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Abstract: The scientific fields of complexity, artificial life (ALife), and artificial intelligence (A.IL) share
commonalities: historic, conceptual, methodological, and philosophical. Although their origins trace
back to the 1940s birth of cybernetics, they were only able to properly develop as modern information
technology became available. In this perspective, I offer a personal (and thus biased) account of the
expectations and limitations of these fields, some of which have their roots in the limits of formal
systems. I will use interactions, self-organization, emergence, and balance to compare different
aspects of complexity, ALife, and A.L. Even when the trajectory of the paper is influenced by my
personal experience, the general questions posed (which outweigh the answers) hopefully will be
useful to align efforts in these fields toward overcoming — or accepting — their limits.

Keywords: complexity; emergence; self-organization; balance

1. Introduction

“The best way to understand man is by creating him”
—José Negrete-Martinez

Complexity! has been studied since antiquity. Just to mention a few examples: Aristotle’s concept
of “more than the sum of its parts” is related to emergence (See Section 6); the Sanskrit term “tantra”
(interwoven) has several parallels with complexity; and ecology has always been inherently complex.
There are several historical examples of what would later be called artificial life (ALife)?, with a mild
surge after the publication of Mary Shelley’s “Frankenstein; or, The Modern Prometheus” in 1818
[12,111,113]. There have been many artificial creatures, first as ancient myths, then with automata
(possible with clockmaking technology required to precisely measure time for making accurate maps
as Europeans navigated around the planet), and in the previous century with the development of the
first digital computers [15,20,118].

Still, the modern scientific study of complex systems and the field of artificial life (under that
name) can be traced to the 1980s around the Santa Fe Institute (SFI, founded in 1984) and the nearby
Los Alamos National Laboratory (LANL, created for the Manhattan Project) in Northern New Mexico.
SFI (celebrating its 40t anniversary) was the first research institution to use the name “complexity”,
even when there were several places where similar research had been carried out. The first conference
on Artificial Life (1987) took place in Los Alamos, while the second (1990) and third (1992) were in
Santa Fe, all three were organized by Chris Langton (who coined the term ALife and worked at SFI
for some years) and others. In 1991, Francisco Varela, Paul Bourgine, and others, organized the first
European Conference on Artificial Life, with a perspective tending more towards cognitive science.
Eventually, both “schools” converged.

The word “complexity” comes from the Latin plexus, which could be translated as “entwined”. We can thus say that complex
systems are those whose elements are difficult to separate [33]. This is because there are relevant interactions among them
[48]. Thus, the traditional reductionist approach that simplifies and isolates in order to predict is inadequate to study
complexity [47].

Artificial life applies the synthetic method to biology [109]: building systems that attempt to reproduce properties of living
systems to understand them better [4].
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I will not attempt to provide a historical account of complexity, ALife, or artificial intelligence
(A.L). My purpose is to notice the similarities and differences between the three fields as they share
conceptual, methodological, and philosophical approaches.

In the next section, I'll review the historical and technological circumstances that predated the
development of complexity, ALife, and A.L In Section 3, I'll mention common limitations that these
fields face, along with the expectations they have generated. In subsequent sections, I'll relate the
concepts of interactions, self-organization, emergence, and balance to complexity, ALife, and AL,
before closing the paper with open questions.

2. Computers as Telescopes

“Where there is an observatory and a telescope, we expect that any eyes will see new worlds at once.”
—Henry David Thoreau

Why did complexity as we know it and “life as it could be” [71] become popular in the 1980s
and not before or after? Personal computers. Before then, digital computing was restricted to the few
research institutions that could afford the expensive equipment (and thus there were few developments
that would now be considered as complexity or ALife. In the case of A.L, while there were more
projects funded by governments, companies had fallen into an “A.I. winter” because of unfulfilled
expectations [41]). PCs changed everything. The number of people who could exploit and explore new
possibilities in information processing suddenly exploded.

As already mentioned, there were a few examples of what could be considered artificial life,
e.g. [15,20,118], while Alan Turing [116], John von Neumann [119], and others were interested in
the potential ability of computers of modeling the human mind. We can say that cybernetics [8,61,97,
127]3 set the basis for the scientific study of complex systems, intelligence, and life. This is because
cybernetics was the first transdisciplinary effort to study phenomena independently of their substrate.
Systems were studied in terms of their organization, rather than in terms of their components. And
because organization [9,10,100,117] can be described in terms of information [93,105], it became clear
that the technology capable of increasing information processing (a.k.a. computation), storage, and
transmission would be essential.

