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Abstract: Our paper deals with an advanced statistical tool for the volatility prediction problem in financial (crypto)
markets. First, we consider the conventional GARCH-based volatility models. Next, we extend the corresponding
GARCH-based forecasting and calculate a specific probability associated with the predicted volatility levels. As
the probability evaluation is based on a stochastic model, we develop an advanced data-driven estimation of this
probability. The novel statistical estimation we propose uses real market data. The obtained analytical results for
the statistical probability of the levels are also discussed in the framework of the integrated volatility concept.
The possible application of the established probability estimation approach to the volatility clustering problem is
also mentioned. Our paper includes a concrete implementation of the proposed volatility prediction tool and
considers a novel trading and volatility estimation module for crypto markets, recently developed by the lex
Trading Board group in collaboration with GoldenGate Venture. We also briefly discuss the possible application

of a model combined with the data-driven volatility prediction methodology to financial risk management.

Keywords: technical analysis; formal volatility models; volatility prediction; statistical probability of levels;

trading algorithms

1. Introduction and Motivation

In financial engineering, volatility is usually defined as the dispersion of a return series and
is computed by taking the (sample) standard deviation (see, e.g., [11,19,32]). Volatility is the most
important parameter in the pricing of crypto derivatives, and the trading volume has drastically
increased in recent years. To price an option, one needs to know (or estimate) the volatility of
the underlying asset from the real-time instant until the option expires. Note that the probability
distributions of financial returns are characterized by high volatility persistence and thick tails (see,
e.g., [1,12]). In the realm of modern crypto markets, the manifestation of volatility constitutes a very
important indicator of the inherent fluctuations in the main market characteristics [13,32,36]. It gives
crucial information to crypto traders and constitutes a pivotal element of many effective cryptocurrency
trading strategies. Volatility information is very important for assessing risk and pricing derivative
products, as well as for developing trading strategies.

The volatility prediction problem is an important topic in the technical analysis of financial
markets (see [9,10,20,32,37,40,41], and the references therein). It is common knowledge that various
time-series models are widely used for handling the data of highly volatile financial markets. For
example, the relatively simple generalized autoregressive conditional heteroskedasticity (GARCH)
models can effectively be applied to the volatility forecasting problem (see [9,10,16,22,38,39,41]). On
the other hand, the majority of the existing time-series techniques for volatility prediction involve the
celebrated quasi-maximum likelihood (QML) estimation approach [7,10,17,18,33]. One can use this
conventional estimation methodology for necessary parameter identification in a selected GARCH
(p,q) model. We refer to [2,28,33] for the general identification theory.

However, the conventional QML estimation approach mentioned above was initially designed
under the classic normality assumption [17,32,33,39]. Thus, it is inefficient if the volatility proxies are
non-Gaussian (see [14]). Otherwise, there are several specific features of financial market volatility
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that are well-documented. These "stylized facts" include the fat-tailed distributions of asset returns,
volatility clustering, asymmetry, and mean reversion. It is well-known that the QML method is non-
robust in the presence of outliers, even with fat-tailed and skewed distributions. Therefore, the classic
(Gaussian) QML method for the GARCH parameter identification problem needs to be improved and
extended with some additional analytical tools.

Although the development of mathematical models for crypto markets and new trading algo-
rithms has been a major topic of research, forecasting financial market volatility is more difficult.
Surprisingly, although high volatility can pose a considerable menace to shareholders, it can also be a
source of significant financial returns. Even when stock markets oscillate, fall, or skyrocket, there is
always a possibility to profit if market volatility is exploited.

