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Abstract: The paper describes the new method for image compression based on coordinated group
signal transformation. The algorithm is a type of difference coding. Coordinated processing
significantly simplifies the difference signal conversion scheme using a single group codec for
all signals. The described method considers color channels as correlated signals of a multi-channel
communication system. The specifics of the processed data required modification of the coordinated
group processing algorithm. First, we changed how to calculate the difference signals to prevent data
loss. Secondly, the group codec was supplemented with a neural network to improve the quality
of reconstructed images. We considered the following types of neural networks: fully connected,
recurrent, convolution, and convolution in the Fourier space. Based on the simulation results, it is
best to use fully connected neural networks if the goal is to minimize processing delay time. These
networks have a response time of 13 ms. On the other hand, if the priority is to improve quality in
cases where delays are not critical, then convolution neural networks in the Fourier space should be
used. These networks have a response time of 140 ms and are of significant interest.

Keywords: energy-efficient coding; differential coding; coordinated group signal transformation;
image compression; image quality criteria; neural networks

1. Introduction

The amount of information generated worldwide has grown dramatically over the last few years.
Wireless data traffic is a very illustrative example of this tendency. According to Ericsson data, global
mobile data traffic (excluding traffic from fixed wireless networks) will grow to 288 EB per month
by 2027. The total mobile monthly traffic, including fixed wireless networks, is forecast to grow to
370 EB by the end of 2027 [1]. Satellite traffic is projected to grow to 125 EB by 2030 [2]. At the
same time, this data traffic extension was caused by the growth of wireless device numbers, not only
user mobile terminals but also Internet of Things (IoT) equipment. The number of global active IoT
connections grew by 18% in 2022 to 14.3 billion and is predicted to exceed 16.7 billion in 2023 [3].
For wireless networks (both terrestrial and satellite) and IoT devices the energy efficiency problem is
critical, especially in 5G and 6G systems [4–7]. General approaches to reducing energy consumption
and increasing energy efficiency in wireless networks are discussed in detail in [8], where, taking
into account [9], it is indicated that improving algorithms and architecture devices and networks
make the most significant contribution to energy savings (up to 75 %). In mobile networks, there
are different algorithms to improve energy efficiency, such as MIMO, short-term sleep solutions,
intra-sector traffic steering, and power control through random access channels [10,11]. Still, there
are a lot of other approaches to solving the power consumption problem in wireless systems, such
as applying multidimensional constellation diagrams [12,13] and minimum energy coding [14], and
different types of precoding in high-throughput satellite communication systems [15].
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Coordinated group signal transformation (CGST), representing one of the energy-efficient coding
methods, is another option to reduce the source signals average power. In contrast to existing difference
coding methods based on predicting processed signals, including using neural networks [16,17], CGST
is used for the collective processing of several correlated signals. This makes it possible to take into
account their mutual connection and simplifies the coding scheme in a multi-channel system, that is, the
codec structure. The performance of CGST has already been demonstrated for processing low-speed
data [18], its effectiveness in increasing energy efficiency by reducing the amount of transmitted
information (shortening the codeword length) was demonstrated in [19].

However, the prospects for using the CGST codec for high-speed multi-channel communication
systems are of much greater interest. One of the possible applications is the satellite communication
systems, which belong to an energy-deficient class. Thus, in this paper, we demonstrate the
performance of the CGST codec in reducing the channel signals dynamic range when transmitting a
color image of the earth’s surface. To ensure maximum image quality at the codec output, we apply
additional processing of the received images: the modified dynamic range reduction algorithm – to
suppress unwanted brightness "zeroing" and postprocessing by the neural network – to decrease
image blurring.

2. Group Signal Transformation Basics

The main idea of the CGST method is joint signal analysis in multi-channel systems to increase
their performance. One way to achieve that is to combine the principles of differential pulse-code
modulation (DPCM) with CGST, as is shown in Figure 1.