Something similar happened with fractals [75], which were named only in 1975 by Benoit
Mandelbrot. Still, some examples were already proposed in the late XIXth and early XXth centuries by
Cantor, von Koch, Sierpinski, and others. Even more, Gaston Julia and Pierre Fatou studied iterative
functions, which can be used to construct fractals. Still, these were mainly forgotten. But Mandelbrot
had a huge advantage: access to computers that could draw fractals as he worked at IBM Research?.
Then, the interest in fractals exploded.

Before telescopes, no planet beyond Saturn could be detected. And our moon was the only
satellite known. Galileo was able to see Jupiter’s four largest satellites with his telescope. More planets
followed. Other galaxies were observed only less than a century ago as more powerful telescopes
became available. The first exoplanet was detected in 1992. Now there are more than five thousand
exoplanets confirmed in more than four thousand planetary systems. It was only because of these
observations of exoplanets that we now know that most stars have planetary systems, even if we have
yet to detect most of them.

Before microscopes, doctors were taught that disease was caused by the imbalance of “humors”
(or astrological influence, from which the name of influenza comes). It took more than two centuries for

7
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Also known as “control and communication in animals and machines” [127].
Well, he was also student of Julia. And his uncle Szolem (who knew Sierpiriski) had suggested him to work on iterative
functions. And he was extremely smart.
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the germ theory of disease to be accepted. But without seeing pathogens, how could we attempt to
prevent and cure diseases caused by them? Leeches, of course®.

Before computers, we did not have the proper tools to study complex systems. Just like our vision
is limited to perceive the macro and the micro, our limited cognition restricted us to dealing with
only a few variables, even if we had huge blackboards. As Heinz Pagels noted, computers are like
telescopes for complexity [88]. And artificial life. And artificial intelligence. All of these three have
information processing at its core. Thus, we could only begin to study them once information technology
reached a level where enough information could be stored, transmitted, and processed to simulate
intelligence, life, and complexity [106].

Why New Mexico, “land of enchantment”? This is a trickier question. Better said, attempting
to answer it has to be more subjective. Still, I can speculate that at the time there was enough talent
(some Nobel prize winners) and freedom of research at LANL (for example, arXiv was created there
by Paul Ginsparg in 1991). Unfortunately, as several colleagues who have worked at LANL told me,
the situation changed at the Laboratory for different reasons, resulting in limited creativity and less
people being attracted to it. Nevertheless, it seems to me that “back in the day”, it was remote enough
so that non-mainstream ideas could be explored, but not too remote so that the successful ideas that
were developed could spread.

3. Promises and Limits

“Every man takes the limits of his own field of vision for the limits of the world”.
—Arthur Schopenhauer

“The limits of my language means the limits of my world”.
—Ludwig Wittgenstein

One could naively think that we just need enough computational power to completely model and
understand intelligence, life, and complexity. Many promises were made: robots smarter than humans
in all domains, all diseases cured, genomes controlled exactly, future predicted precisely... all attempts
have failed, and some researchers are still hopeful of achieving these goals with better models and
faster computers. And many projects with these expectations are still being funded . Nevertheless,
even before the first electronic computers were built, this approach was “doomed” by the limits of
formal systems as proven by Godel [1931], Turing [1936], Chaitin [1974,2004], and more.

In the late XIX'" century, Georg Cantor proposed set theory (for which he was ridiculed and
ostracized), which later became the basis of modern mathematics. Paradoxes arose. Whitehead and
Russell [1910 13] attempted unsuccessfully to overcome them. David Hilbert launched a program to
try to prove that mathematics was complete (all statements can be proven true or false), consistent (no
contradictions), and decidable (questions posed within mathematics could be answered). A young
John von Neumann, then PhD student of Hilbert, was working on this topic, and probably that is
why he was the only one that understood when Kurt Godel presented his results proving that formal
systems could not be complete nor consistent. Later Turing proved that mathematics was not decidable,
for which he defined the concepts of Turing machine and computable numbers. The implications of
these results are that formal systems are limited in ways that have yet to be completely understood. A
sign of this is that we still attempt to use formal systems for tasks that would require going beyond
those limits. Still, in many cases, partial success is better than nothing at all, especially since we have
yet to find a suitable alternative.

