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Abstract: In the face of the burgeoning electricity demands and the imperative for sustainable development amidst
rapid industrialization, this study introduces a dynamic and adaptable framework suitable for policy-makers
and renewable energy experts working on integrating and optimizing renewable energy solutions. While using a
case study representative model for Sub-Saharan Africa (SSA) to demonstrate the challenges and opportunities
present in introducing optimization methods to bridge power supply deficits and the scalability of the model
to other regions, this study presents an agile multi-criteria decision tool that pivots on four key development
phases, advancing upon established methodologies and pioneering refined computational techniques, to select
optimal configurations from a set of Policy Decision Making Metrics (PDM-DPS). Central to this investigation
lies a rigorous comparative analysis of variants of three advanced algorithmic approaches: Swarm-Based Multi-
objective Particle Swarm Optimization (MOPSO), Decomposition-Based Multi-objective Evolutionary Algorithm
(MOEA /D), and Evolutionary-Based Strength Pareto Evolutionary Algorithm (SPEA2). These are applied to a
grid-connected hybrid system, evaluated through a comprehensive 8760-hour simulation over a 20-year planning
horizon. The evaluation is further enhanced by a set of refined Algorithm Performance Evaluation Metrics
(AL-PEM) tailored to the specific constraints. The findings not only underscore the robustness and consistency of
the SPEA2 variant over 15 runs of 200 generations each, which ranks first on the AL-PEM scale but also validate
the strategic merit of combining multiple technologies and empowering policymakers with a versatile toolkit for

informed decision-making.

Keywords: sustainable energy solutions; renewable energy integration; multi-criteria decision tool; advanced
computational techniques; grid-connected hybrid system; optimization algorithms; policy decision making

metrics; environmental sustainability and energy security

1. Introduction

1.1. Background

The pandemic’s combined effects and the ensuing energy shortages brought on by the crisis
in Eastern Europe have undone the progress made in expanding access to electricity over the past
decade. The number of people living without electricity worldwide increased in 2022 for the first time
in many years, amounting to an estimated 760 million individuals. This increase was caused by about
6 million people. The bulk of the world’s unelectrified population is in SSA, where this regression has
mostly Been'seen [18] with about 600 million people without access to electricity. As energy remains
a pivotal element in societal development, a notion underscored by the United Nations Sustainable
Development Goal 7 (UNSDG?), which strives for global access to sustainable energy by 2030 [17], the
need to get back on the upward trajectory seen before the pandemic is imminent. Sierra Leone, a small
nation in the SSA, bounded by the Atlantic, however, has seen notable progress in their journey toward
sustainable energy, yet challenges remain. The nation’s electrification rate has risen to 26% from about
15% in 2019, but still with a marked disparity as rural access hovers at 6% [21]. High unemployment at
3.63% [19] and exorbitant electricity tariffs compound the issue, undermining the UNSDG7 objectives.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Currently, Sierra Leone’s attempts to meet a national demand of around 700 MW, which includes the
mining sector, lean on unsustainable practices like diesel generation, despite environmental concerns.
The Sustainable Energy for All (SE4ALL) initiative sets an ambitious goal for Sierra Leone to boost
electricity access to 92% by 2030, necessitating a significant shift towards renewable energy to alleviate
government subsidies on electricity, priced at 0.15 US$/kWh for residents and 0.17 US$/kWh for
industrial use [20]. Although Sierra Leone has considerable potential in solar, hydro, and biomass
energy, its total government-owned generation capacity is limited to 155 MW with an additional 50
MW sourced from diesel power rentals, and 27 MW sourced from the West African Power Pool (WAPP)
project, leading to high operational costs and a heavy reliance on government subsidies. This research
is undertaken in the context of these challenges. The opportunities therein aim to offer policy-makers
solutions through the use of advanced computational techniques that under-scores the advantages of
combining multiple technologies with the highest premium laid on renewable energy integration, in an
effort to contribute to the sustainable energy transition in Sierra Leone, the sub-region and elsewhere,
with similar challenges.

1.2. Previous Research

Work done on Hybrid Energy Systems (HES) has been increasing in the past decade ranging from
residential, institutional, industrial, off-grid to grid applications. The contributions have revealed
the essential nature of Renewable Distributed Generations (RDGs) in power systems as they provide
energy security and reduce power losses whilst increasing the overall efficiency and environmental
protection [22]. Many of these contributions have also revealed the challenges in the adoption of
RDGs and how the adaptation of an HES can overcome these challenges. In our previous work [4], in
the literature review, comprehensive analysis was done for contributions that covers wide range of
applications revealing the use of HES to overcome the stochastic nature of Renewable Energy Sources
(RES), and reduce overall energy consumption and CO2 emissions[23,24]. The summary also included
contributions that employed modern approaches for the optimum planning of electric power systems
which includes Analytic Hierarchy Process [25], the use of multi-criteria decision making methods
[26], scenario-based comparative analysis and techno-economic analysis of grid-connected hybrid
systems [27-29]. Numerous scholars have employed a range of tools for integrating renewable energy
sources, such as the Holistic Grid Resource Integration and Development (HiGRID) tool [32] and the
HOMER simulator [33]. The study referenced in [34] investigates dynamic operational and control
techniques for microgrid hybrid energy systems, implementing the Particle Swarm Optimization
(PSO) algorithm for evaluating the efficacy of PV power systems. In multi-objective optimization,
especially when dealing with large-scale problems, the major challenge lies in selecting and developing
high-performance optimization strategies to balance exploration and exploitation within a framework
that ensures robustness and adaptability and maintains the consistency and accuracy of the optimal
results. These challenges are been met with hybrid optimization methods employed for HRES in
recent developments [7-9]. The research in [22] applies a hybrid methodology combining PSO with
the Gravitational Search Algorithm (PSOGSA) to identify the optimal placement of PV and wind
systems, aiming to minimize system power losses and operational expenses while enhancing voltage
profiles and stability. Comprehensive reviews on optimization of Hybrid Renewable Energy Systems
(HRES) [8-11] present the advantages and disadvantages of the various algorithms over the past
decade, highlighting their robustness over a wide spectrum of performance metrics. Despite these
advancements, there still remains a gap in the literature for a comprehensive approach that not
only integrates advanced computational techniques but presents a clear strategy for policymakers
and energy specialists to adopt when considering renewable energy expansion. Three standard
multi-objective optimization algorithms (MOPSO, MOEA /D, SPEA2) from three different domains
(Swarm-based, Decomposition-based and Evolutionary-based), as shown in Figure 1, have been
modified and examined in this research in a bid to construct the most suitable method for the adoption
of HRES.
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Figure 1. Algorithm Competitive Landscape

1.3. Problem Formulation and Main Contributions

The design and implementation of hybrid renewable energy systems (HRES), particularly in the
context of Sub-Saharan Africa, presents a unique set of challenges and opportunities. To maximize the
benefits of HRES, a robust decision-making framework that effectively addresses technical, economic,
environmental, and social factors must be applied. This document outlines the challenges and
opportunities in integrating and optimizing renewable energy solutions within the context of Sub-
Saharan Africa (SSA), drawing from a representative case study model. The primary problem this
research addresses is the deficit in power supply against the backdrop of an escalating population
and economic growth, particularly in SSA where an estimated 600 million individuals lack access to
electricity. The specific challenges identified include:

1. The intermittency and variability of renewable energy sources (RES), necessitating the need
for innovative hybrid energy systems (HES) that guarantee energy security while mitigating
environmental impacts.