Figure 1. The concept of differential coordinated group transformation (illustration for a single channel
of a multichannel system).

Following the approach, the original signals pass through the coordinated extrapolation block, the
difference between the original signals and their estimates is calculated, and then the difference signals
are used for processing and transmission. At the receiver, restoring the original signals is performed
with known parameters of the extrapolation block. The main problem is to synthesize the transfer
function of the coordinated extrapolation block. It may be solved as an optimization problem, for
example, based on Wiener or Kalman filtering [18,20,21], but this approach is challenging to implement
due to computational complexity. Another method was suggested in [22], presenting a group codec
scheme for a multi-channel system with semi-type channels (Figure 2).
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Figure 2. The structure of the transceiver channel using coordinated codec with a coding matrix.

The input vector U = [u1, ..., un] (T is the transpose operator) excites the system. At the second
input of the comparison elements, the signals ũi(t) (i - the channel number) passed through the coding
matrix are applied. The vector of difference signals E = [e1, ..., en]T , whose elements are determined by
the expression ei(t) = ui −−ũi(t) is the output for the system.

Coordinating of neighboring channels is performed by the coordinated prediction block -
coordinating matrix K, described as follows:

K =


k11 k12 . . . k1n
k21 k22 . . . k2n

...
...

. . .
...

km1 km2 . . . kmn

 , (1)

where kii elements are transmission coefficients in the direct branch located on the main diagonal, the
elements kij (correlation coefficients) are determined by the following equation:

kij =
1

σiσj
· 1

N

N

∑
t=1

(ui − ui)(uj − uj), (2)

where σ – root-mean-square error of the channel signal, N – the number of signals’ discrete when
calculating the correlation in a discrete form.

The problem of coordinated system synthesis may be solved regarding the coefficients k of the
main diagonal [22], allowing us to ensure the system’s stability and, at the same time, to reduce the
average signals’ amplitude at the coder output. The roots of the characteristic equation are determined
outside the circumference, which completely encompasses the system hodograph, which substantially
simplifies the calculation: when defining the roots, the system’s hodograph is replaced by a circle
circumscribed about this hodograph.

3. CGST Codec Simulation for Processing Images

The hypothesis about the applicability of CGST for image compression is based on the fact that
color channels can be considered as sources of correlated data since they describe a single object. In
accordance with the number of color channels, the dimension of the CGST system also decreases; the
correlation matrix, in this case, has a size of 3x3 and is determined as follows:

K =

 k krg krb
krg k kbg
krb kbg k

 . (3)

The problem of effective image compression is one of the current research areas, for example,
in satellite remote sensing systems [23]. Providing energy efficiency is also a great challenge for
them. Therefore, we tested the effectiveness of the compression algorithm on images from the satellite
remote sensing system. To do that, we obtained the data through the free navigation program SASGIS,
which provides a way to download satellite images of the Earth’s surface from many online mapping
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services. More specifically, we chose Yandex Maps, which acquires images from Ikonos, QuickBird,
and WorldView2 satellites. An equilateral region was selected to form a dataset covering Ufa city
(Russia, Republic of Bashkortostan) and an image matrix of 128x128 pixels. Based on those settings,
we obtained 200 images.

As mentioned above, when using CGST for image compression, the input signals may be formed
from its color channels, guaranteeing their correlation. So, the group codec processes the original
images to reduce the signal’s dynamic range. At the receiver, the images are restored using the inverse
transformation. The value of the coefficient k in our simulation was chosen to reduce the dynamic
range of signals by two times, that is, by 3 dB. Figure 3 shows the results of image compression for this
case on each step.