Certainly, the history of pahtology is much more complex than that [85].

I am not suggesting that the failed attempts will never be achieved. Nor that relevant progress has not been made. My
argument explained below is that we will not achieve them with the limited methods we have now, although this does not
imply that new methods may be eventually developed that might overcome the present limits.
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Even when adaptation is widely used [6], there is always a part of systems (axioms in the formal
case, hardware or hard code in the engineering case) that cannot be changed. Still, we might argue
that “real” intelligence, life, and complexity cannot change the laws of physics or chemistry, so in a
sense they are also limited.

Independently on our definitions of intelligence, life, and complexity, we can say that artificial
systems have yet to exhibit behavior as rich as the one of natural systems. Could this be because of the
limits of formal systems? Or simply because we have yet to understand how nature changes itself?

Moreover, it might be that we want artificial systems to be simpler than natural ones. This is
because we can attempt to better understand less detailed versions of natural systems.

In the case of artificial life, these limits have been evident in the study of open-ended evolution
[90,107,112]. As Hernadndez, et al. [58] showed, undecidability and irreducibility (which might be
considered as desirable or undesirable but are precisely some of the limits of formal systems) are
conditions for open-endedness.

For complexity, a relevant case is that of emergence [1,16,18,102] (to be expanded in Section 6).
There are several notions and flavors of emergence. In general, it can be said that emergent properties
are those present at one scale (usually lower or faster, but not necessarily) and not at another scale
(usually higher or slower) [50]. In particular, “strong emergence” is seen as problematic by some,
since it usually implies downward causation [23,27,37,40]. This means that emergent properties at a
higher scale have a causal effect on elements at a lower scale. We have yet to find a formalism that
properly describes downward causation, while some argue that it does not even exist (downward
causation might be apparent, an epiphenomenon, but the laws of physics explain everything)’. Could
it be because of the same limits of formal systems? Nevertheless, for practical purposes, does it really
matter? Even if in theory everything could be reduced to physics, in practice it is not. So, in any case, we
do need descriptions at all levels to understand and face complexity.

For A.L, there have been several limits identified, one of the most relevant being that of meaning
[79,98]. In principle and practice, machines can simulate in a very sophisticated way our cognitive
abilities. Still, do they “really” understand [57,104]? We might say that pragmatically it does not
matter. But it should, as a feature of human cognition is the ability to change meanings arbitrarily
and adaptively, which again seems limited by formal systems used to implement A L systems. There
have been impressive advances within information theory, but methods for creating semantics and
understanding are still at an early stage. Some people [e.g., 3] have argued that the surprising
capabilities of recent large language models could be considered as understanding, although this is
still hotly debated [80].

It might be that these limits are actually a feature, not a problem. We “just” need to accept them
to be able to exploit them, rather than fight against them. Imagine that mathematics (or any formal
system) was consistent, complete, and decidable. as Hilbert and others hoped for. Yes, we would have
“absolute truths” and certainty. But would we have creativity? Innovation? Serendipity? It seems to
me that many of the features of our world (without which we would not be here) require the limits we
have been so eagerly trying to eliminate.

Even when there have been impressive advances in the scientific study of
complexity, artificial life, and artificial intelligence, there are several open
problems that may be related to the inherent limits of formal systems. Will we be
able to go beyond them?

One example comes from personal conversations with David Wolpert, who does not believe on downward causation, but
concedes that it might be that in some cases, in practice it might be easier to predict lower scale phenomena from higher
scale properties, similar to one way functions used in cryptography: in reality, the higher scale is caused by the lower one,
but in practice, it is not computable. Another view is that speaking about causality between scales is a conceptual mistake,
since independently of observers, phenomena occur at all scales [44, p. 31]. It is only our descriptions that represent limited
aspects of phenomena at particular scales.
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4. Interactions

“The aim of science is not things themselves, as the dogmatists in their simplicity imagine,
but the relations among things; outside these relations there is no reality knowable.
— Henri Poincaré

”

Etymologically and conceptually, we can say that the most relevant feature of complex systems is
interactions [33,48]. Complexity comes from the Latin plexus, which means entwined, and has some
similarities with the Sanskrit tantra. In both cases, interactions make it difficult to study or describe
elements in isolation, just like threads in a fabric (which is the literal meaning of tantra). We can
say that this is related to the concept of tendrel (Tibetan, Sanskrit Pratityasamutpada) from Buddhist
philosophy, which could be translated as “interdependent origination”, “dependent arising", or simply
“causation”. Tendrel notices that phenomena arise in relation to other phenomena. Nothing can be
isolated, nor be caused only by itself or out of nothing. So, everything is related, directly or indirectly
[43,49,99].