2. The integration of multiple technologies within grid-connected systems, which complicates the
optimization process due to the stochastic nature of RES.

3. The requirement for advanced computational tools that balance exploration and exploitation
within multi-objective optimization frameworks to ensure robust and consistent optimal results.

4. The need for a scalable and adaptable framework that can be applied to other regions with
similar energy challenges and constraints.

Existing approaches, some of which are shown in Table 1 and from the database of similar workdone,
often utilize limited statistical metrics to evaluate optimization algorithms, potentially leading to
sub-optimal system configurations. Most of them use a multi-objective algorithm or soft computing
tool that is evaluated through basic statistical parameters such as minimum and maximum values,
standard deviation or mean. Very few work on grid-connected hybrid systems compared two or more
optimization techniques and employed other performance metrics like convergence, generational dis-
tance, and other advanced metrics to compare the optimization algorithms in a competitive landscape.
Therefore the central problem addressed in this research lies in the following:

1. Limited Evaluation of Optimization Algorithms: HRES design involves complex multi-objective
decision-making processes. Current evaluation methods for optimization algorithms often rely
on basic metrics, providing an incomplete assessment of their suitability for identifying the truly
optimal HRES configuration within the feasible solution space.

2. Lack of Comprehensive Decision Framework: A holistic framework to guide policymakers and
energy specialists in selecting and integrating renewable energy solutions is needed, particularly
for regions like Sub-Saharan Africa where energy access and sustainability are critical concerns.
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Table 1. Brief summary of recent works on computational techniques for sustainable energy solutions.

Paper Title

Year

Soft Computing Tools

Performance Metrics / Statistical Methods

An Agile Approach for Adopting Sustain-
able Energy Solutions with Advanced Com-
putational Techniques

Techno-economic and environmental im-
pact assessment of a hybrid renewable en-
ergy system employing an enhanced com-
bined dispatch strategy

Techno-economic-environmental analysis of
off-grid hybrid energy systems using honey
badger optimizer

Techno-economic and environmental de-
sign of hybrid energy systems using multi-
objective optimization and multi-criteria de-
cision making methods

Multi-objective optimization framework of
a photovoltaic-diesel generator hybrid en-
ergy system considering operating reserve

Multi-objective optimization of hybrid re-
newable energy system by using novel au-
tonomic soft computing techniques

Multi-objective  optimization of grid-
connected PV-wind hybrid system

Optimal sizing of hybrid renewable energy
systems in presence of electric vehicles us-
ing multi-objective particle swarm optimiza-
tion

This
journal

2023

2023

2023

2022

2021

2020

2020

Variants of MOPSO, MOEA/D,
SPEA2

Particle Swarm Optimization (PSO)

Honey Badger Optimization (HBO),
Golden Jackal Optimization (GJO),
Arithmetic Optimization Algorithms
(AOA)

HOMER for simulation, MATLAB
for optimization

NSGA-II, MOPSO, MODE, and
MDE

Particle Swarm Optimization (PSO),
including Hierarchical Particle
Swarm Optimization (HPSO)

Multi-Objective Particle Swarm Op-
timization (MOPSO)

Multi-Objective Particle Swarm Op-
timization (MOPSO), Monte Carlo
Simulation (MCS)

Employed advanced algorithmic variants
assessed through AL-PEM, including Aver-
age Spacing, Rate of Convergence, Genera-
tional Distance, Computational Time, Max-
imum Spread, and Optimal Euclidean Dis-
tance. SPEA2 highlighted for robustness
and consistency.

Employed PSO for optimizing HRES com-
ponents. Emphasized the ECD strategy over
LF and CC for enhanced performance in
terms of reduced LCOE, NPC, and emis-
sions.

Evaluated recently developed metaheuris-
tic techniques to minimize the total annual
cost (TAC) while maintaining acceptable
LPSP and renewable fraction. HBO showed
the most economical results with the low-
est standard deviation, indicating superior
exploration-exploitation balance and suit-
ability for optimization problems.

Utilized HOMER and MATLAB for simu-
lation and optimization, respectively, with
final design chosen through MCDM, specif-
ically TOPSIS combined with AHP and
EWM. Detailed sensitivity analysis con-
ducted.

Comparison based on convergence, diver-
sity, and computational time. Robustness
assessed through standard deviation of re-
sults from multiple runs. Distance-based
distribution index (A) used to quantify solu-
tion quality.

Comparative analysis of various PSO algo-
rithms focusing on cost and emission mini-
mization.

Evaluation using minimum, maximum,
range, standard deviation, and mean values
for COE, LPSP, and REF. Detailed perfor-
mance metrics for each scenario.

Focused on LPSP through sensitivity analy-
sis and simulation of scenarios. Compared
deterministic and stochastic behaviors of
EVs on system performance.

In a bid to address these challenges the following contributions have been made:

1. A comprehensive algorithm selection: Utilization of variants of algorithms from three different
domains (Swarm, Decomposition and Evolutionary-Based) slightly modified for robustness and

consistency within the specified constraints of the case study.
2. A Comprehensive Algorithm Evaluation: A clear presentation of the chosen algorithms’ variants
scrutinized through seven performance metrics, the authors described as the AL-PEM approach,
and directly applied to a real-world grid-connected scenario that utilizes five technologies and

five objective functions to determine the efficacy of the algorithms over a 20-year planning
horizon. The AL-PEM approach incorporates the Average Spacing, Rate of Convergence, Gener-
ational Distance, Computational Time, Maximum Spread, the Optimal Euclidean Distance of

the solutions to the origin, and the amount of Storage used up by each algorithm. From Table
1, a summary of the most recent works on HRES using at least two soft computing tools and
highlights of the performance metrics and statistical methods used have been done in comparison
with the methods adopted for this journal.
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3. A clear presentation of the Agile Multi-Criteria Decision Tool: This tool highlights four key
developmental phases from Resource Assessment to Construction and O&M phase that forms
a practical framework that can be adapted for policy-making and optimization of renewable
energy systems.

2. Methodology

In our previous work a comprehensive evaluation necessary for determining the feasibility of
renewable energy projects, underpinned by the 'Pentagonal Decision Criteria’ for renewable energy
integration, as illustrated in Figure 1 of [4] was done. The summary laid out a holistic and structured
approach for evaluating renewable energy projects, ensuring they meet the following five benchmarks
strictly interdependent on each other; political[46,47], resource[48,49], social and environmental [50],
technological[51,52] and economic[53] benchmarks necessary for successful integration into SSA and
beyond.

In this work, we have laid out a methodology that focuses on the technological and economic
benchmarks with the following specific objectives:

1. System Optimization: To use the MOPSO technique to determine the optimal configuration
of PV panels, OWTs, biomass combustion plants, BESS, and DG systems that aligns power
generation with demand and minimizes life cycle costs over a 20-year project horizon.

2. Comparative Analysis: To conduct a comparative analysis of the MOPSO technique against
modified MOEA /D and SPEA 2 algorithms, using the highlighted AL-PEM approach to establish
the most effective optimization method specific to the chosen HRES.

3. Sustainability Evaluation: To evaluate the environmental impact by aiming to minimize CO2
emissions and the Diesel Energy Fraction (DEF) in the energy mix, thereby contributing to
sustainable energy development goals.

4. Policy Framework Development: To provide policymakers with a decision-making framework
based on the study’s findings that integrates economic viability, environmental sustainability,
and social equity considerations.

