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Abstract: Motor intention is a high-level brain function related to planning for movement. Although studies
have shown that motor intentions can be decoded from brain signals before movement execution, it was
unclear whether intentions relating to mental imagery of movement could be decoded. Here, we investigated
whether differences in spatial and temporal patterns of brain activation were elicited by intentions to perform
different types of motor imagery and whether the patterns could be used by a multivariate pattern classifier to
detect such differential intentions. The results showed that it is possible to decode intentions before the onset
of different types of motor imagery from functional MR signals obtained from fronto-parietal brain regions,
such as the premotor cortex and posterior parietal cortex, while controlling for eye movements and for
muscular activity of the hands. These results highlight the critical role played by the aforementioned brain
regions in covert motor intentions. Moreover, they have substantial implications for rehabilitating patients with
motor disabilities.

Keywords: motor intention; fMRI; frontal lobe; parietal lobe; motor imaginary; neurorehabilitation;
brain—computer interfaces

1. Introduction

Perception of movements is based on sensory information that reaches the brain from peripheral
somatic receptors and, in case of intact vision, also from input from the eyes. These processes are
known as proprioception [1] and visual feedback [2], respectively. However, this idea has been
challenged by the proposal that our awareness of movement execution primarily arises from our
initial “intention” to move. According to this proposal, the sensation of moving is associated with
increased activity in the parietal (perceptual) and frontal (motor) regions of the brain [3]. Thus, the
concept of movement intention is framed as a higher-order cognitive function associated with the
initial stages of movement planning, and this may specify the body part involved, centered on the
target and contingent upon the task requirements [4].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Experiments with functional imaging in humans have suggested that conscious intentions to
perform reach-and-grasp movements towards objects can be predicted from brain signals shortly
before the movements are actually executed [5,6]. It remains unclear whether the concept of
movement intention can be extended to covert movements, such as motor imagery, and whether the
intention to engage differentially in various types of movement imagery can be predicted based
solely on brain activity. Decoding the neural bases of intentions for goal-directed actions is important
not only for gaining a deeper understanding of higher-level brain functions and awareness but also
for developing innovative treatments for movement disorders. These treatments may include
neurorehabilitation, non-invasive brain stimulation, brain—-machine interfaces, and neuroprosthetics
[7].

In the present study, we investigated whether differences in spatial and temporal patterns of
brain activation, using blood oxygen level-dependent (BOLD) signals, were elicited by the
participants’ intentions to perform different types of motor imagery (left vs. right hand) as already
demonstrated for slow cortical potentials (SCP) [8]. However, the poor spatial resolution of SCP does
not allow a clear definition of the anatomical-functional relationship between the direction of
intention. We investigated whether a multivariate pattern classifier could use these patterns to
identify movement intentions by using BOLD signals obtained from different brain regions. To this
end, we designed an event-related functional magnetic resonance imaging (fMRI) paradigm. In this
paradigm, participants were first prompted about the upcoming motor imagery they would perform
(left or right hand) but were explicitly instructed to refrain from initiating the imagery until they
received a further cue. To ensure that any observed brain activations were not influenced by hidden
hand or eye movements of the participants, we monitored the muscle activity in their hands with
electromyography (EMG) and tracked their eye movements during the experiment. We hypothesized
that intentions for different types of motor imagery could be successfully decoded from BOLD signals
of the brain, particularly from the parieto-frontal regions.

2. Materials and Methods

2.1. Participants

Ten participants (five female, 21-26 years) participated in the study. All were free of any
neurological or major disease or medication, and all had normal vision. They were right-handed as
assessed by the Edinburgh Handedness Inventory [9]. All participants gave informed consent to
participate in the study, which was approved by the local ethics committee of the Faculty of Medicine
of the University of Tiibingen, Germany.