According to the results, reducing the dynamic range of RGB channels by 3 dB or more using
CGST inevitably introduces distortions in the transmitted information, mainly changing brightness.
Due to the decrease in the brightness level of a certain number of pixels to zero during compression
after the inverse transformation in the receiver, the resulting image is not identical to the original. In
addition, extrapolation leads to undesirable image smoothing, which can be observed in Figure 3 at the
output of the extrapolation block. In this regard, the image obtained at the codec output demonstrates
a distorted color rendering due to the loss of brightness and blurring of the object’s contours since the
brightness values of the RGB channels are restored based on the channel signal passed through the
extrapolation block.

Figure 3. Images at some processing steps of the CGST codec.

3.1. CGST Algorithm Modification to Reduce the Distortions

As already mentioned, "zeroing" the brightness level of the picture’s darker parts when
compressing RGB channels in the correlation matrix by -3 dB or more made it impossible to restore
the original information by the decoder with an appropriate quality. When completely dark areas
appear in the compressed image in all three channels that are not present in the original image, it is
essential to retain information about the level ratio of the original signal and the signal from the matrix
output, which is achieved by fixing their positive difference value. Thus, we modified the original
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CGST algorithm. Before changes, the difference signal for the random channel at the coder output was
determined by the following function:

e =

{
u − ũ, u > ũ,

0, u < ũ.
(4)

To avoid errors caused by "zeroing" according to equation (5), we modified the CSGT algorithm
in the simulation as follows:

e =

{
u − ũ, u > ũ,

|u − ũ| · kred, u < ũ,
(5)

where kred is the required coefficient of dynamic range compression, assumed to be 0.5 in the simulation.
This modification to CGST ensures that the pixel brightness is not negative.

After passing through the extrapolation block and applying transformation (5), the areas near the
object’s edges in encoded images are significantly enhanced in brightness. At the same time, areas far
from the borders remain with a lower brightness level. These signs indicate an increase in the image’s
spatial frequency. To test this assumption, we calculated the channel-averaged spatial frequency for
the original image and one passed through the codec, which actually turned out to be higher for the
latter. Chapter 3.2 provides a more detailed analysis of this issue.

3.2. CGST-Compressed Images Restoration Using Frequency Method

The problem of image blurring from the output of the extrapolation block can be leveled by
applying image restoration methods after codec operation. However, the increased spatial frequency
of processed images complicates analyzing the distorting function. It makes using classical approaches
challenging due to the difficulties in determining the boundaries of objects and the simultaneous
blurring of close-in-tone areas [24].

To ensure this, we applied a frequency method of image restoration known as a Gaussian low-pass
filter to suppress edge effects. In a simulation, we used the standard deviation of the Gaussian
distribution, which provides that the spatial frequency graphs of the original and processed images
from the codec output almost coincide, as shown in Figure 4. As a result, the following processed
images were obtained (Figure 5).

Figure 4. Spatial frequencies of the original (red), passed through codec (blue), and processed image
(green).
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Figure 5. Image processing: (a) source image, (b) image after codec processing, (c) recovered image.

The recovered images’ quality was tested according to the following criteria: the mean square
error (MSE) and the Minkowski norm (MN) to check the proximity of the RGB channels’ brightness
levels; and structural similarity (SSIM) [25], which effectively reflects the structural distortions impact.
However, the main disadvantage of the SSIM algorithm (in the spatial domain) is high sensitivity to
scaling and image shift, which occurs when processing RGB channels with an extrapolation block. In
this regard, another criterion was introduced – the SSIM extension to the region of the complex wavelet
transform, i.e., complex wavelet SSIM (CW-SSIM), which is insensitive to non-structural distortions
[26]. The averaged results of applying stated criteria for the restored images after the Gaussian filter
within the entire dataset are presented in Table 1.

The results indicate only a slight improvement in image quality after filtering. While the effect of
increased spatial frequency has been reduced, the decrease in the CW-SSIM indicates that the blurring
present in the processed image has been worsened.

