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Abstract: Motor intention is a high-level brain function related to planning for movement. Although studies 
have shown that motor intentions can be decoded from brain signals before movement execution, it was 
unclear whether intentions relating to mental imagery of movement could be decoded. Here, we investigated 
whether differences in spatial and temporal patterns of brain activation were elicited by intentions to perform 
different types of motor imagery and whether the patterns could be used by a multivariate pattern classifier to 
detect such differential intentions. The results showed that it is possible to decode intentions before the onset 
of different types of motor imagery from functional MR signals obtained from fronto-parietal brain regions, 
such as the premotor cortex and posterior parietal cortex, while controlling for eye movements and for 
muscular activity of the hands. These results highlight the critical role played by the aforementioned brain 
regions in covert motor intentions. Moreover, they have substantial implications for rehabilitating patients with 
motor disabilities. 

Keywords: motor intention; fMRI; frontal lobe; parietal lobe; motor imaginary; neurorehabilitation; 
brain–computer interfaces 

 

1. Introduction 

Perception of movements is based on sensory information that reaches the brain from peripheral 
somatic receptors and, in case of intact vision, also from input from the eyes. These processes are 
known as proprioception [1] and visual feedback [2], respectively. However, this idea has been 
challenged by the proposal that our awareness of movement execution primarily arises from our 
initial “intention” to move. According to this proposal, the sensation of moving is associated with 
increased activity in the parietal (perceptual) and frontal (motor) regions of the brain [3]. Thus, the 
concept of movement intention is framed as a higher-order cognitive function associated with the 
initial stages of movement planning, and this may specify the body part involved, centered on the 
target and contingent upon the task requirements [4]. 
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Experiments with functional imaging in humans have suggested that conscious intentions to 
perform reach-and-grasp movements towards objects can be predicted from brain signals shortly 
before the movements are actually executed [5,6]. It remains unclear whether the concept of 
movement intention can be extended to covert movements, such as motor imagery, and whether the 
intention to engage differentially in various types of movement imagery can be predicted based 
solely on brain activity. Decoding the neural bases of intentions for goal-directed actions is important 
not only for gaining a deeper understanding of higher-level brain functions and awareness but also 
for developing innovative treatments for movement disorders. These treatments may include 
neurorehabilitation, non-invasive brain stimulation, brain–machine interfaces, and neuroprosthetics 
[7]. 

In the present study, we investigated whether differences in spatial and temporal patterns of 
brain activation, using blood oxygen level–dependent (BOLD) signals, were elicited by the 
participants’ intentions to perform different types of motor imagery (left vs. right hand) as already 
demonstrated for slow cortical potentials (SCP) [8]. However, the poor spatial resolution of SCP does 
not allow a clear definition of the anatomical-functional relationship between the direction of 
intention. We investigated whether a multivariate pattern classifier could use these patterns to 
identify movement intentions by using BOLD signals obtained from different brain regions. To this 
end, we designed an event-related functional magnetic resonance imaging (fMRI) paradigm. In this 
paradigm, participants were first prompted about the upcoming motor imagery they would perform 
(left or right hand) but were explicitly instructed to refrain from initiating the imagery until they 
received a further cue. To ensure that any observed brain activations were not influenced by hidden 
hand or eye movements of the participants, we monitored the muscle activity in their hands with 
electromyography (EMG) and tracked their eye movements during the experiment. We hypothesized 
that intentions for different types of motor imagery could be successfully decoded from BOLD signals 
of the brain, particularly from the parieto-frontal regions. 

2. Materials and Methods 

2.1. Participants  

Ten participants (five female, 21–26 years) participated in the study. All were free of any 
neurological or major disease or medication, and all had normal vision. They were right-handed as 
assessed by the Edinburgh Handedness Inventory [9]. All participants gave informed consent to 
participate in the study, which was approved by the local ethics committee of the Faculty of Medicine 
of the University of Tübingen, Germany. 