2.2. Experimental Protocol

During the fMRI scanning sessions, the experimental protocol was presented visually to the
participants via a mirror attached to the head coil and by using the Presentation software
(Neurobehavioral Systems, Inc., CA). The protocol consisted of an event-related design of successive
runs composed of fixation, motor intention, and motor imagery blocks. Fixation block durations were
pseudo-randomized to integral multiples of the MRI repetition time (TR) (1.5s) between 1 and 5 TRs.
The motor intention blocks had a duration of 1 TR, whereas the imagery blocks had a duration of 3
TRs (Figure 1). During the motor intention blocks, participants were presented with a left-pointing
or right-pointing arrow at the center of the screen, indicating the direction of the upcoming motor
imagery block (left or right hand). Participants were explicitly instructed not to initiate the imagery
until they received further cues. During the subsequent imagery blocks, participants were instructed
to perform kinesthetic motor imagery (involving imagining the sensation of performing a hand
movement). The imagined movement involved a sequence of three sub-movements: first, reaching
for an imagined tool placed approximately 10 cm in front of the hand; next, grabbing it; and finally,
flexing the arm to lift the imagined object towards the ipsilateral shoulder. This sequence of
movements was used because complex imagined movements produce stronger brain activations [10].
Participants mentally conducted these movements of the right or left hand according to the
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instructions presented. Each participant underwent four scanning sessions, with each session
following an identical paradigm. One session consisted of 20 runs of fixation, motor intention, and
motor imagery blocks for each hand, resulting in 40 trials in total. Left-hand and right-hand trials
were pseudo-randomized.

Movement intention Motor imagery

> Right hand/arm

< Left hand/arm

1.5sec=1TR 45sec=3TR

Randomized
duration
(1,2,345TR)

Figure 1. Stimulus presentation paradigm. The figure shows the blocks of fixation, motor intention,
and motor imagery (TR = repetition time).

Before the task, participants received detailed information about the protocol. Once placed in
the scanner, participants underwent several practices run in the same position as was to be used
during the experiment to familiarize them with the task.

2.3. EMRI Data Acquisition and Preprocessing

Experiments were conducted using a 3-Tesla MR Trio system (Siemens, Erlangen, Germany)
with a standard 12-channel head coil. Functional image had 16 slices (voxel size=3.3 mm x 3.3
mm x 5.0 mm, slice gap =1 mm). Slices were AC/PC aligned in axial orientation. A standard echo-
planar imaging (EPI) sequence was used (TR =1.5 s, matrix size = 64 x 64, effective echo time TE =30
ms, flip angle a=70°, bandwidth=1.954 kHz/pixel). For superimposing functional maps on brain
anatomy, a high-resolution T1-weighted structural scan of the whole brain was acquired for each
participant (MPRAGE, matrix size =256 x 256, 160 partitions, 1-mm3 isotropic voxels, TR =2300 ms,
TE =3.93 ms, a=8°). Two foam cushions immobilized the participant’s head.

Preprocessing of the fMRI images was performed with SPM12 (Welcome Department of
Imaging Neuroscience, London, UK), and classification was performed using MATLAB (The
Mathworks, Natick, MA) scripts. Realignment, co-registration, normalization onto the Montreal
Neurological Institute space, smoothing (Gaussian kernel of 8 mm full width at half maximum), and
whole brain masking were then performed. To account for the variance of the BOLD signals for
different participants, z normalizations were applied across all the time-series to the data for each
participant data separately.

2.4. Support Vector Classification
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To decode brain activations related to motor intentions, a multivariate analysis was performed
using a machine learning algorithm called support vector machine (SVM) [11,12], a pattern
recognition technique which has shown high performance in comparison to other existing methods
of pattern classification of fMRI signals [13-17].

For SVM analysis, pre-processed images were obtained with SPM5, and classification was
performed using an in-house MATLAB (The Mathworks, Natick, MA) toolbox [18]. For SVM
classification, the previously computed z-values were used as features.