In this paper, we extend the existing GARCH volatility prediction technique using an additional
useful tool. We introduce predicted volatility levels and calculate the probability that financial market
volatility will not fall below these (predicted) levels. This formal mathematical technique involves
the well-known stochastic volatility model (see, e.g., [32]). Additionally, we use real market data
and develop a constructive lower estimation for the probability evaluation mentioned above. This
data-driven estimation of the probability of volatility levels integrates the model parameters and real
market data. The advanced statistical analysis we propose can be considered for integrated volatility
frameworks. It can also be useful in the context of the volatility clustering problem [29,30]. Our paper
includes a short presentation of a practically oriented volatility analysis module, recently developed
by the 1ex Trading Board group in collaboration with GoldenGate Venture. This novel tool includes
the volatility prediction methodology discussed in this paper and some related trading algorithms.

Let us also note that robust volatility forecasting plays an important role in financial risk manage-
ment [25,36,42]. Various hedge funds, banks, financial groups, and trading houses use the well-known
value-at-risk (VaR) indicators. Modern VaR estimators essentially use some volatility predictors.
Moreover, a credible volatility prediction scheme can also be applied to optimize the design of novel
profitable trading algorithms for crypto markets [3-6,15]. It is well-known that the highly fluctuating
crypto exchange prices and the corresponding highly frequent changes in the main market indicators
make accurate price forecasting nearly impossible. In this situation, consistent volatility prediction can
essentially improve concrete trading strategies.

The remainder of our paper is organized as follows: Section 2 contains the formal volatility
prediction problem formulation in the framework of the general GARCH model. We also examine
concrete GARCH abstractions, discuss some useful mathematical and financial facts, and introduce the
concept of the predicted volatility levels. Section 3 includes a critical consideration of the conventional
QLM technique for model (parameter) identification in a general GARCH model. We focus our
attention on the conceptual difficulties of this widely used methodology in the case of non-Gaussian
stochastic errors. The criticism in this section helps in understanding the necessity of some additional
and novel predictive tools. Section 4 is devoted to the development of a novel probabilistic tool
for volatility prediction. We use the well-known stochastic volatility model for this purpose. The
application of an advanced mathematical technique makes it possible to calculate the characteristic
probability associated with the predicted volatility levels. Concretely, we evaluate the exact probability
of financial market volatility not falling below a prescribed (predicted) level. In Section 5, we perform
a statistical analysis of financial market data and derive a novel, lower estimation of the probability
associated with predicted volatility. This data-driven version of the probability estimation is a formal
consequence of the stochastic volatility model studied in the previous section. Section 6 contains a short
description of the practically oriented volatility estimation module "AI NEWS," recently developed
by the lex Trading Board group in collaboration with GoldenGate Venture. Section 7 summarizes
our paper.
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2. Volatility Prediction in Financial Markets Using GARCH Models

Consider a series {ps}s—o 1, of prices of an asset at (T + 1) time points and introduce the
corresponding logarithmic return (log return):

s = 1In (Ps/Psfl)/
s=1,..,T.

Using the obtained data set, {rs}s—1,._;, we now define the (sample) volatility, atz, for the given time
period:
1 t
71 Z — Tt . (1)
s=1

Here,

ﬁl

=1L

is a sample mean return. Evidently, (1) constitutes a method of moment unbiased estimation of the
second moment (i.e., variance of return) for the observable series of returns, {rs}s—1,_ ;. Here, we do
not assume the covariance stationarity of {rs}s—1__;. The complete time period s = 0,1, ..., T can be
interpreted as a full time frame associated with a complete series of historical prices.

Note that there are a number of theoretical and practical advantages to using log returns in finance
(see, e.g., [11,19]). In financial engineering, volatility is often defined as the square root of (1) (the
sample standard deviation); however, the square root of (th in (1) constitutes a biased estimation of the
corresponding standard deviation (see, e.g., [33,39] for details).