2.2. Experimental Protocol 

During the fMRI scanning sessions, the experimental protocol was presented visually to the 
participants via a mirror attached to the head coil and by using the Presentation software 
(Neurobehavioral Systems, Inc., CA). The protocol consisted of an event-related design of successive 
runs composed of fixation, motor intention, and motor imagery blocks. Fixation block durations were 
pseudo-randomized to integral multiples of the MRI repetition time (TR) (1.5s) between 1 and 5 TRs. 
The motor intention blocks had a duration of 1 TR, whereas the imagery blocks had a duration of 3 
TRs (Figure 1). During the motor intention blocks, participants were presented with a left-pointing 
or right-pointing arrow at the center of the screen, indicating the direction of the upcoming motor 
imagery block (left or right hand). Participants were explicitly instructed not to initiate the imagery 
until they received further cues. During the subsequent imagery blocks, participants were instructed 
to perform kinesthetic motor imagery (involving imagining the sensation of performing a hand 
movement). The imagined movement involved a sequence of three sub-movements: first, reaching 
for an imagined tool placed approximately 10 cm in front of the hand; next, grabbing it; and finally, 
flexing the arm to lift the imagined object towards the ipsilateral shoulder. This sequence of 
movements was used because complex imagined movements produce stronger brain activations [10]. 
Participants mentally conducted these movements of the right or left hand according to the 
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instructions presented. Each participant underwent four scanning sessions, with each session 
following an identical paradigm. One session consisted of 20 runs of fixation, motor intention, and 
motor imagery blocks for each hand, resulting in 40 trials in total. Left-hand and right-hand trials 
were pseudo-randomized. 

 

Figure 1. Stimulus presentation paradigm. The figure shows the blocks of fixation, motor intention, 
and motor imagery (TR = repetition time). 

Before the task, participants received detailed information about the protocol. Once placed in 
the scanner, participants underwent several practices run in the same position as was to be used 
during the experiment to familiarize them with the task. 

2.3. FMRI Data Acquisition and Preprocessing 

Experiments were conducted using a 3-Tesla MR Trio system (Siemens, Erlangen, Germany) 
with a standard 12-channel head coil. Functional image had 16 slices (voxel size = 3.3 mm × 3.3 
mm × 5.0 mm, slice gap = 1 mm). Slices were AC/PC aligned in axial orientation. A standard echo-
planar imaging (EPI) sequence was used (TR = 1.5 s, matrix size = 64 × 64, effective echo time TE = 30 
ms, flip angle α = 70°, bandwidth = 1.954 kHz/pixel). For superimposing functional maps on brain 
anatomy, a high-resolution T1-weighted structural scan of the whole brain was acquired for each 
participant (MPRAGE, matrix size = 256 × 256, 160 partitions, 1-mm3 isotropic voxels, TR = 2300 ms, 
TE = 3.93 ms, α = 8°). Two foam cushions immobilized the participant’s head. 

Preprocessing of the fMRI images was performed with SPM12 (Welcome Department of 
Imaging Neuroscience, London, UK), and classification was performed using MATLAB (The 
Mathworks, Natick, MA) scripts. Realignment, co-registration, normalization onto the Montreal 
Neurological Institute space, smoothing (Gaussian kernel of 8 mm full width at half maximum), and 
whole brain masking were then performed. To account for the variance of the BOLD signals for 
different participants, z normalizations were applied across all the time-series to the data for each 
participant data separately. 

2.4. Support Vector Classification 
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To decode brain activations related to motor intentions, a multivariate analysis was performed 
using a machine learning algorithm called support vector machine (SVM) [11,12], a pattern 
recognition technique which has shown high performance in comparison to other existing methods 
of pattern classification of fMRI signals [13–17]. 

For SVM analysis, pre-processed images were obtained with SPM5, and classification was 
performed using an in-house MATLAB (The Mathworks, Natick, MA) toolbox [18]. For SVM 
classification, the previously computed z-values were used as features. 