5. Scalability Assessment: To investigate the scalability of the proposed optimization framework
in a real-life case-study-based approach.

2.1. Study Area and Resource Assessment

The research scope covers the same domain and areas of operations covered by our previous work
as detailed in the methodology section and study area sub-section of [4] with very few improvements
made in the generation capacity as listed in Table 2. Irrespective of the additional generating facilities
there are still generating facilities not in full operation due to aging and persistent operational problems,
limiting the overall reliability of the system. Figure 2 of [4] shows the approximated grid capacity and
demand of the entire nation. The addition of new generating facilities like the 6MW solar farm in Table
2 does not lead to a significant change in the overall grid capacity due to the existing non-operational
generating facilities. There is also no off-grid installation of wind turbines.

In our previous research, Weibull distribution and other statistical methods were used to make an
approximate assessment of solar, wind, and biomass energy potential and characteristics. The scope of
the assessment methods used and results obtained are still adopted in this journal for consistency.
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Table 2. Existing generation facilities.

No. Source Capacity (MW) Location

Existing Sources

1 Bumbuna Hydro 50 North
2 Goma Hydro 6 East
3 Charlotte Hydro 2 West
4 Bankasoka Hydro 2 North
4 Makali Hydro 0.32 North
5 Diesel (Government) 27.6 Western Area
6 Diesel (Government) 24 Provincial
7 Diesel (IPP-Karpower) 65 Western Area
8 TRANSCO CLSG (WAPP) 27 West and Provincial
9 Addax Bio-energy 15 North(Low availability)
10 Newton Solar 6 West
11 Total Generation 197.92
Electricity Generated by Source
Diesel 41.09%

Research Scope [MW]
1 Approximated Industrial Demand 400
2 Approximated Commercial Demand 180
3 Approximated Domestic Demand 130

2.2. Configuration and Scheme

Similar to the selection process done in our previous work, 5 combinations of hybrid systems have
been selected according to the selection scheme shown in Figure 2. When the selected technologies
go through thorough assessment, they are considered to determine feasible pairings. The letters A,
B, C, D, and E are used to designate the PV plant, wind turbines, biomass plant, battery bank, and
diesel generator set, respectively, for ease of referencing the components of the blocks (Blocks 1 — 5)
considered. The specifications of each component of the hybrid system for the respective blocks are
fed into the optimization and parameter tuning phase as shown in the proposed Decision Criteria in
Figure 3. This process is explained in the next subsection (Decision Criteria and Performance Metrics).
The configuration of the hybrid systems in Figure 4 is representative of Block 1.
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PV specification, panel types, Biomass specification, Battery Bank
and site conditions (A) and site conditions (C), specification (D)

Other Possible Combinations

Refer to D.Konneh etal [4], Figure 11

Select Preferred Combination
Block1

Figure 2. Hybrid System Selection Scheme.

i |
! 1.Resource Assessment Phase Start Resource Refer to D.Konneh etal [4] '
' Assessment pages 7- 13 '

|
: 1
| |
| |
| |
| |

Assess Assess Assess

i
: l
1
' PV specification, panel Battery Bank
1| types, and site conditions specification (D)
I )
‘ Technology Combination and Refer to Figure 2
. Asses of Combined Potential
¥
'
1
!

\ Determine PDM-DPS: PDM-DPSO0, \
PDM-DPS20, ..., PDM-DPS50

; 3.Select Optimal Configuration Technology Injection and Multi-objective
| Phase Optimization and Parameter Tuning
Phase

Biomass specification,|
and site conditions

Decomposition Evolutionary-

Swarm-Based _Based Based

Multi-objective Particle Swarm Multi-objective Evolutionary Strength Pareto Evolutionary
Optimization (AGB-MPSO) Algorithm (ES-MOEA/D-FPM) Algorithm (ES-SPEA2-DD)

Optimal Results Assessment Phase

— Tune for better performace

If results okay?

Yes

y @ Refer to Tables 5 & 6
f this d t
The AL-PEM Phase S of this documen

> 5 " Refer to Tables 7 & 8 of
Select Best Performing Optimal e — this document
Configuration

Plan for Implementation Phase

¥
Construction, Operation and
Maintenance Phase

v
o Adjust
Monitoring Systems Performance [« Feedback
¥

Adjust Operations Configurations as needed based on
real-world data and Feedback Phase

Figure 3. Proposed Decision Criteria.
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Bunbuna Hydro (S0MW)

‘Wind Farm

GAMESA G128

Megawatt Class
Battery Bank

Biomass Power
Plant

DG Set Additional

Figure 4. Configuration of hybrid system.

2.3. Decision Criteria and Performance Metrics

The decision criteria can be summarized in a series of phases, as represented in the flow chart,
which are outlined as follows:

1. Resource Assessment Phase: This initial phase involves the assessment of natural resources and
the evaluation of Wind, PV (Photovoltaic), and Biomass potential.

2. Technology Specification Phase: Subsequent to the resource evaluation, this phase specifies the
technical details and capacities of the technologies under consideration.

3. Combination Consideration: Here, various combinations of the assessed technologies are
considered to determine feasible pairings.

4. Technology Injection Condition Phase: This phase takes into account the different conditions
under which power supply might be deficient and considers the budget constraints set by
policymakers.

5. Multi-Objective Optimization: The considered technology combinations and injection con-
ditions are input into three multi-objective optimization algorithms. These algorithms aid in
selecting the optimal configuration that aligns with the project’s budget.

6. Plan for Implementation Phase: A detailed plan for the implementation of the selected technol-
ogy configuration is developed.

7. Construction Phase: This phase covers the actual construction and installation of energy tech-
nologies.

8. Operation and Maintenance Phase: It involves the daily operation and upkeep of the imple-
mented technologies.

9. Monitoring Systems Performance Phase: Continuous monitoring of the system’s performance
is conducted to ensure efficiency and reliability.

10. Adjusting Configurations and Feedback Phase: The final phase allows for adjustments to the
configurations based on feedback and operational data to optimize performance.
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2.4. Optimization Methods

2.4.1. M-O Particle Swarm Optimization (MOPSO)

Multi-objective Particle Swarm Optimization (MOPSO) is an adaptation of the standard Particle
Swarm Optimization (PSO) for multi-objective problems. It leverages the concept of Pareto dominance
to guide the swarm toward the Pareto optimal front. Each particle in the swarm represents a potential
solution, and the swarm navigates the search space to optimize multiple objectives simultaneously.

Mathematical Description

The position and velocity of each particle in the swarm are updated according to the following
equations:
o) — gy vl(t) +cq 11 - (pbest; — xi(t)) +cp -1y - (gbest — xlgt))[S] (1)

1
xi(t—l—l) _ xl(t) + ?JZ(H_U (2)
where:

* w is the inertia weight.

® ¢q and c; are the cognitive and social acceleration coefficients, respectively.
* r; and rp are random numbers uniformly distributed in [0, 1].

® pbest; is the personal best position of particle i.

* gbest is the global best position found by the entire swarm.