As mentioned in the introduction, there are various methods for estimating the volatility 07, in
(1). Next, we focus our attention on a simple but effective volatility forecasting procedure that uses
a relatively simple GARCH model (see [16,19], and the references therein). Recall that the generic
GARCH(p,q) abstraction has the following formal expression:

ry=pt+e, teEN
€ = @Zt (2)
0f = wi + 2 jajef +Z ﬁl‘ft ~j
Here,
pr := Elre| Fia]

is a conditional mean and F;_; is a sigma-algebra generated by the data that are available up to the
time instant t — 1. Moreover, the possibly non-normal random variables, z, t € N, are assumed to be
independent and identically distributed with

Elz¢| Fi—q] =
E[Zﬂft—l] =1
We also assume that the GARCH(p,q) coefficients
(a0,
(B, BY)

in (2) are known for every t € N. The deterministic value, w;, in model (2) is sometimes called an
intercept. Note that we consider a general non-stationary GARCH model here. Evidently, the above
non-stationary abstractions constitute an adequate modeling framework for modern, highly volatile
crypto markets.
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As the statistical properties of the sample mean, 7;, in (1) make it a very inaccurate approximation
of a true mean, taking the necessary deviations around zero instead of 7, as in formulae (1), increases
the accuracy of the volatility prediction. Therefore, we next assume that y; = 0 for all t € Nin (2).

The conditional variance Fftz in the GARCH(p,q) model (2) constitutes a specific model-based
volatility estimation. The main idea of the proposed GARCH model is that the conditional variance of
returns has an autoregressive structure and is positively correlated to its own recent past. Note that
this model also generates the volatility clustering effect.

In the case of a GARCH (1,1), we obtain

0 = wi +afef | + Biot . 3)

From (3), next, we derive the model-based unconditional variance estimation, ‘~7t2+1r of the return v 1:
~2 1 1 ~2
Opp1 = Wi + (@ + )07, t €N (4)

The resulting volatility prediction expression (4) has a recursive nature. In the stationary case, namely,
for

af=a>0,B8=B>0,

wr=w >0

1—-a—p>0

we evidently have the explicit time-invariant volatility prediction:

Oty =0 = @)

Tt

The so-called volatility persistence is given here by (a + ).
Let us also present the resulting formulae for the estimated volatility, &2 1, of return associated
with a stationary GARCH (2,2) predictive model

07 = w+ale? |+ Lot | +aler , + BPo7,. (6)

The corresponding volatility prediction in that case can be expressed as follows:

=0 = G S 7

We refer to [16] for the necessary mathematical formalism. Recall that the covariance-stationarity
condition for the general GARCH(p,q) process (2) has the generic form:

=] b+ =By < 0.

Next, using a "predicted volatility level," we denote the value 5}2+1, calculated using one of the
above formulae (4), (5), or (7). In parallel with the common volatility definition, we also consider the
well-known "integrated volatility" concept over the period ¢ to t + 1:

1
D= /O o2, dt. ®)

The integrated volatility concept (8) is of central importance in the pricing of crypto derivatives (see,
e.g., [29] for details). Let us also refer to [32] for some existing integrated volatility estimators. Evidently,
the GARCH-based predicted volatility levels mentioned above naturally imply the corresponding
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levels of integrated volatility in (8). For example, the combination of the simple trapezoidal rule and
(4) implies the following estimation

—_

Dy~ E(wtﬂ + (1+ oty + Bi1)37) )
of q)t-l-l .

Note that the integrated volatility, ®;. 1, can also be estimated using the return samplings for a
time interval of the sufficiently frequent returns (see, e.g., [1])

: 2

Here, 1 is the sampling frequency, 7, (;,5),, denotes a compound return, and P[] is the probability
associated with the exchange prices (exchange rates) under consideration. The basic relation (10) also
involves a useful concept from modern financial engineering; namely, the so-called "realized volatility"
(see [20,32] and the references therein). Similar to the forecasting technique for the predicted volatility
o7 1 discussed above, one can also estimate some of the additional important statistical characteristics
of return. For example, the GARCH models presented in this section provide a consistent analytic
basis for an adequate estimation of the corresponding kurtosis coefficients (see, e.g., [27] for details).