First, we examined whether it was possible to distinguish between successive conditions 
(fixation, intention, and imagery) by classifying the spatial patterns of brain signals extracted from 
brain regions of interest (ROIs) known to be involved in motor planning and execution, namely the 
posterior parietal cortex (PPC), supplementary motor area (SMA), premotor cortex (PMC), and 
primary motor cortex (M1). To explore the specificity of these regions coding for motor intention, the 
dorsolateral prefrontal cortex (DLPFC), a large brain region not usually considered to be involved in 
motor tasks, was included in the analysis. The posterior cingulate cortex [19] and fronto-polar cortex 
[20] were also included because of their involvement in the preparation for overt motor execution. 
The somatosensory area was included based on findings from neural recordings in monkeys, which 
demonstrated that neural activity in the postcentral cortex precedes active limb movement [21]. 

To evaluate the decoding accuracy from data for these brain areas, brain masks were created 
with WFU PickAtlas Toolbox by using Brodmann areas (BA) as follows: BA 10 for the frontopolar 
cortex, BA 9 + 45 + 46 for the DLPFC, the mesial part of BA 6 for the SMA, the remaining part of BA 6 
for the PMC, BA 4 for the M1, BA 1 + 2 + 3 for the primary somatosensory cortex, BA 5 + 7 + 39 + 40 for 
the PPC, and BA 31 for the posterior cingulate cortex. To separate the mask of the PMC from the mask 
of BA6, the mask of the SMA (in the aal labels of the WFU PickAtlas Toolbox) was subtracted from 
that of BA6. The classification performance from data was evaluated through 4-fold cross-validation 
[22]. The pattern analysis accounted for the delay in the hemodynamic response with respect to the 
stimulus onset by introducing an equivalent delay of 3 s (2 TRs) in the input data set [23]. 

2.5. Multivariate Spatial Analysis with Effect Mapping 

Based on the parameters of the trained SVM model, we analyzed the fMRI data with the Effect 
Mapping [11] (EM). To identify informative voxels from the SVM model, the EM measures the effect 
of each voxel in multi-voxel space to the SVM output by considering two factors, namely, the input 

vectors and the weight vector; 0wy T  xw , where y  is the SVM output, w is the weight vector, 
and x  the input vector which determine the SVM output. The effect of each voxel on the classifier 
output is measured by computing normalized Mutual Information (NMI) between the voxel and the 
SVM output.  MI is defined as the amount of information that one random variable contains about 
another random variable [24]. That is, when two random variables X and Y occur with a joint 

probability mass function ),( yxp  and marginal probability function )(xp  and )(yp , the 
entropies of the two random variables and the joint probability are given respectively by: 
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MI, );( YXI , is the relative entropy between the joint distribution and the product distribution, i.e., 

),()()();( YXHYHXHYXI    (2) 

To correct for variance of mutual information based on entropies )(XH  and )(YH , 
normalized mutual information is defined as [25]: 
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Hence, the effect value (EV) kE  of a voxel k is defined as: 

);(~ yxIwE kkk  , Mk ,,1  (M: number of voxels) (4) 

where y  is the SVM output after excluding the sign function, kw  and kx  are the SVM weight 
value and activation in voxel k, respectively.  

After normalizing the absolute value of kE  from Eq. (4), we obtain the relation: 

 ,)(/1log)sgn( EstdEEnE kkk 
 Mk ,,1   (5) 

where sgn(.) is a sign function, and 
)( Estd

 is the standard deviation of all kE . In the present 

study, Eq. (5) ( knE ) was used to compute the EV at each voxel to make E(effect)-maps from different 
participants and different folds of cross-validation be comparable. 
With different contrasts, i.e., intention vs. fixation, and left vs. right over time points (left and right 
fixations, left and right intentions, and left and right imaginations), E-maps were separately obtained 
from data taken together from all the brain areas, of the participants. The E-maps from a contrast for 
4-fold CV of all participants (i.e., 40 E-maps; 4 E-maps from 4-fold CV and 10 participants) were 
averaged into an E-map for a group analysis, and then the averaged map was smoothed spatially 
with 5 mm Fixed Width Half Maximum (FWHM) to minimize distortion of the map for ease of 
interpretation. In the interpretation of the E-map, positive and negative EVs were related the design 
labels, 1 and -1, of the SVM classifier, respectively. That is, if the design labels of two conditions are 
exchanged, the sign of EVs are also reversed. 