Thus, using the CGST codec for image processing leads to several distortions, conventional
methods for eliminating which neutralize each other’s effects. For example, applying a Wiener filter
to an image Figure 5 after Gaussian low-pass filtering will reduce the blurring impact but increase
the spatial frequency. As a part of this study, we decided to evaluate the possibility of restoring
images after processing by neural network (NN) methods that are theoretically capable of adapting
the mapping of input data to a given output space for any distortion model.

4. CGST-Compressed Images Postprocessing Using Neural Networks

One way to solve the distortions problem is to use a priori knowledge about the recovered image,
for which supervised learning methods are applicable. With the accumulation of a sufficient amount
of visual data, distorted information can be restored due to the generalizing ability of an intelligent
algorithm. Such an approach showed excellent performance for restoring medical images, in which
distortions expressed in local areas with noise and artifacts were caused by loss of information due to
a decrease in the patient’s radiation dose or an increase in the speed of tomography due to a reduction
of the sampling rate [27–30].

Table 1. Image quality before and after filtering.

Metric Source and receivedimages comparison without filtering Source and received images comparison using filtering

MSE 43.9445 37.1378
MN 76.9161 67.5922

SSIM 0.0381 0.18605
CW-SSIM 0.5075 0.4779

One of the most popular and effective intelligent methods for improving image quality nowadays
is the application of deep convolution neural networks (CNN) [31–34]. However, the response time of
a NN, even if the structure is optimized, in most cases turns out to be too long for their implementation
in real-time systems [35].
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Figure 6. Neural network structure.

However, the NN operation time could be reduced when processing RGB channels instead of the
image, simplifying the data to a vector of pixel brightness values. Based on video broadcast encoding
delay requirements [36], the minimum decode delay is 133 ms at 30 fps or 160 ms at 25 fps. Also, with
the Group-of-Pictures setting, these values are decreased to 33 ms and 40 ms respectively. Considering
the average operating time of the extrapolation block and the encoding matrix on the receive, which
equals 20 ms in simulation, the NN response time should be at most 113 ms at 30 fps and 140 ms at 25
fps (13 ms at 30 fps and 20 ms at 25 fps with the Group-of-Pictures setting).

The most commonly used NN types in image quality upgrade applications are fully connected,
convolution, and recurrent. Another promising method is CNN, which parametrizes the hyperplane
in the Fourier space and has shown less estimated time and greater accuracy than traditional CNN
[37]. All of the above types of NN work effectively with a different number of free parameters and,
therefore, with a various response time. Thus, the performance of different NN types strongly depends
on settings and the number of frames per second.

The general logic of building the NN structure (Figure 6) was arranged in such a way as to process
the vectors of RGB channel values in parallel, after which they were concatenated. By comparing
the RGB channels for the image processed by the NN and the original image, we calculated the error
function and then fixed the total error. The performance was estimated using the same image quality
assessment metrics.

Considering the allowable image processing time, we used fully connected NNs with three
hidden layers processing parallel the RGB channel, four-layer convolutional NN, and LSTM (long-term
short-term memory) with three repeating layers. At the input and output of the NNs, we employed
additional fully connected layers for concatenation and decatenation, respectively.

For NN training, the dataset was arranged from 200 images obtained via the SASGIS, 150 of which
were assigned to the training set and 50 to the testing set. While training, the Adam optimization
algorithm and the StepLR learning rate control function were used, which reduces the number of free
parameters by a gamma with each epoch depending on the set image processing time (with or without
the Group-of-Pictures setting). For all simulations, we used the set number of epochs in training equal
to 100. The results of different algorithms are shown in Table 2.

To visually evaluate the performance of the applied NN structures, an example of the
reconstructed image to varying values of SSIM is shown in Figure 7.
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Figure 7. Applying neural networks results: a – source image; b – SSIM = 0.6553; c – SSIM = 0.7716;
d – SSIM = 0.8082.

Table 2. Results of test image processing by trained NNs.