First, we examined whether it was possible to distinguish between successive conditions
(fixation, intention, and imagery) by classifying the spatial patterns of brain signals extracted from
brain regions of interest (ROIs) known to be involved in motor planning and execution, namely the
posterior parietal cortex (PPC), supplementary motor area (SMA), premotor cortex (PMC), and
primary motor cortex (M1). To explore the specificity of these regions coding for motor intention, the
dorsolateral prefrontal cortex (DLPFC), a large brain region not usually considered to be involved in
motor tasks, was included in the analysis. The posterior cingulate cortex [19] and fronto-polar cortex
[20] were also included because of their involvement in the preparation for overt motor execution.
The somatosensory area was included based on findings from neural recordings in monkeys, which
demonstrated that neural activity in the postcentral cortex precedes active limb movement [21].

To evaluate the decoding accuracy from data for these brain areas, brain masks were created
with WFU PickAtlas Toolbox by using Brodmann areas (BA) as follows: BA 10 for the frontopolar
cortex, BA 9 +45 +46 for the DLPFC, the mesial part of BA 6 for the SMA, the remaining part of BA 6
for the PMC, BA 4 for the M1, BA 1+2+ 3 for the primary somatosensory cortex, BA 5+7 +39 +40 for
the PPC, and BA 31 for the posterior cingulate cortex. To separate the mask of the PMC from the mask
of BA6, the mask of the SMA (in the aal labels of the WFU PickAtlas Toolbox) was subtracted from
that of BA6. The classification performance from data was evaluated through 4-fold cross-validation
[22]. The pattern analysis accounted for the delay in the hemodynamic response with respect to the
stimulus onset by introducing an equivalent delay of 3 s (2 TRs) in the input data set [23].

2.5. Multivariate Spatial Analysis with Effect Mapping

Based on the parameters of the trained SVM model, we analyzed the fMRI data with the Effect
Mapping [11] (EM). To identify informative voxels from the SVM model, the EM measures the effect
of each voxel in multi-voxel space to the SVM output by considering two factors, namely, the input

T
vectors and the weight vector; VEW X+wW, , where Y isthe SVM output, Wis the weight vector,
and X the input vector which determine the SVM output. The effect of each voxel on the classifier
output is measured by computing normalized Mutual Information (NMI) between the voxel and the
SVM output. Ml is defined as the amount of information that one random variable contains about
another random variable [24]. That is, when two random variables X and Y occur with a joint

probability mass function p(x.y) and marginal probability function p(x) and P ) , the
entropies of the two random variables and the joint probability are given respectively by:

H(X)=) -px)logp(x), HY)=> - p(y)logp(y),

xeX yeY
and H(XaY):ZZ_P(xay)logp(X,J’)
xeX yeY (1)
M], 1(X:Y) , is the relative entropy between the joint distribution and the product distribution, i.e.,

[(X:Y)=HX)+HY)-H(X.Y)

To correct for variance of mutual information based on entropies H(X) and H(Y) ,
normalized mutual information is defined as [25]:
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Hence, the effect value (EV) £, of a voxel k is defined as:

E, =wl (xk;J’), k=1,:-,M (M: number of voxels) (4)

where 7 is the SVM output after excluding the sign function, Wi and M are the SVM weight
value and activation in voxel k, respectively.

After normalizing the absolute value of E, from Eq. (4), we obtain the relation:

nk, :sgn(Ek)log(l+|Ek|/std(|E)), k=1,---,M

®)
std (|E|)

where sgn(.) is a sign function, and is the standard deviation of all E, . In the present

study, Eq. (5) ( nE, ) was used to compute the EV at each voxel to make E(effect)-maps from different
participants and different folds of cross-validation be comparable.

With different contrasts, i.e., intention vs. fixation, and left vs. right over time points (left and right
fixations, left and right intentions, and left and right imaginations), E-maps were separately obtained
from data taken together from all the brain areas, of the participants. The E-maps from a contrast for
4-fold CV of all participants (i.e., 40 E-maps; 4 E-maps from 4-fold CV and 10 participants) were
averaged into an E-map for a group analysis, and then the averaged map was smoothed spatially
with 5 mm Fixed Width Half Maximum (FWHM) to minimize distortion of the map for ease of
interpretation. In the interpretation of the E-map, positive and negative EVs were related the design
labels, 1 and -1, of the SVM classifier, respectively. That is, if the design labels of two conditions are
exchanged, the sign of EVs are also reversed.