The pseudocode for MOPSO is presented as follows:

Algorithm 1 Multi-objective Particle Swarm Optimization (MOPSO)

1: Initialize the swarm with random positions and velocities

2: BEvaluate the fitness of each particle

3: while termination criteria not met do

4 for each particle i do

5 Update pbest; if the current position is Pareto dominant
6: Select gbest from the Pareto optimal set

7 Update velocity v; using the equations above

8 Update position x; using the equations above

9 Evaluate the fitness of the new position

10: end for
11: Update the global Pareto optimal set
12: Apply mutation and diversity mechanisms if necessary

13: end while

The Modified Multi-objective Particle Swarm Optimization, Dynamic Adaptive Mutation-Based
MOPSO (DAM-MOPSO) algorithm, introduces a series of enhancements to the original framework
aimed at refining optimization efficacy and solution diversity. It incorporates adaptive mutation and a
focuses on diversity. Key distinctions are as follows:

* Leader Selection Mechanism: A stochastic leader selection approach, such as the Roulette Wheel,
is implemented to guide particles diversely through the search space.

¢ Adaptive Mutation: The algorithm adopts an adaptive mutation step, with the mutation probabil-
ity adjusting according to the iteration number, promoting exploration initially and exploitation
subsequently.

¢ Repository Update: The repository’s maintenance is explicitly detailed, ensuring the preservation
and continual update of a diverse solution set.
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* Grid Update and Dominance: An explicit step is included for revising the grid structure based
on the repository, which is crucial for sustaining diversity. Moreover, the process for culling
dominated and surplus particles is specifically mentioned.

¢ Normalization of the Pareto Front: Prior to the final iteration, the Pareto front is normalized,
which aids in delineating the true Pareto optimal solutions.

* Resulting Set: The algorithm yields a repository-derived set of non-dominated solutions as its
final output, indicating a refined solution set.

These modifications target potential shortcomings in the original MOPSQO, such as premature con-
vergence and population diversity, and enhance the search space’s exploration and exploitation
capabilities. The modified methodology suggests a dynamic and adaptive optimization process, likely
to yield superior performance in discerning a high-quality set of Pareto-optimal solutions for complex
multi-objective problems.

Here is the pseudocode for the DAM-MOPSO algorithm

Algorithm 2 Algorithm Framework of DAM-MOPSO

1: Set the iterationi = 1
2: Initialize the MOPSO parameters P (cost function, variable bounds, population size, etc.)
3: Initialize population pop with random positions and velocities
4: Evaluate the cost for each particle in pop
5: Initialize repository rep to empty
6: Set generation counter gen = 1
7: while i < MaxlIt do
8: for each particle j in pop do
9: Select leader ¢ using selection method (e.g., Roulette Wheel)
10: Update velocity v/ and position x:*! of particle j
11: vt w- vl 4+ ¢1- rand() - (pbest; — xi) + cp - rand() - (£ — x)
12: Al xi it ! !
13: E]nsure x’:IH is]within the bounds VarMin, VarMax
14: if mutation is applied then 1
15: Apply mutation to particle j with a probability pm = (1 — W&_]) :
16: Mutate x}“ to potentially generate a new solution
17: end if
18: Evaluate the new cost of particle j
19: if new position is better then
20: Update personal best pbest;
21: end if
22: Update the repository rep with non-dominated particles
23: end for
24: Update the grid structure based on the repository rep
25: Calculate performance metrics if required
26: Remove dominated particles and excess particles from rep
27: gen < gen +1
28: Normalize final Pareto front

29:  Updatei =i+1
30: end while
31: Return non-dominated set from rep as the final result

2.4.2. M-O Evolutionary Algorithm Based on Decomposition (MOEA /D-M2))

Decomposition-based algorithms, such as MOEA /D-M2, address complex multi-objective op-
timization by decomposing the problem into a number of scalar optimization subproblems. Each
subproblem optimizes a weighted aggregation of the objectives, and the solutions to these subproblems
contribute to the construction of the Pareto front.
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Mathematical Description

MOEA /D-M2 decomposes a multi-objective optimization problem into a number of scalar opti-
mization problems using a set of weight vectors. The algorithm then uses evolutionary operations to
optimize these subproblems simultaneously.

Given a multi-objective problem with objectives fi, f, ..., f, the scalarized objective function
for a weight vector A and a solution x is given by:

g(x|A) = [max {Ail filx) — 2] [} ©)

where z7 is the ideal point for the i-th objective, and A; is the i-th element of the weight vector A.

The pseudocode for MOEA /D-M2 [14] show in Algorithm 3, is a simplified representation and
does not cover all aspects of the MOEA /D-M2 algorithm, such as constraint handling and parameter
tuning.

Algorithm 3 General Framework of MOEA /D-M2

. Initialize the N weight vectors A = (A!...AN) and each neighborhood B(i)
. Initialize the population Pop = (x!...xN) and calculate all fitness F(x/)
: Initialize the reference point z* according to F(Pop)
: while an end condition is not met do
for each subproblem i =1 to N do
y < Reproduction(Pop, B(i))
Calculate F(y)
Update the reference point z*, F(y)
Replacement(Pop, B(i),z*,y)
end for
: end while
: return Pop

R R AR S e

=

Inorder to modify the general MOEA /D framework, the researchers adopted an Enhanced
Strategy (ES) for Multi-Objective Evolutionary Algorithm based on Decomposition, not too far from the
general framework but with Focused Perturbation Mechanism (ES-MOEA /D-FPM). This evolutionary
strategy, shown in Algorithm 4 augments the standard MOEA /D. The integrated focused perturbation
mechanism is aimed at reinforcing the exploration and exploitation phases of the optimization process.
The methodology is outlined as follows:

1. Population Initialization: The population and weight vectors are initialized along with the
neighborhood structure.

2. Reference Point Initialization: A reference point is established to assist in scalarizing function
computations.

3. Evolutionary Loop: The loop continues until a termination criterion is met, iterating over the
following steps:

* Neighboring individuals are selected for mating using a crossover operator, followed by a

polynomial mutation to generate offspring.
¢ Any constraint violation by the offspring invokes a repair mechanism.
¢ The offspring’s objective function is evaluated and compared against the current solutions

using a weighted sum scalarizing function.
® The reference point is updated if the new solution provides a better scalarized value.
4. Individual Update: Each individual in the population is compared against the new offspring,
and updates are made if the offspring’s scalarized value is superior.
5. External Population Maintenance: The external population is pruned of dominated solutions,
and non-dominated offspring are included.
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6. Result Compilation: The algorithm concludes by returning the external population as the result,
which comprises the non-dominated solutions.

The ES-MOEA /D-FPM algorithm’s focused perturbation mechanism is expected to yield a robust
set of Pareto-optimal solutions, enhancing the multi-objective optimization process’s efficiency and
effectiveness.

Algorithm 4 Algorithm Framework of ES-MOEA /D-FPM
1: Initialize the population P = (Xj, ..., X;), the weight vector A = (A1, Ay, ..., Ay), neighborhood
B(i) = (i1, ..., i).
: Initialize the reference point Z*.
: while the termination condition is not met do
fori=1,2,...,Ndo
Select two random neighbors k1, k, from B(i).
The individuals X}, and Xj, produce an offspring y using the SBX crossover operator with

SRS oA

rate crossoverRate and distribution index 7.

7: Apply Polynomial Mutation to y with mutation rate pm and distribution index 7.
8: if y violates any constraint then
: Repair y to /.