Neither from itself nor from another,

Nor from both,

Nor without a cause,

Does anything whatever, anywhere arise.
—Nagarjuna, Mitlamadhyamakakarika 1:1

Traditional science and philosophy (since times of Galileo, Descartes, Newton, Laplace...) have
been reductionist, in the sense that within this paradigm we try to simplify and isolate phenomena to
predict and control them [60,83]. In other words, we aim at finding fundamental “laws” and use them
to obtain a priori knowledge (predict the future), reducing phenomena to the fundamental laws used
to describe them. This has been extremely successful and led to impressive advances in engineering,
medicine, and more. Still, this does not imply that reductionism does not have its limits nor that
there might be more suitable descriptions of the world for certain purposes. Precisely when we have
relevant interactions, reductionism is inadequate, as it neglects interactions and their implications.

“Reductionism is correct, but incomplete.”
—Murray Gell-Mann

There are several implications of interactions [48], but I can say at a general level that the
main one is that interactions may produce information that was not present in initial nor boundary
conditions. This inherently limits predictability [47], as we cannot know a priori which information
will be generated. This is known as computational irreducibility [58,128,132]: there is no “shortcut” to
the future, as information should be processed through interactions to reach it.

It should be noted that in practice, computational irreducibility might not pose such a challenge
as it does in theory. If we are interested only about a particular context, we could potentially explore
exhaustively, or at least systematically, all or several possibilities, and then a posteriori be able to
describe and predict the future of complex systems, including their emergent properties and variables.
Still, if we are dealing with non-stationary problems®, then even if we have a “full” understanding of a
specific complex system, if the problem changes (which is not rare precisely because of interactions), it
might be that new relevant information will arise and our understanding will be obsolete.

The fact that traditional tools (from reductionist science) are insufficient to study complex systems
has led some researchers to seek alternatives [59,68], in part because we seem unable to address global
challenges precisely because of their complexity.

8 A stationary problem does not change in time, so once a solution is found, it will remain valid. A non-stationary problem

does change in time, so novel solutions should be found, ideally as fast as the problem changes [44].
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The relevance of interactions and limits of predictability have been discussed mainly concerning
complex systems, but they are relevant for ALife and A.L as well. Interactions in ALife and A.L systems
can also generate novel information, limiting predictability, for better or for worse. There have been
several attempts with varying degrees of success, but we still lack a general, common framework to
describe, understand, and control complex systems. And it might be that such a framework could be
developed within ALife or AL, and then generalized for all complex systems.

Interactions limit the predictability of complex systems. Thus, in many
cases, future information can only be known a postertori (because of computational
irreducibility). This implies that traditional reductionist approaches and methods
seem insufficient to properly understand complexity, life, and intelligence. Still,
we have yet to develop widely accepted methods that show the desired sufficiency.

5. Self-Organization

“The beauty of a living thing is not the atoms that go into it,
but the way those atoms are put together.”
—Carl Sagan

There are several examples of self-organization in nature [26]: flocks, schools, swarms, herds,
crowds, etc. In these examples, there is no leader or external source telling individuals what to do, but
the properties of the system are a result of the distributed interactions of individuals. Thus, the study of
self-organization is closely tied to complexity and information technology necessary to model it. Also,
the term “self-organizing system” has its origins in cybernetics [7,9,73,117]. Nevertheless, there have
been several examples of self-organization in physical and chemical systems [11,36,56,87,103].

A system can be described as self-organizing when its components interact to produce a global
pattern or behavior [52]. This description can be useful when we are interested in relating multiple
scales (elements and system, micro and macro), and how changes in one might affect the other (e.g.,
changes in individuals affect a society or changes in a society affect individuals).

If we are dealing with a complex problem, novel information can make it non-stationary, i.e., the
problem changes. If the problem changes faster than the time required to find a novel solution through
optimization or other traditional techniques, then the solutions will be obsolete. Self-organization
can be a viable approach to develop adaptive solutions that are able to face non-stationary problems,
because when the problems change, elements can adjust through their interactions [42,44].