2.6. Eye tracker

To investigate whether classification accuracies obtained from the brain ROIs could have been
influenced due to eye movements, we monitored pupil positions inside the scanner using the EYE-
TRAC® 6 (Applied Science Laboratories, MA), a video-based infrared eye-tracker with long-range
optics, specifically designed for fMRI, and a sampling rate of 60 Hz in 9 participants, simultaneously
with collection of the fMRI data. After removal of blinks and outliers, we performed a discriminant
analysis to find out whether the data could be classified according to the lateralization (left or right)
of each condition (intention and imagery). Discriminant analysis [26] is a statistical method that can
be used to develop a predictive model of group membership based on observed features of the data.
Starting from a sample of cases with a known group membership, a discriminant function is
generated based on the linear combination of the variables. This function, which provides the best
discrimination between the groups, can be then applied to new cases. In literature, three different
types of discriminant analysis can be found: direct, hierarchical and stepwise. The difference in these
three methods consists of entering the variables for the function. In the direct method, the one we
used, all variables are entered together; in the hierarchical one, the researcher determines the order;
and in the stepwise discriminant analysis (SWDA), variables are entered step-by-step and are
statistically evaluated to determine which one contributes the most to discriminate. In our analysis,
the lateralization of the conditions was used to determine the discriminative function. We computed
for the 9 participants (4 sessions per participant) a 10-fold cross-validated discriminant analysis for
each TR. The results of this analysis provided us with means and standard errors.

2.7. Electromyography

In order to explore whether classification accuracies obtained from brain areas could have been
influenced by muscular activity, participants were instructed to remain still and avoid any movement
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during the experiment. Furthermore, 6 participants performed the same experimental task again, in
which EMG data was recorded simultaneously. The EMG data was not obtained in the same sessions
in which brain data were analyzed, in order to avoid participants to be distracted from the task due
to the presence of the EMG recording, to avoid brain activations due to skin stimulations by the
electrodes and wires, and to avoid possible artifacts in the brain signals due to the EMG. EMG data
was acquired using 6 pairs of bipolar, sintered Ag/AgCl electrodes, which were placed based on
physical landmarks on antagonistic muscle pairs having 3 pairs in each arm. One pair was placed
close to the external epicondyle over the extensor digitorum (extension), the second pair over the
flexor carpi radialis (flexion), and the last pair over the external head of the biceps (flexion). The
electrode wires were twisted per pair to minimize the differential effect of the magnetic field on the
EMG leads. A ground electrode was placed on the ankle joint. Current-limiting resistors (5 k(2) were
attached to the EMG electrodes to prevent possible warming of the electrodes. All electrodes were
connected to an electrode input box, which was in turn connected to the amplifier. The digital signals
were transmitted via an optical cable and stored on a personal computer outside the MR room. Data
were recorded using a MR-compatible bipolar 16-channel amplifier (BrainAmp) from Brain Products
GmbH, Munich, Germany. Sampling rate of data acquisition was set at 5000Hz with a low pass filter
of 250 Hz and a signal resolution of 0.5 muV. The acquired EMG signal was synchronized with the
scanner clock using the SynchBox device from Brain Products GmbH, Munich, Germany. The
SyncBox scanner interface serves as the direct receiver for pulses from the MR gradient clock (10,000
kHz). A model of the MR gradient artifact was generated by averaging EMG signals from five
repetitions times (TR, 1.5s) of the echo planar imaging (EPI) pulse sequence. The MR artifact template
obtained was then subtracted from the original data for correcting the gradient artifacts. The artifact
corrected and filtered data is subsequently used for pattern classification in the following manner.
EMG signals for each hand were separated into datasets for distinct motor class labels as follows: left
and right intention trials and left and right imagery trials. Here, each trial corresponds to EMG data
acquired during one complete TR of the EPI pulse sequence. The classes, left and right intention,
corresponded to 1 TR, and the classes left and right imagery to 3 TRs, respectively, of the EMG data.

