points expressed in the camera frame of reference for each elliptical section. In our
case, we recovered 200 points per section, making a total of 1000 3D points. Note that these 3D points
are at a distance from the camera frame of between 1,50m and 2,17m.

Now that we have obtained 1000 3D points that are supposed to belong to the cone, the next step
is to define an initial cone for our iterative minimisation algorithm. This is shown in red in Figure 26.
We chose an initial cone that is far from the solution for greater visibility in the figure and also to prove
that the method is capable of converging even when the initial cone is far from the solution. Obviously,
this is an experimental result and not a mathematical proof. This optimisation problem is probably
non-convex. Ideally, therefore, an initial cone close to the solution should be chosen using the aperture
angle previously calculated and the relative pose measurement between the projector and the cone.

We therefore apply our algorithm and obtain the optimised cone shown in grey. Its estimated
parameters (lengths in metres) are :

o a=1479°
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* Oy = (01956 0,0092 —0,0759}T
|05 =0210m
* digy=[-0013 0080 0997]

To ensure the validity of the cone obtained, we begin by comparing the estimated parameters
with the previously measured parameters. The Table 1 compares the estimated opening angle and the
estimated gap with the measurements. As our measurements can be improved, this comparison at
least proves that the order of magnitude of the estimated parameters is consistent.

Table 1. Comparison of estimated and measured cone parameters.

Estimated values Measured values Relative deviation
from measurement

« 14,79° 16,13° 1,34° (-8%)
Ho () H 0,210m 0,212m —0,002m (-0.9%)

Another point to check is the minimisation error for estimating the cone. In our case, this error
is directly linked to the orthogonal distances between the 3D points of the elliptical sections and the
cone, since it is the root mean square (RMS) of these distances that we are trying to minimise during
estimation. In Figure 26, the colour of each 3D point is defined by its orthogonal distance from the
cone via the colormap Jet (the colormap bar is shown in the figure) and the following function :

f:RY —[0,1]

A f(d)=d/ (d+m)
avec r?c?o 1.42

................

0,50

0.25

X Axis 2,0 0,00

Figure 26. Representation of the estimated cone in relation to elliptical sections where the colour of the
points depends on the distance orthogonal to the cone.
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The statistics for these distances can be found in the Table 2. In particular, we have a maximum
distance of 4,2mm and an overall mean of 1,5mm. The overall RMS is 1,9mm which corresponds to
approximately 0,13% of 1,50m which is the smallest distance between a 3D point of an elliptical section
and the camera frame.

In view of the analysis of the orthogonal distances, the minimisation is satisfactory, confirming
once again that the estimated parameters of the cone are at least consistent with their true values.

Table 2. Statistics of the orthogonal distances in mm between the 3D points of each elliptical section
and the estimated cone.

Dist. (mm) Max. Min. Med. Moy. RMS

Section 0 4,2 0,0 14 1,5 2,0
Section 1 3,3 0,0 1,5 1,5 1,8
Section 2 4,1 0,0 1,4 1,6 2,0
Section 3 34 0,0 1,6 1,6 1,8
Section 4 3,6 0,0 1,3 1,5 1,8

All 4,2 0,0 14 1,5 1,9

Table 3. Distance statistics in mm between the 3D points of each elliptical section and the reconstructed
3D points.

Dist. (mm) Max. Min. Med. Moy. RMS

Section 0 94,0 04 28,5 27,7 32,6
Section 1 149,6 0,0 23,6 30,9 42,8
Section 2 226,1 0,1 18,6 33,6 51,3
Section 3 179,3 0,1 18,6 30,0 447
Section 4 114,3 0,1 19,8 23,0 29,1

All 2261 0,0 20,6 290 409

4.4. 3D Results

The shape of our aqueduct is a long narrow corridor, which makes it possible to fully distinguish
the light projection in our images. We captured six images taken at different distances from a chessboard
pattern placed in the aqueduct. For each image, the light contours were checked manually, as we
wanted to isolate the triangulation method from the contour detection method, which is still in need of
improvement. For each contour extracted, we manually delimited part of the contour points on the
left wall and another part on the right wall. These delimitations can be seen in Figure 27. It shows an
example of an extracted contour in two images, with contour points on the left wall in red, on the right
wall in blue and the rest of the contour points in green.