2.6. Eye tracker 

To investigate whether classification accuracies obtained from the brain ROIs could have been 
influenced due to eye movements, we monitored pupil positions inside the scanner using the EYE-
TRAC® 6 (Applied Science Laboratories, MA), a video-based infrared eye-tracker with long-range 
optics, specifically designed for fMRI, and a sampling rate of 60 Hz in 9 participants, simultaneously 
with collection of the fMRI data. After removal of blinks and outliers, we performed a discriminant 
analysis to find out whether the data could be classified according to the lateralization (left or right) 
of each condition (intention and imagery). Discriminant analysis [26] is a statistical method that can 
be used to develop a predictive model of group membership based on observed features of the data. 
Starting from a sample of cases with a known group membership, a discriminant function is 
generated based on the linear combination of the variables. This function, which provides the best 
discrimination between the groups, can be then applied to new cases. In literature, three different 
types of discriminant analysis can be found: direct, hierarchical and stepwise. The difference in these 
three methods consists of entering the variables for the function. In the direct method, the one we 
used, all variables are entered together; in the hierarchical one, the researcher determines the order; 
and in the stepwise discriminant analysis (SWDA), variables are entered step-by-step and are 
statistically evaluated to determine which one contributes the most to discriminate. In our analysis, 
the lateralization of the conditions was used to determine the discriminative function. We computed 
for the 9 participants (4 sessions per participant) a 10-fold cross-validated discriminant analysis for 
each TR. The results of this analysis provided us with means and standard errors. 

2.7. Electromyography 

In order to explore whether classification accuracies obtained from brain areas could have been 
influenced by muscular activity, participants were instructed to remain still and avoid any movement 
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during the experiment. Furthermore, 6 participants performed the same experimental task again, in 
which EMG data was recorded simultaneously. The EMG data was not obtained in the same sessions 
in which brain data were analyzed, in order to avoid participants to be distracted from the task due 
to the presence of the EMG recording, to avoid brain activations due to skin stimulations by the 
electrodes and wires, and to avoid possible artifacts in the brain signals due to the EMG. EMG data 
was acquired using 6 pairs of bipolar, sintered Ag/AgCl electrodes, which were placed based on 
physical landmarks on antagonistic muscle pairs having 3 pairs in each arm. One pair was placed 
close to the external epicondyle over the extensor digitorum (extension), the second pair over the 
flexor carpi radialis (flexion), and the last pair over the external head of the biceps (flexion). The 
electrode wires were twisted per pair to minimize the differential effect of the magnetic field on the 
EMG leads. A ground electrode was placed on the ankle joint. Current-limiting resistors (5 kΩ) were 
attached to the EMG electrodes to prevent possible warming of the electrodes. All electrodes were 
connected to an electrode input box, which was in turn connected to the amplifier. The digital signals 
were transmitted via an optical cable and stored on a personal computer outside the MR room. Data 
were recorded using a MR-compatible bipolar 16-channel amplifier (BrainAmp) from Brain Products 
GmbH, Munich, Germany. Sampling rate of data acquisition was set at 5000Hz with a low pass filter 
of 250 Hz and a signal resolution of 0.5 muV. The acquired EMG signal was synchronized with the 
scanner clock using the SynchBox device from Brain Products GmbH, Munich, Germany. The 
SyncBox scanner interface serves as the direct receiver for pulses from the MR gradient clock (10,000 
kHz). A model of the MR gradient artifact was generated by averaging EMG signals from five 
repetitions times (TR, 1.5s) of the echo planar imaging (EPI) pulse sequence. The MR artifact template 
obtained was then subtracted from the original data for correcting the gradient artifacts. The artifact 
corrected and filtered data is subsequently used for pattern classification in the following manner. 
EMG signals for each hand were separated into datasets for distinct motor class labels as follows: left 
and right intention trials and left and right imagery trials. Here, each trial corresponds to EMG data 
acquired during one complete TR of the EPI pulse sequence. The classes, left and right intention, 
corresponded to 1 TR, and the classes left and right imagery to 3 TRs, respectively, of the EMG data. 