Complexity of the EMG waveform for each TR (1.5s) was determined as a time-domain feature
from a moving window of 240 ms and a window-overlap of 24 ms. The waveform was computed
from the equation:

L
T, =

Wi kZ] x| M, =x = x,_, ©
Where X is the rectified EMG data of the window from data point k=1 to k= L, being L the length of
the window. The feature, WL, of the signal is a combined indicator of signal amplitude and frequency.
The extracted feature was then transformed to a principal component space by performing a discrete
Karhunen-Love transform. Non-linear decoding filters were designed using multilayer, feed-forward
Artificial Neural Networks (ANNSs) because of their use in nonlinear regression and classification. By
using a tan-sigmoid transfer function for the hidden layer neurons and a log-sigmoid transfer
function for the output layer, the network assigns a probability to each movement, P{Mi}, where i =
1, 2 corresponds to the 2 hand movements types (right and left). The movement type with the highest
probability is chosen as the final output of the classifier. The neural network was trained using
MATLADB’s scaled conjugate gradient descent algorithm in combination with early validation to
improve generalization. The results were validated using a 10-fold cross validation technique.

3. Results

First, we examined whether it was possible to distinguish between successive conditions
(fixation, intention, and imagery) by classifying the spatial patterns of brain signals. The results of
multivariate pattern analysis using SVM showed that the classification accuracies for all these areas
were above chance (>50%) for classification between blocks of fixation and motor intention and
between motor intention and motor imagery. Furthermore, the PMC and PPC displayed the highest
classification accuracies (>80%) when compared with other ROIs (see Table 1). Based on the

d0i:10.20944/preprints202405.0016.v1
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parameters of the trained SVM model, we further analyzed the fMRI data with the EM method of
multivariate functional analysis [11]. The E-maps (Figure 2) show a clear distinction between the
activation patterns for the different conditions and relative differences between the ROIs in intention

formation and imagery, thus confirming the presence of discriminative information in the PPC, PMC,
and SMA.

Table 1. Classification accuracies (and standard errors of the mean) for fixation vs. intention and for
intention vs. imagery. The table shows the classification accuracies of multivariate pattern analysis
across successive conditions for different ROIs. PMC: premotor cortex; PPC: posterior parietal cortex;
SMA: supplementary motor area; DLPFC: dorsolateral prefrontal cortex.

Fixation vs. Intention Intention vs. Imagery

Mean SE Mean SE
PMC 83.9% 1.4 85.9% 1.6
PPC 82.8% 1.4 83.3% 1.6
SMA 77.4% 1.5 80.7% 1.8
M1 72.7% 1.5 74.3% 1.7

Posterior cingulate 70.2% 1.1 70.5% 1
DLPFC 74.8% 1.2 76.3% 1.3
Somatosensory area 72.9% 1.5 75.2% 1.6
Frontopolar cortex 62.4% 1.3 61.3% 1.3

A) Fixation vs. Intention B) Intention vs. Imagery

Fixabon Intention

Figure 2. Activation maps for classification between successive conditions. A) Effect maps (E-maps)
for the classification between fixation and motor intention. B) E-maps for the classification between
motor intention and motor imagery. For display purposes, the E-maps were drawn by selecting the
more informative voxels (the 20% of the voxels with the highest effect values). The figure shows six
horizontal slices of the brain at spatial intervals of 6 mm in Montreal Neurological Institute (MNI)
coordinates (numbers represent z-coordinates). R: right; PMC: premotor cortex; SMA: supplementary
motor area; PPC: posterior parietal cortex.

