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Abstract: Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular
mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic
vascular complications. Here, we investigated the effects of DNA-aptamer raised against AGEs (AGE-Apt) on
testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-
week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR,
and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with AGE-Apt or
control aptamer for 6 weeks and then sacrificed. Plasma glucose, testicular AGEs, and RAGE gene expression
in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene
expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice; the latter of which
was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited
the seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and
restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings
suggest that AGEs-Apt may improve sperm abnormality by suppressing the AGE-RAGE-induced oxidative
stress and inflammation in the testes of DM mice.

Keywords: AGEs; DNA aptamer; diabetes; male infertility; sperm abnormality; testis

1. Introduction

Epidemiological studies have reported that 8%-12% of couples suffer from infertility globally,
and 40%-50% of cases are attributed to male infertility [1]. Birth rates have been declining in
developed countries [1]; thus, male infertility has appeared as a serious social issue in such societies
with declining birth rates and aging populations [1]. Varicocele, hypogonadism, seminal tract
obstruction, and sexual dysfunction play a causal role in male infertility, but these disorders account
for approximately 40% of the causes of male infertility [2,3]. Therefore, obvious causes have not been
identified for the rest of patients with male infertility, and these individuals are diagnosed with
idiopathic male infertility [2,3], which therapeutic strategy remains not established.

Diabetes mellitus is a highly prevalent metabolic disorder globally, and type 2 DM (T2DM) is
mainly characterized by hyperglycemia with visceral obesity and insulin resistance, making up
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approximately 90%-95% of DM [4]. Chronic hyperglycemia exposure causes neurovascular
dysfunction [5], which resultsresulted in sexual dysfunction, such as erectile dysfunction and
retrograde ejaculation [6]. Indeed, DM has been reported to be one of the established risk factors for
sexual dysfunction in males [6]. Furthermore, previous clinical studies have shown that sperm
quantity and quality are impaired in males with T2DM [7-10], thus suggesting that T2DM may be a
causal factor of male infertility, regardless of sexual dysfunction. However, the underlying molecular
mechanisms relating T2DM to sperm abnormality remain largely unclear [11].

Advanced glycation end products (AGEs) are molecules that are formed by nonenzymatic
glycation of proteins, lipids, and nucleic acids, which process has progressed under DM [12-14]. The
macromolecule modification by AGEs alters their structure and function in both animal models and
humans [13]. Furthermore, AGEs have been shown to evoke oxidative stress generation and
inflammatory responses through the interaction with their cell-surface receptor termed receptor for
AGEs (RAGE) [12-14]. AGEs are hardly degraded within the body and are slowly excluded from the
kidney, thereby progressively accumulating in the tissues of individuals with DM [15]. Several
preclinical and clinical studies have revealed that AGEs play a crucial role in diabetic complication
development and progression [12-15]. Oxidative stress and inflammation have been shown not only
to impair spermatogenesis but also damage spermatozoa [16,17]; thus, AGEs may probably have a
causal role in sperm abnormalities in T2DM. However, the role of the AGE-RAGE axis in sperm
abnormalities in T2DM remains unclear, and the AGE-RAGE pathway inhibition as a potential
therapeutic target for DM-associated male infertility remains unclear.

Aptamers are composed of short single-stranded DNA or RNA sequences that bind to target
molecules and neutralize their functions [18]. Protein antibodies are widely used for the same
purpose, but aptamers have many advantages, such as short generation time, low production costs,
less variability between products, and high thermal stability, compared with neutralizing antibodies
[18]. Currently, many clinical trials are ongoing to assess the efficacy of aptamers against ocular
diseases, hematologic diseases, and cancer [18]. Recently, we have developed DNA aptamers that
have high binding affinity specific to glyceraldehyde-derived AGEs, which is one of the most toxic
AGEs, that induce oxidative stress and inflammation in vivo [19,20] and revealed that DNA aptamers
raised against AGEs (AGE-Apts) inhibit the interaction of AGEs with RAGE in vitro [19,20] and
hinder the development of diabetic nephropathy and retinopathy, tumor growth, neointimal
hyperplasia after balloon angioplasty, and fructose-induced adipocyte remodeling in rodent models
[21-24]. Therefore, the present study investigated the effects of AGE-Apt on testicular and sperm
abnormalities in a mouse model of T2DM with obesity and insulin resistance to elucidate the role of
the AGE-RAGE axis in male infertility.