3. On the Critical Analysis of the QML Method for Parameter Identification

The general GARCH-based volatility model (2), as well as the concrete predictive relations (4), (5),
(7), and (9), are derived under the assumption of the known model parameters (coefficients)

{(wy, ai), i=1,..,q}

and ‘
{Bl,i=1,.,p}

However, practical application of these approaches involves a necessary identification procedure for
defining the GARCH parameters mentioned above. Moreover, one also needs to estimate (identify)
the standardized errors, z;, in model (2).

The quasi-maximum likelihood (QML) method is widely used for the identification of the
GARCH(p,q) models (2). We refer to [7,10,17,18,33] for some mathematical details and concrete
applications of the QML techniques. Under the standard normality assumptions, this method provides
consistent and asymptotically normal estimations in the case of strictly stationary GARCH processes.
Recall that the conventional QML involves maximizing the Gaussian log-likelihood, and the resulting
solution constitutes an adequate estimation of a parameter vector under the normality assumptions.

However, it is common knowledge that financial time-series (for example, the crypto exchange
rates) have the characteristics of being leptokurtotic and fat-tailed with skewness. Moreover, these
series usually involve the so-called volatility clustering effect. The "stylized facts" about the financial
market volatility mentioned above also include asymmetry and mean reversion. Note that these
properties of the volatility dynamics are now well documented (see, e.g., [12,32]).

The non-regular behavior of the modern financial markets and the corresponding stylized facts
about volatility make it impossible to consider the classical Gaussian assumption for the stochastic
errors in the GARCH(p,q) models. Note that the generic normal probability distributions do not involve
outliers and are incompatible with the fat-tailed and skewness effects mentioned above. On the other
side, it is well-known that the QML method is non-robust in the presence of data outliers generated by
fat-tailed and skewed distributions. It is remarkable that in some professional publications and also
in practical trading manuals, one still follows inconsistent normality assumptions. As a result, this
simplified Gaussian-based modeling approach involves a deficient description and faulty forecasting
of the real (crypto) market dynamics.


https://doi.org/10.20944/preprints202404.1838.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2024 d0i:10.20944/preprints202404.1838.v1

6 of 14

The above problem of an adequate modeling framework for the stochastic errors in the general
GARCH(p,q) model (2) is crucially important for the resulting model-based volatility prediction. The
basic QML estimation is inefficient if the volatility proxies are non-Gaussian (see, e.g., [32] and the
references therein). As a consequence, one will obtain a possible inconsequential estimation, 6;, for the
parameters of the basic GARCH volatility model under consideration.

In this situation, one can consider some concrete fat-tailed and skewed probability distribution in
order to examine and simulate the more realistic case studies of the modeled volatility dynamics. For
example, one can use the "contaminated" and skewed normal distribution, skewed Student distribution,
skewed generalized error distribution, and many others. These non-regular probability distributions
generate various types of realistic additive and innovative outliers for the time-series-based modeling
of financial time-series. We refer to [2,14,23] for the corresponding research and simulation results.

Let us note that the fat-tailed and skewed distributions constitute an adequate modeling frame-
work in the case of cryptocurrency time-series (see [12]). On the other hand, we usually have no
information about a concrete real probability distribution associated with these specific financial series.
The same is also true with respect to the series of returns. That means that the concrete non-Gaussian
(fat-tailed and skewed) probability distributions of the stochastic errors in the GARCH model (2) are
generally unknown.

The above fact constitutes the main motivation for the necessary methodological extension of
the existing model-based techniques for volatility prediction and for developing some additional
data-driven statistical tools. Next, we propose a novel statistical metric that can be used as an auxiliary
analytic tool for the GARCH-based prediction of the volatility levels. This metric involves real market
data and constitutes a quantitative method for seeing how well the model-based volatility prediction
would have done. The novel methodology we introduce in the next sections can also be implemented
as a part of the common backtesting procedures for the design and verification of new algorithmic
trading strategies.

4. Exact Probability Calculation for the Predicted Volatility Levels

This section presents a useful result that can be applied to the formal probabilistic analysis of the
predicted volatility levels. By taking into consideration the conceptual difficulties of the OML method
discussed in Section 3, we propose an auxiliary statistical-based predictive metric.