In a second step, we further investigated the specificity of the information in the ROIs by testing
whether the pattern classifier could decode the laterality (left or right) of the task. In the motor
intention block, the classifier could robustly distinguish between left and right tasks in the PPC
(accuracy =63.1%) and in the PMC (accuracy =61.9%), showing that information about movement
intention direction is available in these areas (Table 2). During the imagery blocks, classification
accuracies of >80% distinguished left imagery from right imagery in the PMC, PPC, and SMA. Again,
particularly high classification results were obtained for the PPC and PMC (mean =86%) (Table 2 and
Figure 3A). The E-maps, displaying the most informative voxels for the classification between left
and right intention, confirm the important roles played by the PPC and PMC in intention formation
(Figure 3B).

Table 2. Classification accuracies (and standard errors of the mean) for brain areas and control
conditions (ocular moment and muscular activity) for “left vs. right” during motor intention (1 TR)
and motor imagery (3 TRs: T1, T2, T3). PMC: premotor cortex; PPC: posterior parietal cortex; SMA:
supplementary motor area; DLPFC: dorsolateral prefrontal cortex.

Imagery
T1 T2 T3

Intention
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Mean SE Mean SE Mean SE Mean SE
PPC 63.1% 1.2 79.9% 1.3 87% 1.3 86.6% 1.6
PMC 61.9% 1.2 82.9% 1.7 91% 1.4 88% 1.7
SMA 58.1% 1.4 79% 1.4 84% 2 80.2% 2.2
Somatosensory area 58.1% 1.7 78.1% 1.9 82.5% 2.1 82.8% 2
Ml 59.1% 1.5 75.7% 24 80% 24 78.3% 2.5
Posterior cingulate 52.8% 1 63.4% 1.2 69.6% 1.2 66.8% 1.8
DLPFC 51.8% 1 55.7% 1.1 55.5% 1.2 54.7% 1
Frontopolar cortex 51.8% 1 49.3% 1.1 50.9% 1.2 54.2% 1.3
Ocular movements 52.6% 0.1 53.1% 0.1 50.3% 0.3 53.5% 0.2
Muscular activity 48.2% 1.7 49.5% 1.3 52.1% 1.1 51% 1.4
A} 100
90
Brain Areas
——PPC
~=-PMC
—. 80 =
Z SMA
& =M1
2 ——DLPFC
2 79
= Control Signals
5 *= Ocular movements
2 Muscular activity (EMG)
O 60
50 = Chanca Level
40
Intention Imagery T1 Imagery T2 Imagery T3

B) Intention

Left Right

Figure 3. Decoding accuracy and activation maps for left vs. right classification. A) Decoding
accuracies for “left vs. right” across the conditions of intention (1 TR) and motor imagery (3 TRs:
Imagery T1, T2, and T3). For the sake of clarity, only data from the PPC, PMC, SMA, M1, DLPFC,
ocular movements, and muscular activity are displayed (for details, see Table 2). B) Activation maps
for left vs. right during intention. For display purposes, the activation maps were drawn by selecting
the top 20% most discriminating voxels. Numbers represent z-coordinates in the Montreal
Neurological Institute (MNI) system. PMC: premotor cortex; SMA: supplementary motor area; PPC:
posterior parietal cortex; DLPFC: dorsolateral prefrontal cortex.

To confirm that these results were not influenced by physiological factors such as eye
movements and hand muscle activity, we acquired eye tracker and EMG signals within the fMRI
sessions and performed pattern classification of these signals by using linear discriminant and neural
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network analyses. Results of the classification of pupil positions for left vs. right motor intention, as
well as for motor imagery, were around the chance level. Similar results were obtained by classifying
the EMG signals of the left and right hands (Table 2 and Figure 3A). As intentions for movement
are shown to be anatomically segregated in the PPC, with regions being specialized for planning
saccades, in addition to reaches and grasps, these results show that the fMRI classification was
specifically derived from movement imagery and was not related to systematic eye movements.