2. Results

2.1. AGE-Apt Inhibited Oxidative Stress, RAGE Gene Expression, Inflammation, and Apoptotic Cell Death
in the Testes of Diabetic Mice

Figure 1 A shows the experimental schema. Male mice of non-diabetic C57BL/6] (non-DM) and
diabetic KK.Cg-Avy/TaJcl (DM) mice strains were evaluated at 4, 7, and 13 weeks of age. Some 7-week-
old mice received subcutaneous infusion of control- (CTR-) or AGE-Apt for 6 weeks. Body weights
and plasma glucose levels were higher in DM mice than in non-DM mice at 4 weeks of age (Table 1).
At this age, AGEs already accumulated in the testes of DM mice, which was accompanied by Rage
and monocyte chemoattractant protein 1 (Mcp-1) gene expression upregulation (Figure 1B,D), but not 8-
hydroxy-2'-deoxyguanosine (8-OHdG), which is an oxidative stress marker or tumor necrosis factor-
alpha (Tnf-a) gene levels (Figure 1C,D). Glycated hemoglobin (HbAlc) levels, besides body weights
and plasma glucose levels, were significantly higher in DM mice than in non-DM mice at 7 weeks of
age (Table 1). Furthermore, oxidative stress and gene expression levels of Mcp-1 and Tnf-a were
increased in the testes of DM mice compared with non-DM mice, which were associated with the
increased accumulation of AGEs (FigurelB-D). Food intake, body weights, HbAlc values, and
plasma levels of glucose, insulin, total cholesterol, triglycerides, and testosterone were significantly
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higher in CTR-Apt-treated DM mice than in CTR-Apt-treated non-DM mice at 13 weeks of age (Table
1). Furthermore, number of cells positive for F4/80, which is a marker of macrophages, and terminal
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), which is a marker of apoptotic cells,
were increased in the testes of CTR-Apt-treated DM mice (Figure 1E,F), accompanied with the
increased levels of AGEs, 8-OHdG, Rage, Mcp-1, and Tnf-a gene expressions (Figure 1B-D). AGE
accumulation and oxidative stress in the testes of DM mice were only observed in the interstitial area,
but not within the seminiferous tubules throughout the experimental periods (Figure 1B, C). F4/80-
positive cells were also observed only in the interstitial area of the testes in DM mice at 13 weeks old
(Figure 1D), whereas TUNEL-positive cells were in both interstitial and seminiferous tubular areas
(Figure 1F). The 6-week intervention with AGE-Apt did not affect glycemic or metabolic parameters
or AGE accumulation levels in DM mice at 13 weeks old (Table 1, Figure 1B), but it significantly
reduced 8-OHdG levels, Rage, Mcp-1, and Tnf-a gene expressions, and numbers of F4/80- and
TUNEL-positive cells in the testes of DM mice (Figure 1C-F).

Table 1. Anthropometric and biochemical parameters of non-diabetic (Non-DM) and diabetic mice
(DM) at 4, 7, and 13 weeks of age.