Consider the well-known stochastic volatility model (see, e.g., [32] and the references therein):

datz = (o — ﬁatz)dt + O'UU'tdev(t), te Ry, (11)

where y, is an average, f§ is the speed of the volatility process, and oy is called "volatility of volatility".
Using W, (), we denote a Wiener process with

Wy(0) = 0.
The above stochastic volatility model is usually considered in combination with the price dynamics:
dps = ppprdt +opidWy(t), t € Ry, (12)
Similar to (11), we are dealing with an associated Wiener process here:
Wp(t), Wp(0) =0.

Using pp in (12), we denote the mean. Many useful mathematical models of financial markets include
the generic abstraction (12). Let us mention the classic Samuelson pricing model and the celebrated
Black-Scholes theory (see [8,35]).
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Note that the price and the volatility models (11)-(12) constitute an interconnected system of
equations. This natural interconnection can be described by a specific correlation between Wy () and
Wy (t). The fundamental system (11)—(12) can also be used for modeling the crypto markets. This
model also generates some stylized facts about the volatility mentioned in the previous sections;
namely, the Black-Scholes volatility smile and volatility clustering. We refer to [8] for further technical
details.

We now consider the GARCH(1,1) and GARCH(2,2) models from Section 2 and the corresponding
predicted volatility levels (4), (5), and (7). Let v} be a required volatility level that is associated with
the corresponding GARCH-based predictions. Roughly speaking, we have here the non-stationary
level v} such that

vf <62, VtER,

for (4), and the stationary level
v* < &

in the case of (5) and (7). The required probability associated with the predicted volatility level, v}, can
now be defined as follows:

P[0} € (vf,+0) | 0§ > vf], Vt € [0, T]. (13)

where T € N. Recall that P[] denotes the probability measure associated with the exchange prices, p;
(see Section 2). Note that the above diffusion Markov processes—namely, processes (11) and (12)—are
assumed to be defined in the same probability space.

The proposed definition (13) expresses a probability that the volatility does not fall below a
specific level (a level of vf) for t € [0, T|. This constitutes a kind of "consistency” for the model-based
volatility prediction concept determined by GARCH(1,1) or GARCH(2,2). Note that in (13), we are
dealing with a conditional probability and assuming that the initial volatility, o2, is higher than v}.
We now calculate the required probability determined by (13) using only the stochastic volatility
abstraction discussed above. Note that this calculation does not involve the GARCH(p,q) volatility
model.

In parallel with the characteristic probability (13), we introduce the formal complement:

p(t,0f) :=1—P[o} € (v}, +) | 0§ > v}], Vt€[0,T], (14)

where the stochastic dynamics of o7 are given by (11). This complement expresses the probability of
the following "complementary” event
o? < v}

for t < T. The complementary probability given by (14) can now be evaluated. From the abstract result
of [31], it follows that function p(t,¢7) in (14) satisfies the following boundary value problem:

0 ) 1 9?2 .
a—i = (Mo —/Batz)£ + Eagafﬁ, t>0, 0}2 > vf,
p(t,vf) =1, t>0,

p(0,0'tz) =0, Uf > vf,

(15)

where Utz is a solution of (11). From [31], we also deduce that the auxiliary function

1 1
&(t,0f) = (1= p(t,07)) exp %(M — pot)(of — vp) + W(Hv — pot)’t

satisfies the boundary value problem for the conventional heat equation:
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ag 1 2 482‘: 2 %
oF E‘Tv‘Tt @, t>0, 0 > v,
* 1 . .
C(t,UtZ —vp) =exp %(@2 —v}), o > v}
The solution of the boundary value problem (16) can be written as follows (see, e.g., [26]):
E(t,0?) = exp{2 204( — Bo?)2t}x
(o — B )t + (0f — ) 1 R
X ex 5> 1 — poy )0y — O _
[l[J( O‘UO‘tZ\/E ) p{(TZUA(VU Boi) (o )} (17)