Complexity of the EMG waveform for each TR (1.5s) was determined as a time-domain feature 
from a moving window of 240 ms and a window-overlap of 24 ms. The waveform was computed 
from the equation: 

 
WL   =   ∑

k=1

L

∣Δx k∣
 Δx k=x k− xk− 1 (6) 

Where X is the rectified EMG data of the window from data point k=1 to k= L, being L the length of 
the window. The feature, WL, of the signal is a combined indicator of signal amplitude and frequency. 
The extracted feature was then transformed to a principal component space by performing a discrete 
Karhunen-Love transform. Non-linear decoding filters were designed using multilayer, feed-forward 
Artificial Neural Networks (ANNs) because of their use in nonlinear regression and classification. By 
using a tan-sigmoid transfer function for the hidden layer neurons and a log-sigmoid transfer 
function for the output layer, the network assigns a probability to each movement, P{Mi}, where i = 
1, 2 corresponds to the 2 hand movements types (right and left). The movement type with the highest 
probability is chosen as the final output of the classifier. The neural network was trained using 
MATLAB’s scaled conjugate gradient descent algorithm in combination with early validation to 
improve generalization. The results were validated using a 10-fold cross validation technique. 

3. Results 

First, we examined whether it was possible to distinguish between successive conditions 
(fixation, intention, and imagery) by classifying the spatial patterns of brain signals. The results of 
multivariate pattern analysis using SVM showed that the classification accuracies for all these areas 
were above chance (>50%) for classification between blocks of fixation and motor intention and 
between motor intention and motor imagery. Furthermore, the PMC and PPC displayed the highest 
classification accuracies (>80%) when compared with other ROIs (see Table 1). Based on the 
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parameters of the trained SVM model, we further analyzed the fMRI data with the EM method of 
multivariate functional analysis [11]. The E-maps (Figure 2) show a clear distinction between the 
activation patterns for the different conditions and relative differences between the ROIs in intention 
formation and imagery, thus confirming the presence of discriminative information in the PPC, PMC, 
and SMA. 

Table 1. Classification accuracies (and standard errors of the mean) for fixation vs. intention and for 
intention vs. imagery. The table shows the classification accuracies of multivariate pattern analysis 
across successive conditions for different ROIs. PMC: premotor cortex; PPC: posterior parietal cortex; 
SMA: supplementary motor area; DLPFC: dorsolateral prefrontal cortex. 

 Fixation vs. Intention Intention vs. Imagery 
Mean SE Mean SE 

PMC 83.9% 1.4 85.9% 1.6 
PPC 82.8% 1.4 83.3% 1.6 
SMA 77.4% 1.5 80.7% 1.8 
M1 72.7% 1.5 74.3% 1.7 

Posterior cingulate 70.2% 1.1 70.5% 1 
DLPFC 74.8% 1.2 76.3% 1.3 

Somatosensory area 72.9% 1.5 75.2% 1.6 
Frontopolar cortex 62.4% 1.3 61.3% 1.3 

 

Figure 2. Activation maps for classification between successive conditions. A) Effect maps (E-maps) 
for the classification between fixation and motor intention. B) E-maps for the classification between 
motor intention and motor imagery. For display purposes, the E-maps were drawn by selecting the 
more informative voxels (the 20% of the voxels with the highest effect values). The figure shows six 
horizontal slices of the brain at spatial intervals of 6 mm in Montreal Neurological Institute (MNI) 
coordinates (numbers represent z-coordinates). R: right; PMC: premotor cortex; SMA: supplementary 
motor area; PPC: posterior parietal cortex. 