10: end if
11: Evaluate the objective function F(y’).
12: Calculate the weighted sum scalarizing function g% (y’) for y’ using weights A;.
13: if ' is better then
14: Update the reference point Z*.
15: end if
16: for each individual X; € B(i) do
17: Calculate the weighted sum scalarizing function g (X;) for X; using weights A;.
18: if g“(X;) > g“(y’) then
19: Xy
20 end if
21: end for
22: Remove the solution dominated by i’ from external population EP, while i’ cannot be

dominated by other solutions, and add y’ to the EP.
23: end for
24: end while
25: return EP;

2.4.3. Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 (SPEA?2) is an evolutionary algorithm designed
for solving multi-objective optimization problems. It incorporates the concept of Pareto dominance
into its selection mechanism and introduces a fitness assignment strategy that accounts for both the
dominance and density of solutions.

Mathematical Description

SPEA2 uses a fitness function that combines both dominance strength and density estimation.
It improves upon its predecessor, SPEA, by introducing fine-grained fitness assignment, a nearest
neighbor density estimation technique, and an enhanced archive truncation method. The strength of a
solution is defined by the number of solutions it dominates, while the density estimation is inversely
related to the distance to the k-th nearest neighbor in the objective space.

The fitness of an individual x is given by:

F(x) = S(x) + D(x) 4)
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where S(x) is the strength value, and D(x) is the density value.
The pseudo-code for the general framework for SPEA2 algorithm is outlined in Algorithm 5.

Algorithm 5 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

: Create initial population P and empty archive A
: Calculate fitness for all individuals in P and A
while termination criteria not met do
Copy all non-dominated individuals to A
If size of A exceeds storage capacity, prune A using clustering
Perform binary tournament selection, recombination, and mutation to create offspring
Calculate fitness for all individuals in A and offspring
Combine A and offspring into new population P
end while

R N I o

A slight modification of the general framework was done as outlined in Algorithm 6, to get an
Enhanced Strength Pareto Evolutionary Algorithm 2 to preserve diversity and control population
density (ES-SPEA2-DD). The pseudo-code outlined in Algorithm 6 encapsulates the diversity-density
methodology of ES-SPEA2-DD. ES-SPEA2-DD emphasizes the importance of diversity and density
within the evolutionary process, seeking to improve upon the convergence and distribution of solutions
along the Pareto front. This approach is particularly good at tackling challenges in multi-objective
optimization where maintaining a varied and evenly spread set of solutions is crucial. In a bid to
determine the robustness of ES-MOEA /D-FPM and ES-SPEA2-DD, they were compared against other
modified algorithms found in previous works.

Algorithm 6 Algorithm Framework of ES-SPEA2-DD

1: Initialize the population P = (X3, ..., X, ) and fitness values F(Xj), ..., F(X;).

2: Initialize the archive A to empty.

3: Set generation counter gen = 1.

4: while the termination condition is not met do

5 fori =1to N do

6 Select two parents X1, X2 from P using binary tournament selection based on fitness.
7: Generate offspring y using crossover and mutation operators on Xy, Xp».
8
9

if y violates any constraints then
: Repair y to obtain a feasible solution /.
10: end if

11: Evaluate the objective function values F(y’).

12: Update the archive A with i/’ if ' is non-dominated or dominates any members of A.
13: Update the reference point Z* if y’ improves the current best values.

14: for each individual X; € A do

15: if X; is dominated by y’ or equal to y’ then

16: Remove X; from A.

17: end if

18: end for

19: if | A| exceeds archive size then

20: Reduce A by removing the most crowded solutions until the archive size is met.
21: end if

22: end for

23: Create the next population P from the archive A by selecting the least crowded solutions.

24: gen = gen + 1.

25: end while

26: Extract the final non-dominated set EP from the final archive A.
27: return EP.
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ES-MOEA /D-FPM was evaluated against a stable-state multi-objective evolutionary algorithm
based on decomposition (MOEA /D-SS) and the original MOEA/D. The goal of this strategy is to
dynamically adjust the neighborhood size based on factors such as the convergence level within the
neighborhood, the state of the population, and historical neighborhood information, ensuring that it
meets the requirements of any stage of population iteration and evolution [15]. The ES-SPEA2-DD was
evaluated against grid Density Search and Elite Guidance Strength Pareto Evolutionary Algorithm
2(GDSEG-SPEA2)[16]. It employs a sophisticated methodology that combines grid density search
with elite guidance strategies to enhance both the diversity of solutions and convergence towards the
Pareto front.The next section details a robustness comparison table that highlights the strength of the
algorithms against features common to them.

2.4.4. Performance Metrics and Their Relation to HRES Optimization

To effectively evaluate the optimization algorithms for HRES, several performance metrics are
considered. Each metric provides insight into different aspects of the algorithm’s capabilities and their
impact on the optimization process.

¢ Computational Time: The duration the algorithm requires to converge to a solution or complete
a defined set of iterations. For HRES, minimizing computational time is crucial for enabling
rapid analysis and adaptive decision-making in response to fluctuating energy supplies and
demands.

* Storage Used: This represents the algorithm’s memory requirement. A consistent memory usage,
regardless of the operational conditions, suggests the stability and scalability of the algorithm
when applied to HRES.

* Spacing: A measure of the diversity and distribution of the solutions along the Pareto front. In
HRES optimization, a lower spacing value is preferred as it indicates a more evenly distributed
set of solutions which can lead to more balanced decision-making.

¢ Average Rate of Convergence: This metric indicates the swiftness with which an algorithm
approaches an optimal solution. A faster rate of convergence is beneficial for HRES optimization,
as it contributes to quicker system adaptability and efficiency.

e Maximum Spread: This metric assesses the extent of the distribution of solutions across the
Pareto front, with a larger spread denoting a broader range of potential system configurations.
This diversity is advantageous for policy-makers in choosing HRES designs that can meet a wide
array of performance objectives.

* Generational Distance: It gauges the closeness of the algorithm-generated solutions to the
true Pareto front. A smaller generational distance is indicative of the algorithm’s accuracy in
identifying optimal HRES configurations, which is pivotal for the system’s performance and
sustainability.

These metrics collectively provide a comprehensive evaluation of the optimization algorithms.
An ideal HRES optimization algorithm would demonstrate low computational time, moderate storage
use, minimal spacing, rapid average rate of convergence, maximum spread, and minimal generational
distance, ensuring a quick, efficient, diverse, and accurate solution to the HRES design problem.

2.4.5. Robustness Comparison

In the pursuit of optimal solutions for multi-objective problems, the robustness of an algorithm
is pivotal. This section provides a comprehensive comparison of the robustness of DAM-MOPSO,
ES-MOEA /D-FPM and ES-SPEA2-DD along with their respective variants found in previous works.
Robustness, in this context, refers to the algorithms” adaptability, diversity maintenance, convergence
rate, and overall stability in the face of varying problem landscapes and constraints.

Table 3 presents a side-by-side evaluation of the original MOPSO against DAM-MOPSO and Table
4 presents an evaluation of the original MOEA /D and SPEA2 algorithms, alongside their enhanced
variants, such as ES-MOEA /D-FPM (Evolutionary Strategy MOEA /D with Focused Perturbation
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Mechanism), MOEA /D-SS (MOEA /D with Stable-State mechanism), ES-SPEA2-DD (ES-SPEA2 with
Dynamic Diversity), and GDSEG-SPEA2 (Grid Density Search and Elite Guidance SPEA2). The
comparison focuses on key algorithmic features that contribute to robustness, including adaptability

to complex problem geometries, ability to preserve solution diversity, effectiveness in converging to

the Pareto front, and strategies for mutation, crossover, and constraint handling. By examining the

mechanisms and strategies employed by each variant, we aim to provide a nuanced understanding of
how different approaches impact the robustness and effectiveness of MOEA /D and SPEA2 algorithms
in solving complex multi-objective optimization problems.