4 Weeks Old 7 Weeks Old 13 Weeks Old
Non-DM DM DM
Non-DM DM Non-DM DM +CTR-Apt +CTR-Apt +AGE-Apt
Number 7 6 7 8 8 8 8
Food intake (g/day) N.A. N.A. N.A. N.A. 50+05 73+0.6" 7.1+04"
Body weight () ~ 184+1.1 225+16  214+10 358426 270412 440+22' 424+15'
Testis weight (mg) ~ 132+18  111+8 19049 206+21 21327 205+25 21813
HbATc (%) <40 <40 47403 70409 48402 102+1.0' 104+1.0°
Plasmaglucose 10,11 201516 142414 207238 15549  190+29*  174+22
(mg/dL)
Plasma insulin N.A. N.A. NA  NA 024+006 244+177" 1.93+1.17¢
(ng/mL)
Plasma total
cholesterol N.A. N.A. NA. N.A. 38+3  68+5  62+1l*
(mg/dL)
Plasma triglycerides
N.A. N.A. N.A. N.A. 39+9  115£19" 10536
(mg/dL)
Pl
asma testosterone 5 N.A. N.A. N.A. 16+1.1 35.6+260° 26.6+113"
(ng/mL)

Means + standard deviation. HbAlc: glycated hemoglobin Alc; N.A.: not available. "p < 0.05 vs. Non-DM at the
same age (weeks); fp <0.05 vs. Non-DM CTR-Apt.
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Figure 1. AGE-Apt inhibited oxidative stress and inflammation in the testes of diabetic mice. (A)
Schema of animal experiments. (B, C) Testicular AGE accumulation (B) and oxidative stress levels (C)
in non-diabetic and diabetic mice. The left panels demonstrate representative immunofluorescence
images for AGEs (B) and 8-OHdG (C) in each group. Yellow dotted lines indicate the outer edge of
seminiferous tubules. Magnification: x200; bars: 200 um. (D) Testicular gene expression levels of Rage,
Mocp-1, and Tnf-a in non-diabetic and diabetic mice. Data exhibit relative levels of target molecules to
the housekeeping gene, 18s rna. (E, F) Number of macrophages (E) and apoptotic cells (F) in the testes
of non-diabetic and diabetic mice. The upper panels indicate representative immunofluorescence
images for F4/80 (E) and TUNEL (F) in each group. Yellow dotted lines denote the outer edge of
seminiferous tubules, whereas arrows show TUNEL-positive cells within seminiferous tubules.
Magnification: x200; bars: 200 pm. (A-D), n = 6-8 per group; (E, F), n =3 per group. 'p <0.05, “p < 0.01
vs. Non-DM at the same age; *p < 0.05, p < 0.01 vs. Non-DM CTR-Apt; ¥p < 0.05, #p < 0.01 vs. DM
CTR-Apt. Non-DM, wild-type mouse; DM: KK-Ay mouse; CTR-Apt: control aptamer; AGE-Apt:
AGE-inhibitory aptamer; w: week.
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2.2. AGE-Apt Attenuated Seminiferous Tubular Dilation and Sperm Abnormalities in Diabetic Mice

Histological analysis revealed no significant difference in seminiferous tubular structure

between non-DM and DM mice at 4 weeks old (Figure 2A,B), but significantly dilated seminiferous
tubules in the testes of DM mice at 7 and 13 weeks of age (Figure 2A,B) compared with non-DM mice
of the same ages, which was associated with increased luminal area (Figure 2C). Six-week
intervention with AGE-Apt significantly attenuated the seminiferous tubular dilation and the
increase in luminal area of testes of DM mice (Figure 2A-C). The assessment of molecules comprising
of blood-testis barrier (BTB) revealed decreased gene expression levels of claudin-3 (Cldn3) and
occludin (Ocln) in the testes of CTR-Apt-treated DM mice at 4 and 7 weeks of age, respectively (Figure
2D). However, AGE-Apt did not affect these gene expressions (Figure 2D).
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Figure 2. AGE-Apt attenuated seminiferous tubular dilation and sperm abnormalities in diabetic
mice. (A) Representative images of seminiferous tubules of non-diabetic and diabetic mice stained
with H&E. The upper images show low magnification (x40); the lower images exhibit high
magnification (x100); bars: 200 um. (B, C) Seminiferous tubule area (B) and lumen area (C). (D)
Testicular gene expression levels of Cldn-3 and Ocln in non-diabetic and diabetic mice. Data
demonstrate relative levels of target molecules to the housekeeping gene, 18s rna. (E) Sperm
concentration. (F) Sperm normal motility. (G) Sperm viability. (H) Sperm normal motility after 6-hour
incubation with TNFa. (I) Sperm viability after 24-hour incubation with TNFa. (B-G), n = 6-8 per
group; (H), n =6 per group; (I), n =3 per group. "p <0.05, “p <0.01 vs. Non-DM at the same weeks old;
tp <0.05, tp <0.01 vs. Non-DM CTR-Apt; #p < 0.05, #p < 0.01 vs. DM CTR-Apt.