_ 2\t 2_0*
p(Le P00 s onp (o~ o)~ 50))]

Here, we use the following notation for the auxiliary function:

1 /¢ u?
= Eﬁwexp{—i}du,
where
g =y — ,Bgtz-

We now consider the definition (17) of the auxiliary function ¢(+, -) and obtain an explicit expression
for the original function p(+, -) in problem (15). This expression implies the corresponding formal result
for the desired probability in (13):

Plo} € (vF, +00) [ 0§ > 0] =1 p(t,07) =

_ 2 2_ *
(PR s expl (o — o) (eF o)) - )
(10— Bop)t + (67 v7)
1/)( (;;O'tz\/it )/

where t € [0, T].

A direct verification shows that the obtained complementary to (18)—namely, the probability
(-, -)—satisfies the boundary value problem (15). Moreover, for the function p(-, -) and for the desired
probability in (18), we can verify the natural condition

0 < Plof € (vf, +00) | 05 > 0f] <1,

fort € [0, T].
We now conclude that the probability of the GARCH-based predicted volatility level, v}, is
explicitly given by the resulting relation (18). It expresses the probability of the event

of € (vf, +00)
for [0, T], assuming that the initial volatility (for t = 0) satisfies the inequality condition

o > v}

Finally, let us note that the exact probability calculus developed in this section is based on the generic
stochastic modeling approach (11) for volatility dynamics.
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5. Statistics of the Predicted Volatility Levels

The probabilistic analysis of the predicted volatility levels performed in the previous section is
based on an abstract mathematical model; namely, on the stochastic equation (11). Next, we consider
this obtained theoretical technique and use it for an applied, data-driven statistical analysis of the
GARCH-based estimations of volatility levels.

Consider the resulting formulae (18) from Section 4 and put ¢t = T. Our aim is to derive a lower
estimation of the probability expressed in (18). We examine it for the constant predicted volatility
levels, 32, in (5) (GARCH(1,1) model) and (7) (GARCH(2,2) model). For a constant volatility level,
v* = const, with

v <0,

we obtain

Plo}f € (v*,+0) | 0§ > v*] >
(o — p7*)T — (52 — v*) 2 2\ (52
1+l[)( F 0_05_2\/? - ) Xexp{_o.g?(yv_ﬁaz)(az_v )}_ (19)
(o — p7*)T + (62 — %)
¥( G )-

Here, t € [0, T].

We now examine the limit value of the probability expression in (19) for T — co. We next interpret
the resulting P, as a probability that in the "foreseeable future", the volatility does not fall below the
prescribed (constant) level, v*. As

lim () =1,
{—o0
we obtain )
Py > exp{—%(yv — B5?) (72 —v*)}. (20)
Coming back to a real financial (crypto) market data, we introduce the number M € N, defined as
follows:
M:=Y 1(c? > 0%), (1)
teN

where ¢7 is the real market volatility. Function 1(-) in (21) is a generic indicator function

1(y) = 1if y is true;
1(y) = 0if y is false;

for the discrete time t € N. Roughly speaking, the number M € N indicates how many times the real
market volatility o7 is higher as a given constant level, v*. Using (20) and the basic properties of the
exponential function, we deduce our final lower estimation of the limiting probability, Pe:

Py > M 2(H—pa?)(@—v") /55" (22)

Recall that the value &2 in (22) is determined by the stationary GARCH (1,1) predictive model (formulae
(5)) or by the stationary GARCH(2,2) predictive model (formulae (7)).

The obtained final probability estimation (22) constitutes a data-driven (statistical) estimation of
the probability that the volatility does not fall below a prescribed level v*. The number M (determined
above) describes the real behavior of the market volatility, ¢Z. This number can be obtained from a
concrete historical market data set. The same data set can also be used for the identification of the
necessary parameters iy, 8, and oy of the stochastic volatility model (11).