Table 3. Robustness Comparison Table for Original MOPSO and DAM-MOPSO

Feature Original MOPSO DAM-MOPSO
Adaptability legd population size and inertia Dynar.mc.pop.ulatlc?n adjustment with
weight adaptive inertia weight
Diversity Standard PSO diversity mechanisms E.nhancec.l by grld a.nd mutation strate-
gies for high diversity
Convereence Convergence towards personal and Enhanced by adaptive learning factors
& global bests and leader selection strategies
Mutation Type Standard velocity and position updates Adaptive mutation rate with probability

Crossover Type
Constraint Handling
Performance Monitoring
Neighborhood Size
Parent Selection

Reference Point Update
Scalarization Method
Replacement Strategy

Consideration for Numeri-
cal Stability

Reference Pareto Front Gen-
eration

Overall Robustness

Not applicable to standard PSO

Standard PSO handling mechanisms

Based on personal and global best up-
dates

Defined by swarm topology
Based on the swarm'’s global best

Global and personal bests

Not used in standard PSO
Based on personal and global best im-
provements

Not explicitly mentioned
Not specified in standard PSO

Robust due to swarm intelligence

tuning

Integrates PSO velocity updating mech-
anisms

Repair mechanisms or constraint-aware
selection

Based on dynamic archive update with
grid-based density estimation
Adaptive to particle distribution and
grid density

Based on local best and global best posi-
tions

Continuous update of personal and
global bests

Not typically used in MOPSO
Repository update based on non-
domination and grid density

Ensured by velocity clamping

Generated dynamically as the reposi-
tory is updated

More robust in dynamic environments
with adaptive mechanisms
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Table 4. Robustness Comparison Table for MOEA /D and SPEA2 Variants

Feature Original MOEA/D ES-MOEA/D-FPM MOEA/D-SS

Adaptability Fixed Population and Neighbor- Moderate (Consistent operators) High (Dynamic neighborhood &
hood, GA operators operators)

Diversity GA operators encourage diversity =~ Moderate (Fixed neighborhood se- ~ High (Alternating selection strat-

lection) egy)

Convergence GA operators and reference point  Strong (Weighted sum scalariza- ~ Enhanced by replacement & adjust-
update tion) ment

Mutation Type GA operators (unspecified type) Polynomial Mutation GA or DE operators based on gen-

Crossover Type

Constraint Handling
Performance Monitoring

Neighborhood Size
Parent Selection

Reference Point Update
Scalarization Method
Replacement Strategy

Consideration for Numer-
ical Stability

Reference Pareto Front
Generation

Overall Robustness

GA operators (unspecified type)

Repair mechanism (y — y’)
Based on reference point Z*

Fixed (B(i))
From Neighborhood B(i)

Yes

Scalarizing function-based (g")
Replacement based on scalarized
value comparison

Not explicitly addressed

Not specified

Robust due to adaptive methods
and scalarization

SBX Crossover

Repair mechanism included
External population for
dominated solutions

Fixed

non-

Neighborhood-based

Yes

Weighted Sum Approach

Direct replacement based on scalar-
ization

Specific mechanisms (like handling
“inf")

Reference Pareto front generated
for performance evaluation

More robust for consistent ap-
proach & constraints

eration

GA or DE operators based on gen-
eration

Not explicitly mentioned

Dynamic adjustment based on per-
formance

Adaptive (Changes with genera-
tion)
Neighborhood or
based

Yes

Not explicitly mentioned
Stable-state replacement strategy

population-

Not explicitly mentioned

Reference Pareto front generated
for performance evaluation

More robust in dynamic environ-
ments

Feature Original SPEA2 ES-SPEA2-DD GDSEG-SPEA2
Adaptability Fixed population and strategies Moderate (Adaptive Archive size ~ High (Adaptive grid method and
management and pruning) elite guidance)

Diversity Fitness sharing encourages diver-  High (Pruning based on crowding) ~ High (Neighborhood circle strategy
sity and mixed perturbation)

Convergence Density estimation and archive up-  Enhanced by fitness evaluationand =~ Enhanced by elite guidance and
date for convergence archive update conditional genetic operations

Mutation Type Standard SPEA2 mutation (not  Mutation with random normal per- ~ Mutation prioritized for poor-

Crossover Type
Constraint Handling

Performance Monitoring

Archive Maintenance

Parent Selection
Reference Point Update

Replacement Strategy

Consideration for Numer-
ical Stability
Overall Robustness

specified)

Standard SPEA2 crossover (not
specified)

Repair mechanism (y — y’)

Based on archive and fitness values

Update archive with
dominated solutions
Tournament selection
Density estimation involves refer-
ence points
Replacement
domination

non-

based on non-
Not explicitly addressed

Robust due to fitness sharing and
density estimation

turbation within bounds
Two-point crossover

Repair mechanism for constraint vi-
olations (y — y’)

Archive size management by re-
moving crowded solutions

Pruning based on crowding

Binary tournament selection
Yes (for density estimation)

Update  archive with
dominated solutions,
dominated ones

non-
remove

Specific mechanisms included like
handling infinity

More robust due to adaptive
archive management

performing individuals

Crossover conditional on similarity
threshold

Likely repair mechanism (not ex-
plicitly mentioned)

Improved adaptive grid method
for uniform distribution of Pareto
front

Pruning based on crowding and
grid density

Based on similarity threshold

Not explicitly mentioned

Update  archive with non-
dominated solutions, remove
dominated ones, apply elite
guidance

Not explicitly addressed

Highly robust with grid density
search and elite guidance

2.5. Summary of Objectives

In concluding the methodology section of our study, we affirm that the physical, economic,
and environmental systems criteria have been maintained as established in our prior work [4]. This
consistency ensures that the comparative analysis of the algorithmic performance is grounded on
a stable and reliable basis, facilitating a direct and transparent evaluation of enhancements and
efficiencies brought by the algorithmic advancements.

The crux of our methodological exploration lies in the rigorous performance assessment of the
considered algorithms. The focus has been judiciously placed on their capability to navigate the multi-
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dimensional search spaces effectively, their efficiency in converging towards optimal solutions, and
their resilience in maintaining diversity across the solution spectra. The systematic evaluation, hence,
does not reinvent the systems criteria; instead, it reiterates their validity while shifting the analytical
lens towards the robustness, adaptability, and operational merit of the algorithmic frameworks under
scrutiny. However, for ease of reference, we have highlighted below the mathematical representation
of the objective functions as presented in [4].

This approach not only underlines the significance of algorithmic evolution in multi-objective
optimization but also ensures that our findings are anchored in a well-established evaluative context,
providing a clear trajectory for the subsequent results and discussions.

The objective functions considered are thus summarized below:

OFgco = min(LCCy + LCCpy + LCCpp 4+ LCCpg + LCCpar) (5)
OFprr = min{zfiélo(DEP(t))} ©6)

OFppsp = min{ 2570 (5555 ) } @)

OFgny = min{ £7%Qp s x WEE] } (8)

where OFgco, OFpgr, OFppsp, and OFgny are the economic objective or LCC, DEF, DPSP, and envi-
ronmental objective or CO, emissions respectively.