We then studied the effects of AGE-Apt on sperm parameters. No spermatozoon was collected
from non-DM or DM mice at 4 or 7 weeks of age (Figure 2E-G). Sperm concentration, normal motility,
and viability were significantly decreased in CTR-Apt-treated DM mice compared with CTR-Apt-
treated non-DM mice at 13 weeks of age (Figure 2E-G). AGE-Apt treatment for 6 weeks significantly
restored the decrease in sperm concentration and improved normal motility and viability of sperm
in DM mice at 13 weeks of age (Figure 2E-G).

2.3. TNF-a Impaired Sperm Motility and Viability

Finally, spermatozoa collected from non-DM mice at 13 weeks of age were incubated with
vehicle or TNF-a to investigate the direct effects of TNF-at on spermatozoa. Both sperm mobility and
viability were significantly decreased by the incubation with TNF-a (Figure 2H,I).

3. Discussion

Birth rates have been declining in many developed countries, and increasing rates of male
infertility have become a crucial social issue in these societies with declining birth rates and aging
populations [1]. Clinical studies have revealed that both TIDM and T2DM are associated with sperm
abnormalities in males [4]. However, most preclinical studies have investigated the mechanisms
underlying DM-induced sperm abnormalities using rodent models of TIDM [11]. The present study
used male KK-Ay mice, a model of T2DM with obesity, to investigate the effects of DM on testes and
sperm abnormalities because (1) TIDM only accounts for <5%-10% of diabetic population, and most
of the diabetic patients are T2DM, (2) TIDM and T2DM features chronic hyperglycemia, but their
pathologies are completely different: the main characteristic of TIDM includes impaired insulin
secretion due to insulin-producing pancreatic 3-cell destruction, whereas that of T2DM includes
insulin resistance caused by visceral obesity [4], (3) accumulating evidence has suggested the
association of obesity and insulin resistance with male infertility [24], and (4) some T2DM mice
models, such as db/db and ob/ob mice, are highly infertile due to the lack of leptin signaling, which
is independent of DM [26-28], but KK-Ay mice still possess fertility [29,30]. Furthermore, we focused
on the glyceraldehyde-derived AGE-RAGE axis for investigating the effects of DM on male infertility
because [31-34] (1) glyceraldehyde-derived AGEs, among various types of AGE structures, mimicked
the deleterious effects of AGE-rich serum purified from patients with diabetic uremia on neuronal
and endothelial cells, and the harmful effects of diabetic serum were neutralized by anti-serum raised
against glyceraldehyde-derived AGEs and (2) this type of AGEs demonstrated a stronger binding
affinity to RAGE, and their levels were increased under insulin-resistant and oxidative-stress
conditions and associated with visceral adipose tissue and vascular inflammation in humans, and (3)
seminal fluid contains high levels of fructose, which is metabolized to glyceraldehyde-3-phosphate,
thus producing glyceraldehyde-derived AGEs [35-37].