Consider now a simple example. In the simplified case
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V'U = O/
p=1
oy =1,
we obtain the following illustrative version of the general estimation (22):
Poo > M2(@—07)/72 (23)

Note that there is no loss of generality in example (23), due to the parametric scalability of the obtained
lower estimation (22).

The historical market data set used above for the evaluation of estimation (22) can also be applied
to the so-called in-sample forecasting technique. This in-sample method can now be combined with
the complementary out-of-sample testing. This approach is methodologically similar to the main idea
of the celebrated Monte Carlo method (see [4,21,33,34] and the references therein).

The exact probability evaluation (18) from Section 4 as well as the corresponding data-driven
statistical estimations (22) and (23) can also be performed in the context of the integrated volatility (8).
One can use the exact value @, of the integrated volatility in (8) or the simple approximate formulae
(9) for ;1 and define the exact probability or the corresponding statistical estimation similar to (18) or
(22), respectively. As many modern financial risk indicators, for example, the well-known value-at-risk
(VaR) indicators, use volatility predictors, the probabilistic analysis of the predicted volatility levels
presented in Section 4 and Section 5 can also be applied to modern risk management.

6. Some Practical Implementations

We now discuss a concrete practical implementation of the statistical analysis for the volatility
forecasting methodology developed in our paper. Concretely, we present the volatility prediction
module for crypto markets recently developed by the lex Trading Board group (see https://lex.com/)
in collaboration with GoldenGate Venture. This novel analytic tool, called "AI NEWS," has an intercon-
nected structure that includes a generic GARCH(2,2) model and the associated statistical probability
estimation (22) developed in the previous section.

The conceptual block diagram of the lex Trading Board volatility forecasting algorithm for the Al
NEWS module mentioned above is given in Figure 1. Note that the three grouped sub-modules in
Figure 1 represent a statistical block which complements the conventional GARCH-based volatility
analysis and constitutes the main contribution of our paper.

predicted
Model / {w,a,p)| CARCH 1\ iatiity level 62
parameter Volatility
identification model
7777777777777777777777777777777777777777777777777777777 trading
Market Lohwer esgur;\.?tuo; of Decnls<|.on strategy
data the probability P, - making
Stochastic Probability
model / for the
parameter predicted
identification level 2

Figure 1. The conceptual block diagram of the lex Trading Board volatility prediction module.
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This block diagram represents the necessary data and information flows, as well as the system
inputs, outputs, and the operational sub-modules. The given sub-modules are necessary for the
calculation of the predicted volatility levels and for the evaluation of the statistical estimation (22). The
output of the presented block diagram constitutes a final trading decision. The current market data, as
well as the involved volatility prediction and statistical probability of the levels, can be visualized by
the designed module.

We now use the Al NEWS methodology mentioned above and depict (Figure 2) the market
dynamics, the volatility prediction profile, and the corresponding statistical probability level for the
concrete crypto trading pair BTC/USDT (date: 10 April 2024).

BTC/USDT, 1 O
69600.0

69400.0

Volatility 1ex

06:00 07:30

7 TradingView

Figure 2. The lex Trading Board volatility prediction module: BTC/USDT.

As one can see, the estimated statistical probability associated with the selected volatility level in
that example is equal to 0.98.

Let us also apply the developed predictive statistical analysis to an alternative example; namely,
to the trading pair SOL/USDT (date 09/04/2024). The corresponding market dynamics, volatility
prediction profile and the calculated statistical probability level for this pair are shown in Figure 3.

SOL/USDT, 1 O

184.000

182.000

178.000

176.000

Volatility 1ex 0.06
0.04
0.02
0013
-0

13:30 21:00

1 TradingView

Figure 3. The lex Trading Board volatility prediction module: SOL/USDT.
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The statistical analysis of the predicted volatility levels studied in this section has a potential to be
applied to the risk management. The lex volatility tool mentioned above helps investors and portfolio
managers to fix certain levels of risk which they can bear. An adequate forecast of the market volatility
of asset prices over the investment holding period constitutes a very useful initial information for
assessing the investment risk.