In a second step, we further investigated the specificity of the information in the ROIs by testing 
whether the pattern classifier could decode the laterality (left or right) of the task. In the motor 
intention block, the classifier could robustly distinguish between left and right tasks in the PPC 
(accuracy = 63.1%) and in the PMC (accuracy = 61.9%), showing that information about movement 
intention direction is available in these areas (Table 2). During the imagery blocks, classification 
accuracies of >80% distinguished left imagery from right imagery in the PMC, PPC, and SMA. Again, 
particularly high classification results were obtained for the PPC and PMC (mean = 86%) (Table 2 and 
Figure 3A). The E-maps, displaying the most informative voxels for the classification between left 
and right intention, confirm the important roles played by the PPC and PMC in intention formation 
(Figure 3B). 

Table 2. Classification accuracies (and standard errors of the mean) for brain areas and control 
conditions (ocular moment and muscular activity) for “left vs. right” during motor intention (1 TR) 
and motor imagery (3 TRs: T1, T2, T3). PMC: premotor cortex; PPC: posterior parietal cortex; SMA: 
supplementary motor area; DLPFC: dorsolateral prefrontal cortex. 

 Intention Imagery 
T1 T2 T3 
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Mean  SE Mean SE Mean SE Mean SE 
PPC 63.1% 1.2 79.9% 1.3 87% 1.3 86.6% 1.6 

 
PMC 61.9% 1.2 82.9% 1.7 91% 1.4 88% 1.7 

SMA 58.1% 1.4 79% 1.4 84% 2 80.2% 2.2 
Somatosensory area 58.1% 1.7 78.1% 1.9 82.5% 2.1 82.8% 2 

M1 59.1% 1.5 75.7% 2.4 80% 2.4 78.3% 2.5 
Posterior cingulate 52.8% 1 63.4% 1.2 69.6% 1.2 66.8% 1.8 

DLPFC 51.8% 1 55.7% 1.1 55.5% 1.2 54.7% 1 
Frontopolar cortex 51.8% 1 49.3% 1.1 50.9% 1.2 54.2% 1.3 
Ocular movements 52.6% 0.1 53.1% 0.1 50.3% 0.3 53.5% 0.2 
Muscular activity 48.2% 1.7 49.5% 1.3 52.1% 1.1 51% 1.4 

 

Figure 3. Decoding accuracy and activation maps for left vs. right classification. A) Decoding 
accuracies for “left vs. right” across the conditions of intention (1 TR) and motor imagery (3 TRs: 
Imagery T1, T2, and T3). For the sake of clarity, only data from the PPC, PMC, SMA, M1, DLPFC, 
ocular movements, and muscular activity are displayed (for details, see Table 2). B) Activation maps 
for left vs. right during intention. For display purposes, the activation maps were drawn by selecting 
the top 20% most discriminating voxels. Numbers represent z-coordinates in the Montreal 
Neurological Institute (MNI) system. PMC: premotor cortex; SMA: supplementary motor area; PPC: 
posterior parietal cortex; DLPFC: dorsolateral prefrontal cortex. 

To confirm that these results were not influenced by physiological factors such as eye 
movements and hand muscle activity, we acquired eye tracker and EMG signals within the fMRI 
sessions and performed pattern classification of these signals by using linear discriminant and neural 
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network analyses. Results of the classification of pupil positions for left vs. right motor intention, as 
well as for motor imagery, were around the chance level. Similar results were obtained by classifying 
the EMG signals of the left and right hands (Table 2 and Figure 3A).  As intentions for movement 
are shown to be anatomically segregated in the PPC, with regions being specialized for planning 
saccades, in addition to reaches and grasps, these results show that the fMRI classification was 
specifically derived from movement imagery and was not related to systematic eye movements.  