(a) (b)

Figure 27. 2 images in the aqueduct with light contours.
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Only the contours of the left and right walls will be used for triangulation, as this will allow us to
check that the 3D points obtained respect the dimensions of the aqueduct corridor. To obtain these 3D
points, it is necessary, as usual, to define which intersection is relevant for each radius associated with
the contour points. In our situation, we can see that each contour point on the left wall implies a first
intersection and each contour point on the right wall a second intersection. Figure 28 illustrates this
for the two images in Figure 27.

Figure 28. Intersection selection.

Figure 29 shows the result of the reconstruction of the contours of the six images. The shape of
the 3D reconstructions of the contours is close to a hyperbola, which is consistent since the intersection
between a plane and a cone in this configuration is supposed to be a hyperbola.
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(a)

(b)

Figure 29. 3D reconstruction of the contours extracted from the six images.

We're now going to compare this 3D reconstruction with reality. The aqueduct is a corridor whose
left and right walls are parallel and separated by a width of 62cm. We can therefore check that :
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* the 3D points resulting from the left part (respectively right part) of the contour belong to the
same plane so they are supposed to be coplanar,

* If we estimate a plane from the left 3D points and a plane from the right 3D points, they must be
parallel and separated by a distance of approximately 62cm.

As shown in Figure 29b, we get estimations of the left wall in red and the right wall in blue by
using a least square method. To evaluate coplanarity, we compute the deviation between 3D points
and their associated plane. For left points, we get an average deviation of 13,9mm and for right points
24,1mm (see Table 4).

To check the gap between the two estimated planes, we compute the distances between the left 3D
points (respectively the right 3D points) and the right plane (respectively the left plane). The average
distance between the left points and the right plane is 584,9mm. The average distance between the
right points and the left plane is 583,6mm.

The two estimated planes are almost parallel since the angle calculated between the 2 normal
vectors is 178,9°.

Table 4. Orthogonal distances between 3D points and estimated planes.

Dist. (mm) Max. Min. Med. Moy. RMS
Left 3D points 2205 0.0 11.0 139 199
to left plane

Right 3D points 1139 0.0 204 241 305
to right plane

Left 3D points 7784 4921 5819 5849 5852
to right plane

Right 3D points  691.1 4769 5852 583.6 584.4
to left plane

5. Discussion

Authors should discuss the results and how they can be interpreted from the perspective of
previous studies and of the working hypotheses. The findings and their implications should be
discussed in the broadest context possible. Future research directions may also be highlighted.

6. Conclusions

The aim of this paper was to propose a 3D reconstruction solution designed for underwater
galleries found in karstic environments. The study of these environments represents a considerable
challenge for the future, as they could provide part of our water needs. Exploration remains the best
approach for acquiring reliable data on the structure, and is mainly carried out by qualified divers
using topography methods with Ariane wires and section-by-section surveys. But on extensive karstic
networks, this approach presents a major risk, as the duration of these surveys is so time-consuming,
leading divers to long stops. The future is therefore more likely to lie with robotics, but there are still
many technical challenges to be overcome before underwater drones that are sufficiently autonomous
can be sent out to explore this type of environment. Our aim was to propose an original method of 3D
scanning in this type of environment. Our approach uses a combination of a camera and a cone-shaped
projector. The parameters of the light cone have been fixed: its centre, its direction vector and its
angular aperture. A method for calibrating the cone was presented, enabling the position of the 3D
points obtained by intersecting the visual rays of the contour of the projector halo as seen by the camera
with the cone whose parameters have been estimated. The calibration of the camera is done thanks to
a classical approach. A simulation of this method was presented and results validate the proposal. A
first experimentation in real conditions was conducted in a disused aqueduct (without water) which
had the advantage of reproducing an environment close to that of a karstic aquifer: narrow, without
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light and above all without water to continue our evaluation. The camera calibration is validated
with an error reconstruction less than 0.1 pixel and camera parameters close to technical values (see
4.2). The cone calibration leads to an angles error less than 2 degrees and distance with respect to the
camera less than 2 mm. The results were validated by testing the coplanarity of the aqueduct walls to
within 25mm and estimating the known distance between these walls to within 36mm (see Table 4).
Experiments have be done in real karstic environment but due to complex meteorological conditions,
visual acquisition was not possible. Thus, we aim to begin in a more controlled environment : a
swimming pool and then finish in a real aquifer with clearer water.

To explore a new configuration of this system, we began to make some simulations with one
projector and four cameras (Figure 30) to solve the error of the transition zone (see Figure 19). We also
think about using several projectors with localisation sensors with respect to one or more cameras to
have different configurations and measurement redundancy.

Figure 30. Configuration with 4 cameras.
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