Self-organization has been used broadly in ALife: for software (digital organisms), hardware
(robots), and wetware (protocells). See Gershenson et al. [53] for a review.

In AL, self-organization has had a more limited use. Still, it could be argued that most artificial
neural network models are implicitly self-organizing [45], as their weights (interactions) are modified
during the training phase. And explicitly, Kohonen networks are self-organizing [69]. Also in robotics,
self-organization has been relevant, implicitly or explicitly [91].

Self-organization can be useful when multiple scales are modeled at the
same time. It has been a relevant concept for complex systems and ALife, with a
potential in A.I. that has yet to be fully explored.

6. Emergence

“You could not have evolved a complex system like a city or an organism — with an enormous number of
components — without the emergence of laws that constrain their behavior in order for them to be resilient.”
—Geoffrey West

The concept of emergence has certain analogies with Aristotele’s “the whole being more than the
sum of its parts”, where the “more” is the emergent bit. Emergence was popular in the XIXth century
[77,78], but fell out of favor in the early XXth century due to the success of reductionist approaches.
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But when information technology allowed the scientific study of complex systems, emergence became
relevant again [17].

Still, emergence probably caused most of the confusion and skepticism around complexity in
the 1980s and 1990s. In part, because some people described emergent properties as “surprising” or
“unexpected”. Then, emergence should be a measure of our ignorance, because once we understand
these properties, they are no longer surprising nor unexpected.

Nevertheless, there is nothing mysterious about emergence if properly described [5]. In a general
way, emergent properties are those present at one scale but not at another [50]. For example, a bar
of gold has color, conductivity, malleability, etc. Still, its components (gold atoms) do not have these
properties, so we can call them emergent. In a similar way, it is accepted that cells are alive, but they are
composed of molecules that are not alive. Whatever our definition of life, we can say that it emerges
out of the interactions of molecules. It is accepted that a human is intelligent, but she is composed of
cells that are not intelligent (in the same way). Whatever our definition of intelligence, we can say that
intelligence emerges out of interactions of cells.

There are different flavors of emergence, some less controversial than others (see Gershenson [50]
for a review). For example, weak emergence [16] is about properties described by an observer, such as
gliders in the Game of Life [19,20]. Still, gliders do not change the rules of the Game of Life, and we
only need these rules to compute the future states of the system. Strong emergence [14,102] would be
when having all information at one scale is not enough to derive information at another scale. In many
cases, strongly emergent properties or information have a causal effect on the elements that produced
them. For example, molecules form cells, but living cells make molecules that cannot be produced
without biospheres. Also, individuals create social norms, and these norms promote and constrain the
behaviors of individuals.

One could say that weak emergence is “in the observer”, while strong emergence “is real”.
Some (reductionist) people do not believe strong emergence exists (e.g., Weinberg [125]), as it implies
downward causation, and for them only “fundamental” phenomena described by physics are real.
Independently on our notion of reality, in practice, the laws of physics are not sufficient to describe,
explain, and even less predict phenomena at higher scales (even fluid dynamics and chemistry, we do
not have to go to life, intelligence, and culture.).

I conjecture that strongly emergent properties are not computable in practice, and that is why
a lower scale description is not enough to predict them. If there is no practical way in which the
properties of one scale can be described in terms of the “laws” of another, then we should validly
describe those properties as emergent. Of course, this cannot be proven, for reasons similar to why a
number cannot be proven to be random [30] or Kolmogorov’s complexity is not computable (in theory)
[34]. Note that this approach does not rely on downward causation, , but does not prevent it [64].

For example, a person can be melted by the words of their loved one, but this cannot be derived
from the laws of physics that describe the melting of matter, no matter how detailed a description one
might have at the “fundamental” level. Certainly, the laws of physics are not being violated. They are
simply not enough, as there is no meaning in physics [38,46].

Emergence has been a central concept for complex systems and artificial life [50]. Many ALife
models have been used to better describe and understand different flavors of emergence, e.g. [21,22,62,
76,82,95,114,121,123].

In AL, emergence has been less relevant. Still, unpredictable capabilities of large language models
have been recently described as emergent [124], sparking some controversy.