The present study revealed that body weights and plasma glucose levels were significantly
increased in 4-week-old DM mice compared with age-matched non-DM mice, whereas HbAlc levels
were comparable between them. HbAlc levels reflect average plasma glucose levels over the
preceding 4-8 weeks [4], indicating that DM mice were not exposed to chronic hyperglycemia
evaluated by HbAlc at this time point. Conversely, we revealed already increased AGE accumulation
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levels in the testes of 4-week-old DM mice compared with age-matched non-DM mice. Therefore,
AGE accumulation could be stimulated in the diabetic testes under insulin-resistant conditions in our
model, part of which was independent of chronic hyperglycemia reflected by HbAlc. Furthermore,
8-OHdG, an oxidative stress marker, and pro-inflammatory Tnf-a gene expressions were increased
in the testes of 7-week-old DM mice after the testicular AGE accumulation, which was accompanied
by structural changes of seminiferous tubular dilation. Subsequently, abnormal sperm quantity and
quality, such as decreases in sperm concentration, normal mortality, and viability, were observed in
13-week-old DM mice. Notably, the 6-week intervention with AGE-Apt treatment significantly
attenuated all of the testicular alterations and sperm abnormalities without affecting glycemic,
metabolic, and anthropometric parameters, or testicular AGE accumulation levels. These findings
indicate that the AGE-RAGE interaction may play a causal role in testicular damage and sperm
abnormalities in an animal model of T2DM with insulin resistance and obesity, thus suggesting that
AGE-Apt may be a novel therapeutic option for treating male infertility in T2DM (Figure 3).

Fig. 3
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Figure 3. Proposed mechanism of the AGE-induced sperm abnormalities in T2DM and their blockade
by AGE-Apt.
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AGEs have been shown to induce oxidative stress generation and inflammatory responses, such
as Mcp-1 and Tnf-a gene expressions, through the interaction with RAGE in various cell types [12-
14]. Furthermore, AGEs are reported to upregulate RAGE expression via oxidative stress generation,
thereby forming a positive feedback loop between AGEs and RAGE-induced oxidative stress [38,39].
The present study revealed increased gene expression levels of Rage following AGE accumulation in
the testes of 4-week-old DM mice. Testicular Rage gene expression once returned to non-diabetic
levels in 7-week-old mice, but it was recurrently upregulated in 13-week-old DM mice. Moreover,
we revealed that the 6-week intervention with AGE-Apt treatment significantly decreased testicular
Rage gene expression levels, which was concomitant with the suppression of testicular oxidative
stress levels and pro-inflammatory gene expressions in 13-week-old DM mice. These observations
suggest that increased AGE accumulation levels in the diabetic testes under insulin-resistant and
hyperglycemic conditions could stimulate the RAGE gene expression via oxidative stress generation
in a positive feedback manner, which was a molecular target of AGE-Apt treatment-induced
improvement of seminiferous tubular dilation and sperm abnormalities. This study revealed that
testicular AGE accumulation per se was not affected with 6-week treatment with AGE-Apt, which
was consistent with the present finding, indicating that AGE-Apt treatment suppressed oxidative
stress and Rage upregulation in soleus muscles but did not affect skeletal muscular AGE
accumulation in a mouse model of sarcopenia [39]. Accordingly, AGE-Apt functions as a blocker of
the binding of AGEs to RAGE, which could subsequently reduce oxidative stress generation and
inflammation in the diabetic testes, but it did not sufficiently inhibit the oxidative-stress-induced
AGE formation under insulin-resistant conditions in our model.