4. Discussion 

Our results show that intentions for different types of motor imagery can be predicted from 
BOLD signals in the parieto-frontal regions (particularly the PPC and PMC) of the human brain with 
a support vector classifier. Varied evidence shows that the PPC plays a crucial role in movement 
planning [27] and that it contains anatomically segregated regions (intentional maps) that code for 
the planning of different movements [28]. Furthermore, electrical stimulation of the inferior parietal 
cortex in human patients with brain tumors caused a strong intention and desire to move, whereas 
more intense stimulation of this area led to illusory movement awareness, thus lending credence to 
the hypothesis that both motor intention and motor awareness emerge from activations of parietal 
regions [29]. Having said that, the PMC has anatomical connections with the frontal, parietal, and 
motor cortical regions [30]. This establishes the PMC as a central hub in the processes of motor 
planning and execution, effectively transmitting information regarding the advanced cognitive 
functions associated with movement [31]. The high classification accuracies obtained in the present 
study during the intention block for the PPC and PMC suggest that these regions play analogous 
roles in intention formation for both overt and covert movements. 

The specificity of these results could be seen in light of the comparatively lower classification 
accuracies obtained from the other brain areas included in the analysis. This point is further 
reinforced by considering the almost chance classification accuracy obtained from the DLPFC for 
both intention and imagery, despite this being a relatively large region in the brain. 

Interestingly, for left vs. right classification during both movement intention and imagery, a 
general tendency for higher prediction accuracies for the PPC and PMC, as compared to that for M1, 
was found across every time point. These findings are concordant with the idea that premotor and 
parietal regions play a predominant role in different aspects of action planning [32–34] and that the 
primary motor cortex is inconsistently activated during motor imagery, usually at a lower intensity 
than during motor execution [35]. 

It might be argued that the experimental paradigm does not assure that participants did not 
perform mental imagery during the intention block. However, this interpretation is not tenable in 
view of the high classification results for differentiating between motor intention and motor imagery 
and the different brain areas involved in the two conditions (see Table 1 and Figure 2). It might be 
also argued that the high classification accuracies obtained for intention were merely the result of a 
nonspecific expectancy for the forthcoming go signal or imagery block. However, in this case, it 
would have been impossible for the classifier to distinguish between left and right motor intentions 
(see Table 2 and Figure 3). 

We propose that the concept of intention that was studied in this experiment belongs to the class 
of “immediate intentions,” which are accompanied by conscious experiences of impending actions 
[36]. Immediate intentions can be distinguished from prospective intentions based on how early the 
episodic details of an action are planned. In the former case, the time lag between an intention and 
its action can be very short and may not even be consciously separable. In the latter case, the time 
difference between the formation of an intention and its actual execution may be quite prolonged, as 
in the planning of a holiday today and its actual execution several days later. It has been proposed 
that immediate intentions have a feature that makes a clear prediction about the oncoming action. 
Termed the content argument, this states that intentions for two different actions (e.g., left vs. right 
hand) have two different contents in the brain, capable of explaining or predicting which body part 
will be used for movement. In our study, we have shown evidence for the content hypothesis by 
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predicting with high accuracy left movement imagery (of reaching and grasping), as distinct from 
right movement imagery, by using fMRI signals before the onset of imagery. 

Our results suggest future applications in which high-level preparatory activity in the parieto-
frontal regions can be applied to control neural prosthetics in BCI. We assume that repeatable 
formations of motor intentions may persist in the absence of overt movement in those patients who 
can maintain or be trained to maintain mental simulations of movement, a concept that has important 
implications for rehabilitation and restoration of movement, e.g., after a stroke. If a paradigm similar 
to that used here is implemented, a portable brain–computer interface (BCI) based on EEG [37] or 
near-infrared spectroscopy (NIRS) [38] could be built to operate a neuro-prosthetic device as an 
“intention brain–machine interface.” There is an advantage in using higher, cognitive areas of the 
sensorimotor system, in particular the PPC, for the following reasons: 1) Although the motor regions 
may undergo degradation during paralysis, the PPC may suffer less degradation because of its close 
link to the visual system, which is still intact; 2) as movement restoration is accompanied by neural 
plasticity, it is hypothesized that the PPC plays a larger role in this recovery because of its 
involvement in sensorimotor re-registration of behavior; and 3) for accurate control of movement, 
closed-loop feedback is necessary, and this is largely lost in the motor areas as a result of lesions but  
often remains intact in the PPC because the re-afference to this region is also visual. 
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