Finally note that many modern profitable cryptocurrency trading algorithms involve the adequate
volatility prediction schemes. Let us refer here to the class of feedback type trading algorithms and
also to the widely used family of pullback and drawdown trading strategies (see [3,4,5,6]). The novel
methodology of the predicted volatility levels developed in this paper can also be used in the celebrated
Avellaneda-Stoikov market making strategy.

7. Concluding Remarks

In this paper, we developed a complementary probabilistic tool for the conventional GARCH-
based volatility predictor. The classic GARCH abstractions naturally generate some stationary or non-
stationary predicted volatility levels. As mentioned in Introduction, the real probability distributions of
financial returns involve high volatility persistence, fat tails, and some additional effects. On the other
hand, the widely used QLM parameter estimation methodology is closely related to the (non-realistic)
normality assumption and the robust versions of this technique involve some restrictive technical
assumptions.

The deficiency of the QLM method mentioned above, as well as the general methodological
difficulties of the classic parameter identification approaches, have motivated the development of
some additional (complementary) volatility forecasting techniques. From a formal point of view, a
GARCH-based volatility predictor constitutes a model-based approach. The main idea of the approach
proposed in this paper consists of using a novel data-driven volatility prediction metric that has an
auxiliary character for the basic GARCH predictor. In this study, we developed a new additional
predictive metric by applying some advanced probabilistic and statistical tools. Roughly speaking,
for a model-based predicted volatility level we propose to calculate a statistical probability that the
financial market volatility does not fall below this level. We call it the "probability of predicted volatility
levels."

As the exact result of computation of the above probability is given by a sophisticated (theoretical)
expression, we next extended the proposed approach and calculate a constructive lower estimate of
the "probability of predicted volatility levels." The obtained lower estimate involves the necessary
real market data and constitutes an implementable robust version of the prediction metric mentioned
above. In fact, we finally proposed a combined prediction approach that contains the model-based
and the data-driven elements. Moreover, this approach is compatible with some techniques of the
celebrated Monte Carlo methodology, in view of the given (historical) data set.

The developed data-driven volatility prediction approach can be used as an auxiliary tool in many
analytical concepts of modern financial engineering; for example, it can be studied in the context of
the general time-series forecasting. Robust and credible volatility prediction is also an part of many
modern cryptocurrency trading algorithms. Moreover, the proposed estimation technique can be
applied to the advanced characterization of the integrated volatility and to the important problem of
volatility clustering in crypto markets. A robust volatility prediction technique plays a crucial role in
modern financial risk management.

Let us also note that the proposed formal calculation of the statistical probability associated with
the predicted volatility levels can be implemented not only for the concrete GARCH-based models
studied in this paper, as the developed technique is fully compatible with some alternative volatility
forecasting approaches. Moreover, the proposed probabilistic and statistical techniques have a general
analytic nature and do not depend on some specific financial data or market conditions.

The probabilistic analysis studied in our paper constitutes an initial theoretical development. In
our study, we concentrated on some rigorous mathematical details of the proposed prediction schemes.
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However, these analytical techniques were implemented in a concrete module for the crypto market
volatility forecasting developed by the lex Trading Board group in collaboration with GoldenGate
Venture. We discussed this practical tool briefly in our paper. The paper does not compare the
proposed statistical approach to the existing volatility prediction methods. Due to a very large number
of modern theoretical and applied results related to the predicted volatility, we consider a necessary
comparative analysis as a future work. The detailed comparative analysis constitutes an important
and self-contained topic of a future paper.

Finally, note that the auxiliary statistical analysis of the predicted volatility levels developed in
this study can also be considered in the context of novel forecasting approaches based on modern
machine learning methodologies [24,37]. It seems to be possible to extend the proposed concepts
of volatility levels and the corresponding statistical analysis developed in our paper to volatility
forecasting schemes involving deep learning approaches.

Conflicts of Interest: The authors declare no conflict of interest.
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