Seminiferous tubules are filled with luminal fluid, with their levels balanced via production by
Sertoli cells and reabsorption by epithelial cells [40,41]. Accordingly, epithelial fluid reabsorption
dysfunction causes seminiferous tubular dilation by outward pressure overload through luminal
fluid accumulation, which damages germinal cells and ultimately impairs spermatogenesis [40,41].
A previous study has revealed that phosphodiesterase 4 inhibitor, BYK169171, administration
induces seminiferous tubule dilation, which follows testicular inflammation in rats [42]. The present
study revealed that seminiferous tubular dilation following increased liminal area occurred
simultaneously with oxidative stress generation and Tnf-a gene overexpression in the testes of 7-
week-old DM mice despite the absence of structural abnormality of seminiferous tubules in the testes
of 4-week-old DM mice. Additionally, decreased sperm concentration was observed in 13-week-old
DM mice, which was restored by AGE-Apt in association with the inhibition of oxidative stress
generation, testicular Mcp-1 and Tnf-a gene expressions, and seminiferous tubular dilation.
Seminiferous tubular dilation may be caused by oxidative stress generation and inflammation rather
than hyperglycemia per se in our model because AGE-Apt treatment did not affect glycemic or
metabolic parameters. Therefore, the present findings suggest the involvement of testicular oxidative
stress generation and inflammation evoked by AGE-RAGE axis activation in seminiferous tubular
dilation and sperm abnormalities in T2DM.

MCP-1 is a chemokine that plays an important role in inflammatory process initiation by
inducing tissue macrophage recruitment [43]. We have previously revealed that AGEs increase MCP-
1 protein levels in human cultured endothelial and mesangial cells [44,45]. Furthermore, AGEs
activate macrophages to produce pro-inflammatory cytokines, such as TNF-a, via the interaction
with RAGE [46,47]. An in vitro study revealed that TNF-a reduced motility and viability of human
spermatozoa in a dose- and time-dependent manner [48,49]. Additionally, germ cell apoptosis is
shown to be induced by the incubation with conditioned media of testicular macrophages, whose
effect is inhibited by the neutralization of TNF-a [50]. These observations indicate that TNF-a
produced by infiltrated macrophages may disrupt sperm production and function. The present study
revealed that Mcp-1 gene upregulation was first observed in the testes of DM mice, which was
followed by Tnf-a gene upregulation. AGE-Apt administration not only inhibited macrophage
accumulation in the testicular interstitial area but also reduced apoptotic cells within the seminiferous
tubules, both of which were concomitant with suppression of testicular Mcp-1 and Tnf-a gene
expression levels. Additionally, TNF-a directly impaired normal motility and viability of sperm in
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the ex vivo experiments. Therefore, our present findings suggest that, in KK-Ay mice, AGEs could
induce macrophage infiltration into the testicular interstitial areas through MCP-1 upregulation via
RAGE-induced oxidative stress, which may subsequently evoke germinal apoptotic cell death and
sperm dysfunction in seminiferous tubules via TNF-a production (Figure 3).

BTB is a complex cell structure present in the seminiferous epithelium, which works as a
physiological barrier and is composed of tight, gap, and adhesion junctions between Sertoli cells [51].
BTB plays an essential role in spermatogenesis and sperm function by controlling substance entry
into seminiferous tubules [51]. Previous studies revealed that protein or gene expression levels of
BTB-composing molecules were decreased in DM animals, thereby causing BTB dysfunction [52]. In
the present study, gene expression levels of Ocln and Cldn3 were decreased in the testes of 13-week-
old DM mice; however, AGE-Apt did not affect the expressions. Therefore, BTB-composing
molecule reductions may be induced by other factors than AGEs: hyperglycemia and/or dyslipidemia
may destroy BTB. This may be one of the reasons why AGE-Apt treatment did not fully restore the
decrease in sperm motility.

The present study has several limitations. First, plasma testosterone levels were higher rather
than lower in our DM mice than in non-DM mice, which was in contrast with the finding of decreased
plasma testosterone levels in males with T2DM [53,54]. Therefore, the involvement of the AGE-
RAGE axis in sperm abnormalities in T2DM with low plasma testosterone remains unclear. Second,
we evaluated sperm abnormalities using spermatozoa directly collected from the cauda epididymis.
However, post-testicular factors, such as seminal plasma, also affect sperm quality in ejected semen
[6,7]. Thus, the effects of the AGE-RAGE axis on ejected semen and its contribution to sperm
abnormalities in our model remains unknown.