3. Results and Discussions

This study has yielded insightful revelations about the operational capabilities of the advanced
algorithmic variants modified DAM-MOPSO, ES-MOEA /D-FPM, and ES-SPEA2-DD, particularly in
the application to grid-connected hybrid systems.

3.1. Performance Metrics Insights

The obtained results, encapsulated in Table 5 and 6, suggest that the ES-SPEA2-DD algorithm
demonstrates superior robustness and consistency across multiple performance metrics. The parallel
coordinates plots (Figlifé§ 6a, 6b, and 6¢) provide a visual confirmation of these findings, illustrating
ES-SPEA2-DD'’s balanced trade-offs and its capacity for a well-tuned balance between exploration and
exploitation. This balance is crucial in navigating the complex multi-objective optimization landscape,
as it indicates a harmonized consideration of multiple objectives without excessive compromise on
any single metric.

DAM-MOPSO, while exhibiting significant computational time, has shown a wide range of solutions
in both the parallel coordinates plot (Figure 6a) and its distribution plot (Figure 6d). This behavior raises
questions about its scalability and practical application but also highlights its ability to explore a vast
solution space, potentially uncovering novel solutions that are unattainable by more focused algorithms.

The distribution plots for each algorithm variant (Figures 6d, 6e, and 6f) further enrich this analysis.
ES-MOEA /D-FPM’s distribution plots (Figure 6e) indicate a concentrated approach towards the
objectives, reflective of its targeted search strategy which may limit diversity but improves performance
on specific objectives. In contrast, ES-SPEA2-DD’s distributions (Figure 6f) show not only efficiency
in storage usage and convergence rate but also suggest a balance in the spread of solutions across
objectives, underlining its versatility and robustness in achieving high-quality solutions.

Collectively, these visual insights corroborate the quantitative findings, painting a comprehensive
picture of each algorithm’s strengths and weaknesses. While ES-SPEA2-DD stands out for its overall
performance, DAM-MOPSO’s diverse exploration enriches the comparative benchmark, and ES-
MOEA /D-FPM'’s focused approach offers valuable insights into algorithmic efficiency and targeted
optimization.
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Table 5. Performance Evaluation Metrics for the MOPSO, MOEA /D and SPEA2 Variants

Algorithm Algorithm Performance Evaluation Metrics  Policy Decision Metric (PDM) Based on Defi-
(AL-PEM) ciency of Power Supply (DPS)
PDM-DPSO
Storage Used 208198
Spacing 17.34
Average Rate of Convergence 59.00
DAM-MOPSO Generational Distance 5.45
Maximum Spread 7871.30

Total Computational Time (secs) 8051.86
Optimal Solution based on Euclidean distance to the origin

LCC-Total 1.90e+8
DEF 51.39
CO2 Emissions 54919.77
Optimal Distance 13173.14
Storage Used 286778
Spacing 0.39
Rate of Convergence 0.03
ES-MOEA/D-FPM Generational Distance 0.05
Maximum Spread 224
Computational Time 0.05
Optimal Solution based on Euclidean distance to the origin
LCC-Total 1.39e+9
DEF 47.47
CO2 Emissions 66717.46
Optimal Distance 599633.94
Storage Used 1520
Spacing 0.25
Rate of Convergence 0.01
ES-SPEA2-DD Generational Distance 0.60
Maximum Spread 2.24
Computational Time 5976.50
Optimal Solution based on Euclidean distance to the origin
LCC-Total 6.31e+8
DEF 6.72
CO2 Emissions 11332.09
Optimal Distance 13173

Table 6. Statistical Analysis

Descriptive Statistics

Wilcoxon Rank Sum Test R/T

Objective  Algorithm Mean Std ES-MOEA /D-FPM ES-MOEA /D-FPM ES-SPEA2-DD
Function Vs Vs Vs
ES-SPEA2-DD DAM-MOPSO DAM-MOPSO
MOEA /D-M2 0.103394  0.01316 + + +
DPSP SPEA2 0.040353  0.00232 +
MOPSO 0384861  0.07626
LCC MOEA /D-M2 211x10° 63 x108 + + +
- SPEA2 6.74 % 108 2.02 x 107 +
TOTAL MOPSO 428 x10° 22 x10°
MOEA /D-M2 0.003348  0.00751 + + +
EPG SPEA2 0.092091  0.000078 +
MOPSO 0.032156  0.02617
co2 MOEA /D-M2 9878891  13500.2 + + +
SPEA2 12350.52 975.775 +
Emissions MOPSO 82736.02 234252
MOEA /D-M2 26.8774 6.248 42 + + +
DEF SPEA2 7.427347  0.55872 +
MOPSO 3753196  14.6649
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Figure 5. Paretg front plots for DAM-MOPSO (a) and ES-SPEA2-DD (b). Spacing, Maximum Spread,
Rate of Convergence and Generational Distance plots for DAM-MOPSO (c) and ES-SPEA2-DD (d).

3.2. Policy Decision-Making Implications

In the realm of policy-making, particularly in energy-deficient regions such as Sub-Saharan Africa,
the selection of optimization algorithms goes beyond mere technical performance; it has real-world
implications for energy stability and supply quality. Our findings, based on the Policy Decision
Metric based on Deficiency of Power Supply (PDM-DPS0) as consolidated in the Overall Rank Table
7, point towards ES-SPEA2-DD’s superior ability to align with policy objectives, demonstrated by
its positive impact across all objective functions. It also emphasizes the practical significance of the
algorithms’ outcomes in terms of tangible effects on energy supply stability and quality. Conversely,
the ES-MOEA /D-FPM, while theoretically promising with its scalarization approach, falls short in the
overall practical considerations as evidenced by its overall rank.

Table 7. Overall Rank

Objective Functions ES-SPEA2-DD ES-MOEA /D-FPM DAM-MOPSO

DPSP

LCC

EPG
CO2_Emissions
DEF

Overall Rank

- +

=+ o+ o+ 4
LI}
N+ + +
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Figure 6. Pafallél coordinates plots for DAM-MOPSO (a), ES-MOEA /D-FPM (b) and ES-SPEA2-DD (c),
And Distribution plots for DAM-MOPSO (d), ES-MOEA /D-FPM (e) and ES-SPEA2-DD (f).

Algorithmic Adaptability, Sustainability

Sustainability and adaptability are the bedrocks of energy system optimization in volatile envi-
ronments. The ES-SPEA2-DD algorithm’s dominance across various performance metrics, including
CO2 emissions and diesel energy fraction (DEF), underscores its potential for creating scalable and en-
vironmentally conscious energy solutions, a crucial advantage for sustainable development initiatives.
The comprehensive set of Algorithm Performance Evaluation Metrics (AL-PEM) employed in this
study provides a nuanced perspective on the strengths and operational efficiency of the considered
algorithms. The ES-SPEA2-DD’s performance, marked by favorable outcomes in terms of spacing,
convergence, and computational time, clearly positions it as the frontrunner, while DAM-MOPSO,
despite its second-place rank, shows commendable performance that may be suitable in scenarios
where computational speed is less critical.
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4. Conclusion

4.1. Synthesis with Previous Studies

The methodology of this research, which employs a comprehensive set of Algorithm Performance
Evaluation Metrics (AL-PEM), advances the evaluative techniques used in previous studies. By incor-
porating a nuanced array of metrics—including Average Spacing, Generational Distance, and Optimal
Euclidean Distance—the study provides a multifaceted understanding of algorithmic efficiency that
transcends traditional evaluation methods.