Neural network
type

Response
time, ms MSE MN SSIM CW-SSIM

Fully connected

13 36.214 67.014 0.1813 0.4493
20 35.943 65.891 0.1875 0.4636

113 31.212 58.337 0.2162 0.4845
140 25.613 46.611 0.3688 0.5175

Recurrent

13 36.454 68.845 0.1802 0.4263
20 29.814 42.674 0.4091 0.5343

113 27.034 47.013 0.3825 0.5772
140 22.613 37.421 0.6012 0.6553

Convolution

13 – – – –
20 30.614 57.437 0.2605 0.4858

113 21.360 38.594 0.5790 0.6342
140 18.714 34.803 0.6475 0.7716

Convolution
in Fourier space

13 – – – –
20 – – – –

113 20.018 37.020 0.6047 0.6642
140 17.810 33.331 0.6759 0.8082

The results in Table 1 and 2 allow us to draw the following conclusions. Using a neural network
made it possible to simultaneously solve the issue of blurring images and changing spatial frequency.
The most important, in our opinion, is the significant improvement in the CW-SSIM indicator since
it is responsible for the visual correspondence of the reconstructed image to the transmitted one.
The use of a fully connected neural network did not bring any improvements. However, recurrent
and convolutional neural networks helped increase CW-SSIM by 0.15 and 0.27, respectively, at the
maximum response time (140 ms), significantly improving the MSE and MN criteria. The convolutional
neural network in Fourier space demonstrated the best results with CW-SSIM increase by 0.3. However,
its advantage over the traditional convolutional neural network is insignificant (the improvement
in the CW-SSIM metric was 0.03 with close MSE and MN values). At the same time, even the least
efficient neural network (recurrent one) with a relatively simple architecture and NN response time as
low as 20 ms provided more effective image quality restoration than traditional filtering.

5. Discussion

This paper presents a new image compression method based on the CGST algorithm. Its use
for this purpose required some modifications. Firstly, it was proposed that the method of generating
the difference signal be changed to exclude data loss ("zeroing" the brightness of pixels). Secondly,
to combat the distortions introduced by CGST and improve the quality of the reconstructed images,
the output signal of the CGST decoder was supplemented with a neural network since an analysis
of these distortions showed that traditional methods for improving image quality are problematic.
For example, a similar approach is used when restoring the quality of medical images. We formed a
dataset of 200 remote sensing images available in open sources (the authors can provide the dataset
upon request). This dataset size is sufficient for proof of concept since the number of specific image
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details determines the sample size. In the considered case (due to the effect introduced by distortions),
such details are simple geometric figures that display the shapes of buildings, roads, and natural
objects. When training the NN for the case of more specific details, it may be necessary to increase the
size of the dataset, similar to the datasets for the analysis of medical images, with the complex nature
of the extracted parameters.

The results obtained from the test data showed the possibility and expediency of using neural
network methods to restore images in a satellite image transmission system that uses the method of
coordinated group signal processing to improve energy efficiency. The joint use of CGST and neural
network methods has demonstrated the possibility of reducing the dynamic range of the original
signals by 3 dB, which decreases the number of transmitted bits by 1 for each code block while ensuring
sufficient data recovery quality.

The time delays of 13 ms and 20 ms, in addition to the encoding time in video broadcasting,
satisfy the requirements of acceptable delays in computer vision and virtual reality applications, as
they are within the limits of the average processing time of visual information in the human brain [38].
It should also be noted that, due to the use of supervised learning methods, the applicability of the
image restoration algorithm after codec operation is limited by the type of training visual information.

Besides working in low-speed information transmission systems, the algorithm of power-efficient
coding with CNN can post-process images with higher accuracy in computer vision systems, medical
diagnostics, and remote sensing of the Earth. At the same time, the limitation of the applicability of
the above machine learning methods is the adaptation only to a certain distortion model, taken into
account when training algorithms. One of the possible solutions to this problem is the combination of
neural network methods with a more detailed analysis of the original images and distortion models
during the training process.
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