Emergence can be a useful concept when information is not present at one scale
but is present at another. Even when it is prevalent, we lack the conceptual
and formal tools to precisely speak and measure emergence in complex, living, and

intelligent systems.
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7. Balance
“Everything tends to a balance.”

In recent years, I have been developing a narrative of “balance”” to bring together concepts of the
scientific study of complex systems, and to communicate them to a general audience. There are several
historical examples of balance from ancient cultures, and those examples show it has been a common,
long-standing practice to try to avoid extremes. Still, criticality [2,11,13,32,81,84,89,96,101,108] can be
seen as a type of balance between order and chaos [67,72]. Life (and computation) need some stability
(order) to keep on functioning. But too much stability limits their adaptability. On the other extreme,
too much variability (chaos) loses useful information. At “the edge”, evolution, life, and intelligence
can emerge.

More generally, balance is a tautology, because we describe a posteriori phenomena that survived
and evolved as balanced, between “too few” and “too much” change. Certainly, there can be
“dynamic balance”, where the precise tradeoff varies and systems need to adapt (as exemplified
by the slower-is-faster effect [51]). Also, interactions, perturbations, or noise can increase the change in
a system, for which antifragility [92,110] is desirable. And we have recently shown that heterogeneity
can “extend” the “balanced” region of systems [74,101].

In A.IL, a well-studied balance is that between exploration and exploitation in search [35,63], also
known as search in breadth or depth, respectively (when solution spaces are represented as trees).
In other words, to try to find the best solution to a problem, one can exploit current solutions and
try to improve them or explore completely novel solutions with the hope that some might be better
than current ones. Because the best strategy cannot be predetermined, as it depends on the problem
space [130,131], the precise balance between exploration and exploitation will depend on the particular
problem space that is searched.

Balance also offers a promising narrative to study evolution (natural and artificial) [65,66,120], as
by definition that which evolves needs to be balanced.

Phenomena that endure tend to avoid extremes, so they can be called ‘‘balanced”

a posteriori (once they endured). Still, this tautology can be useful to bring
together common concepts in complex systems, ALife, and A.I.

8. Inconclusion

“Being ill defined is a feature common to all important concepts.”
—Benoit Mandelbrot

I'have mentioned conceptual similarities and challenges among complexity, ALife, and A.L Still,
there are many open questions.

There are no agreed definitions of complexity, life, or intelligence. But perhaps this is more
a feature than a problem. If we could define one of these precisely, then we would not have so
many open questions about them. And we do because their richness goes beyond our current
understanding abilities. It remains to be seen whether we just need a revolution in science [59,68] to
be able to understand them properly. Or it might be that there are aspects that inherently are beyond
understanding as we know it [129].

In practice, there have been several relevant recent advances that have generated great
expectations. Whether we consider novel forms of life, either by exploiting current ones [24,25,54,70]
or exploring novel ones [28,86,94], we will take important steps to understand life on Earth and in
other planets [122].

Historically, A.L has had its cycles of expectations (summers) and disappointments (winters). We
have had several years of building expectations. For example, autonomous vehicles are still “two years

9 We can roughly define balance as that which avoids extremes.
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away” after more than fifteen years. Deep neural networks and large language models have achieved
impressive performances, but in the end, they are “just” ad hoc statistical engines. It is not clear that
by following the same approach something like “understanding meaning” could be achieved [79].
Still, for many practical purposes, this is not relevant. Nevertheless, there are limits to what current
approaches will be able to do.

As for the scientific study of complex systems, perhaps its success will be achieved when most
disciplines complete integrating their concepts and methods and adopt them as their own, so few
people would speak about “complexity economics” or “biological complexity”, simply because most
people would be familiar with the relevant concepts and methods. Still, there will always be a narrow
space for studying complexity per se, as the study of the interactions in systems at all scales.

The limitations outlined in this paper very well might be overcome. We have no clear idea of how
this will be possible, but there are several promising explorations. If further research helps to better
delineate the limits of science rather than going beyond them, this will certainly be useful and will
allow us to make better decisions, even if it is just by knowing what we have no way of knowing.
Acknowledgments: I thank comments and feedback from Jan Dijksterhuis, Mario Franco, Stuart Kauffman,

Amahury Lopez-Diaz, Andrea Roli, David Wolpert, and members of the Foundations of Information Science
mailing list hosted at the Universidad de Zaragoza. Steve Spero helped proofreading the paper.
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