4. Materials and Methods

4.1. Preparation of DNA Aptamers

DNA aptamers were synthesized as previously described [23]. The sequences of DNA aptamers
were as follows: AGE-Apt, 5-tgTAgcccgAgTATcATTcTccATcgeccccAgATAcAAg-3"; CTR-Apt, 5'-
aTcgAccTggAggcgAgcAgcTceggATccAg-TegegTgAg-3'. Phosphorothioate nucleotides are indicated
in capital letters.

4.2. Animal Study

The Animal Care Committee of Showa University School of Medicine (approval number: 03034;
approval date: April 1, 2021) approved the animal experiments, with adhesion to ARRIVE 2.0
guidelines and the Guide for the Care and Use of Laboratory Animals (8th Edition) [55,56]. Invasive
procedures were conducted under general anesthesia using isoflurane. CLEA Japan (Meguro, Tokyo,
Japan) supplied 30 male mice of KK-Ay strain mice, a mouse model of T2DM [29,30], and 22 male
mice of wild-type C57BL/6] strain used as non-DM controls. The mice were maintained in an
individual cage with free access to standard rodent chow and water in the animal care facility of
Showa University.

Figure 1A shows the experiment schema. Some of KK-Ay and wild-type mice were sacrificed at
4 and 7 weeks of age. The rest of the KK-Ay mice at 7 weeks of age were randomly categorized into
CTR-Apt or AGE-Apt treatment following their cage number. The rest of the non-DM mice at 7 weeks
of age were assigned to CTR-Apt treatment. Aptamers were continuously infused in mice at 10
pmol/g body weight/day for 6 weeks via osmotic pumps implanted under the dorsal skin [39].
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Both sides of the epididymides and testes were carefully excised at the end of each experiment.
The epididymides were used to collect spermatozoa. The left testis was soaked in Bouin solution for
hematoxylin and eosin (H&E) and immunofluorescence staining after weighing the testes, and the
right one was snap-frozen with liquid nitrogen for reverse transcription polymerase chain reaction
(RT-PCR) assay.

4.3. Measurement of Biochemical Parameters, Blood Pressure, and Heart Rates

Plasma levels of biochemical parameters, blood pressure, and heart rates were measured as
previously described [57]. Blood samples were collected under a fasting state at the end of each
experiment. An immunoassay and an enzyme electrode assay were used for HbAlc and plasma
glucose level measurements, respectively. Plasma insulin and testosterone levels were determined
with enzyme-linked immunosorbent assay (Ultra-sensitive Mouse insulin ELISA kit, Product ID:
M1104, Morinaga Institute of Biological Science, Yokohama, Kanagawa, Japan; Testosterone ELISA
kit, Product ID: ENZ-ADI900065, Enzo Life Sciences, Farmingdale, NY, USA). A non-invasive tail-
cuff method was used for systolic blood pressure and heart rate measurements.

4.4. Immunofluorescence Staining

Immunofluorescence staining was performed as previously described [57]. Cross-sections were
incubated with anti-AGEs antibody (raised in rat, 1: 100) [21], anti-8-OHdG antibody (Product ID:
MOG-020P, RRID: AB_1106819, raised in mouse, 1:200; Nikken Seil, Fukuroi, Shizuoka, Japan), or
anti-F4/80 antibody (Product ID: Ab204467; RRID: AB_2810932, raised in rat; 1:250; Abcam Japan,
Chuo, Tokyo, Japan) overnight. The cross-sections were further incubated with secondary antibodies
for 4 h and mounted with VECTASHIELD Antifade Mounting Medium (Vector Laboratories,
Newark, CA, USA). Cross-sections were used for the TUNEL assay to detect apoptotic cells, following
the manufacturer’s instructions (Product ID: 11684795910; Sigma-Aldrich Japan, Meguro, Tokyo,
Japan). A confocal microscope (BZ-X710 microscope Keyence, Osaka, Osaka, Japan) and Image ]|
software were used to obtain and analyze immunofluorescence images, respectively.