4.2. Comprehensive Algorithm Assessment

The rigorous evaluation conducted highlights ES-SPEA2-DD as the premier algorithm for opti-
mizing hybrid renewable energy systems within the explored case study. This algorithm demonstrates
exemplary performance across various decision metrics critical to policy-making, such as Life Cycle
Costs, Diesel Energy Fraction, and CO2 Emissions. The deployment of ES-SPEA2-DD, detailed in the
Final AL-PEM for ES-SPEA2-DD Based on Policy Decision Metrics (Table 8), affords experts and poli-
cymakers a robust framework, furnishing them with a versatile toolkit for informed decision-making
in the integration and optimization of renewable energy systems. The capabilities of ES-SPEA2-DD to
address the deficiency of power supply under varying conditions can be observed. The comprehensive
data and strategy presented reaffirm not only the robustness and consistency of the ES-SPEA2-DD
algorithm in managing diverse scenarios effectively but also the capabilities of DAM-MOPSO, which
is second-place ranked, in scenarios where computational speed is less critical. This approach offers a
promising solution for sustainable and efficient energy system development.

Table 8. Final AL-PEM for ES-SPEA2-DD Based on Policy Decision Metrics

AL-PEM For Policy Decision Metric (PDM) Based on Deficiency of Power Supply
ES-SPEA2-DD PDM-DPSO | PDM-DPS20 | PDM-DPS30 | PDM-DPS40 | PDM-DPS50
Storage Used 1520 1520 1520 1520 1520
Spacing 0.251 0.294 0.294 0.248 0.257
Average Rate of 0.01 0.002 0.009 0.008 0.009
Convergence
Generational Distance 0.60 0.714 0.621 0.6052 0.586
Maximum Spread 2.236 2.236 2.236 2.236 2.236
Total Computational Time|  5976.50 5817.70 5426.00 10092.00 6094.30
Optimal Solution based on Euclidean distance to origin
Total Life Cycle Cost 6.31E+08 3.95E+09 1.97E+09 8.86E+08 1.02E+09
Diesel Energy Fraction 7 42 24 10 11
CO2 Emissions 11332.09 11580.13 44279.52 18406 19325.41
Optimal Distance 13173 30269 21286 15691 34378
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Hybrid Energy Systems.

Multi-objective Particle Swarm Optimization.
Multi-objective Evolutionary Algorithm based on Decomposition.
Net Present Value.

Operation and Maintenance.

Policy Decision Metric Based on Deficiency of Power Supply.
Renewable Energy Sources.

Strength Pareto Evolutionary Algorithm 2.

Sub-Saharan Africa.

NPV of the total operation and maintenance cost of the biomass plant.
Annual growth rate of the BM cost.

Annual operation and maintenance cost of BM.

NPV of the resale price of the biomass plant.

Total cost recovered from resale.

Initial cost of the biomass plant.

Life cycle cost of the biomass power plant.

NPV of the replacement cost of the biomass plant.

Capital cost of the DG power plant.

Initial cost of DG.

NPV of the total operation and maintenance cost of DG.
Operation and maintenance cost of DG.

Annual growth rate of the DG cost.

NPV of the resale price of DG.

Total resale price of DG at the end of the project life.

Initial cost of DG plant.

Table Al shows fuel consumption values for the existing DG units considered in this study[4] and
Table A2 lists all parameters used in this study.

Table Al. Fuel Consumption of DG units across the country.

Fuel Consumption for Existing DG units Considered

DG unit Fuel Operation Number of Units Consumption (1/h)

A Diesel Oil 20 240

B1 Diesel Oil 3 350

B2 Diesel Oil 5 240
Heavy Fuel oil 700

K Diesel Oil 2 620
Heavy Fuel oil 470

L Diesel Oil 3 430
Heavy Fuel oil 1024

NLand N2 ™ pc el Ol 2 981
Heavy Fuel oil 1300

Wland W27 pys el Ol 2 1230
M Diesel Oil 2 300

LO Diesel Oil 1 300

MA Diesel Oil 1 240

d0i:10.20944/preprints202404.1846.v1
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Table A2. Physical, Environmental, and Economic Parameters.
Physical and Environmental Parameters
Technology Type Variable Notation Value
Rated Power P (kW) 5000
Cut-in speed V. (m/s) 1.5
Wind Turbine Rated Speed Vi (m/s) 13
GAMESA G128-5.0 MW /G132-5.0 MW Cut-off speed Veo 27
HubHeight H (m) 100
Wind Turbine lifetime Lw 20
Maximum Power Ppy max (W) 360
PV Panel Efficiency of Panel npy 22.2
Sun Power X Series Area of PV panel Apy, (m?) 1.63
PV lifetime Lpy 20
Net calorific value of Baggase NCVpuee (MJ/Kg) 16
Biomass Baggase Emissions Factor EFco,,Bagg (mmBtu/kg)  0.0161
CFB Combustion Plant Efficiency of Plant 1ICFB 0.42
Lifetime of Biomass plant Lam 20
Unit Plant Capacity Npg(MW) 10,000
Lifetime of DG plant Lpg 20
Diesel Generator (DG) Net calorific value of Heavy Fuel Oil (HFO) NCVgro (mmBtu/gal) 0.15
Nigatta Dual Fuel Diesel Plant Net calorific value of Diesel Oil (DO) NCVpo (mmBtu/gal) 0.148
HFO Emissions Factor EFgro,co, (kgCOy /mmBtu) 75.1
DO Emissions Factor EFpo,co, (kgCO, /mmBtu) 74.92
Hourly Self Discharge 1) 0
Battery Bank Battery .chz;rgm.g efflfcf%e'ncy Npe 0.9
Lithivm Ion Battery Discharging efficiency Hbd 0.9
Nominal Capacity of Battery (kWh) Cp 1200
Lifetime of Battery Bank Lpat 10
Economic Parameters
Project lifetime N 20
Interest rate i (%) 10
Inflation rate 6 (%) 4
Escalation rate U (%) 5
Inverter efficiency 11 (%) 90
Capital cost of Wind Turbine Cyy ($/m?) 544
Wind Turbine Yearly Operations and Maintenance Cost aom, (%o0fCw) 1.5
Reselling Price sw (%0fCy) 30
Capital cost of PV Panel Cpy ($/kW) 519.7
PV Panel Yearly Operations and Maintenance Cost aoMpy (%0fCpy) 1
Reselling Price Spo (%0fCpy) 25
Capital cost of Biomass Plant Caum (3/kW) 1440
Cost of Bagasse Chaggase ($/ton) 25
Cost of Storage Cstorage ($/ton) 12
Biomass Plant Cost of loading Cloading ($/ton) 5
Cost of Transportation Ctransport ($/ton/km) 0.057
Yearly Operations and Maintenance Cost oMy (%0fCrpm) 0.017
Reselling Price Spm (%0fCppm) 30
Capital cost of DG plant Cpg ($/kW) 1000
Cost of HFO Chro ($/litre) 0.45
Cost of DO Cpo ($/litre) 0.607
Diesel Generator HFO Consumption Quro (litre/hour) 1024
DO Consumption Qpo (litre/hour) 981
Yearly Operations and Maintenance Cost $aomp, (8/kWh) 0.032
Reselling Price sag (%0fCpg) 30
Capital Cost of Battery Cpg ($/kW) 283

Battery Bank Replacement Cost Rpat -
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