4. Discussion

Our results show that intentions for different types of motor imagery can be predicted from
BOLD signals in the parieto-frontal regions (particularly the PPC and PMC) of the human brain with
a support vector classifier. Varied evidence shows that the PPC plays a crucial role in movement
planning [27] and that it contains anatomically segregated regions (intentional maps) that code for
the planning of different movements [28]. Furthermore, electrical stimulation of the inferior parietal
cortex in human patients with brain tumors caused a strong intention and desire to move, whereas
more intense stimulation of this area led to illusory movement awareness, thus lending credence to
the hypothesis that both motor intention and motor awareness emerge from activations of parietal
regions [29]. Having said that, the PMC has anatomical connections with the frontal, parietal, and
motor cortical regions [30]. This establishes the PMC as a central hub in the processes of motor
planning and execution, effectively transmitting information regarding the advanced cognitive
functions associated with movement [31]. The high classification accuracies obtained in the present
study during the intention block for the PPC and PMC suggest that these regions play analogous
roles in intention formation for both overt and covert movements.

The specificity of these results could be seen in light of the comparatively lower classification
accuracies obtained from the other brain areas included in the analysis. This point is further
reinforced by considering the almost chance classification accuracy obtained from the DLPFC for
both intention and imagery, despite this being a relatively large region in the brain.

Interestingly, for left vs. right classification during both movement intention and imagery, a
general tendency for higher prediction accuracies for the PPC and PMC, as compared to that for M1,
was found across every time point. These findings are concordant with the idea that premotor and
parietal regions play a predominant role in different aspects of action planning [32-34] and that the
primary motor cortex is inconsistently activated during motor imagery, usually at a lower intensity
than during motor execution [35].

It might be argued that the experimental paradigm does not assure that participants did not
perform mental imagery during the intention block. However, this interpretation is not tenable in
view of the high classification results for differentiating between motor intention and motor imagery
and the different brain areas involved in the two conditions (see Table 1 and Figure 2). It might be
also argued that the high classification accuracies obtained for intention were merely the result of a
nonspecific expectancy for the forthcoming go signal or imagery block. However, in this case, it
would have been impossible for the classifier to distinguish between left and right motor intentions
(see Table 2 and Figure 3).

We propose that the concept of intention that was studied in this experiment belongs to the class
of “immediate intentions,” which are accompanied by conscious experiences of impending actions
[36]. Immediate intentions can be distinguished from prospective intentions based on how early the
episodic details of an action are planned. In the former case, the time lag between an intention and
its action can be very short and may not even be consciously separable. In the latter case, the time
difference between the formation of an intention and its actual execution may be quite prolonged, as
in the planning of a holiday today and its actual execution several days later. It has been proposed
that immediate intentions have a feature that makes a clear prediction about the oncoming action.
Termed the content argument, this states that intentions for two different actions (e.g., left vs. right
hand) have two different contents in the brain, capable of explaining or predicting which body part
will be used for movement. In our study, we have shown evidence for the content hypothesis by
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predicting with high accuracy left movement imagery (of reaching and grasping), as distinct from
right movement imagery, by using fMRI signals before the onset of imagery.

Our results suggest future applications in which high-level preparatory activity in the parieto-
frontal regions can be applied to control neural prosthetics in BCl. We assume that repeatable
formations of motor intentions may persist in the absence of overt movement in those patients who
can maintain or be trained to maintain mental simulations of movement, a concept that has important
implications for rehabilitation and restoration of movement, e.g., after a stroke. If a paradigm similar
to that used here is implemented, a portable brain—computer interface (BCI) based on EEG [37] or
near-infrared spectroscopy (NIRS) [38] could be built to operate a neuro-prosthetic device as an
“intention brain-machine interface.” There is an advantage in using higher, cognitive areas of the
sensorimotor system, in particular the PPC, for the following reasons: 1) Although the motor regions
may undergo degradation during paralysis, the PPC may suffer less degradation because of its close
link to the visual system, which is still intact; 2) as movement restoration is accompanied by neural
plasticity, it is hypothesized that the PPC plays a larger role in this recovery because of its
involvement in sensorimotor re-registration of behavior; and 3) for accurate control of movement,
closed-loop feedback is necessary, and this is largely lost in the motor areas as a result of lesions but
often remains intact in the PPC because the re-afference to this region is also visual.
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