4.5. Real-Time RT-PCR

Total RNA extracted from cells and tissues was used to synthesize cDNA for RT-PCR assay as
previously described [57]. The TaqMan gene expression assay and sequence detection system
(Quantstudio3; Life Technologies Japan, Minato, Tokyo, Japan) were used for quantitative real-time
RT-PCR [57]. The following pre-designed TagMan probe sets were used for the assay: Cldn3,
Mm00515499_s1; Mcp-1, MmO00441242_m1; Ocln, MmO00500912_m1; Tnf-a, Mm00443258_m1; Rage,
Mm00545815_m1; 185 ribosomal RNA (18s rna), Mm03928990_g1. The expression levels of the target
gene were normalized with those of the internal control 18s rna.

4.6. Histological Assessment of Testis

The left testes were further fixed in 10% neutral buffered formalin for several days at 4°C and
mounted in a paraffin block after being soaked in Bouin solution for 24 h at 4°C. Cross-sections were
obtained from the middle part of paraffin-embedded testes, and stained with H&E for measuring
seminiferous tubule and lumen areas [58]. Image ] software (National Institutes of Health, Bethesda,
MD, USA) was used for image analysis. At least 20 seminiferous tubules per testis were measured,
and the averaged data was used as an individual value.
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4.7. Sperm Collection

The swim-out method was used to collect spermatozoa from the cauda epididymis as previously
reported with some modifications [59]. The left and right sides of the cauda epididymis of each mouse
were separately soaked in 1 mL of M2 medium (Sigma-Aldrich Japan) maintained at 37°C.
Subsequently, the cauda epididymides were minced within the medium using spring scissors,
incubated to allow spermatozoa to swim out for 15 min, and then removed from the medium.
Spermatozoa were further incubated in the medium for 45 min to induce their capacitation.

4.8. Sperm Analysis

Sperm parameters were assessed as previously reported with some modifications [60]. Sperm
concentration was counted using hemocytometers. Sperm suspension of 10 uL was diluted with the
same volume of M2 medium on a glass slide and covered by a 24 mm x 32 mm cover glass for sperm
motility assessment. Individual spermatozoons were microscopically categorized into normal
(progressive movement) or abnormal (non-progressive or no movement) motility. Sperm viability
was identified with eosin-nigrosine staining; 5 pL of sperm suspension was mixed with 5 uL of 5%
eosin solution for 30 s, and then with 10 uL of 10% nigrosine for an additional 30 s on a glass slide,
which was subsequently smeared and air-dried. A spermatozoon with an eosin-positive head was
counted as a dead cell. Sperm motility and viability were evaluated on at least 100 spermatozoa per
epididymis. Spermatozoa that were collected from the left and right epididymides of each mouse
were separately analyzed and then averaged as an individual value.

4.9. Ex Vivo Assay

Spermatozoa were collected from non-DM mice as previously described. Spermatozoa were
seeded into tubes at a 4 x 10° cells/mL density using M2 medium [48,49], and incubated with vehicle
or recombinant human TNF-a (100 ng/mL; R&D Systems, Minneapolis, MN, USA) at room
temperature for 6 and 24 h to assess sperm normal motility and viability, respectively.

4.10. Statistical Analysis

The sample size was calculated to minimize the number of animals based on our previous
studies [21-24,39]. Data are expressed as mean + standard deviation. JMP software (version 13; SAS
Institute, Cary, NC, USA) was used for statistical comparison. Comparisons were conducted using
an unpaired #-test or one-way analysis of variance with Tukey’s post-hoc test as appropriate. The
significance level was defined as a p-value of <0.05.

5. Conclusions

Our present findings suggest the involvement of testicular AGE accumulation in seminiferous
tubule dilation and sperm abnormality via testicular oxidative stress and inflammation evoked by
RAGE activation in the mouse model of T2DM. Additionally, the inhibition of the AGE-RAGE axis
by AGEs-Apt can be a therapeutic option for treating male patients with infertility in T2DM.
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