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Abstract: Pulmonary Embolism (PE) is the obstruction of blood arteries in the lungs by a blood clot. 

The mortality risk for PE is approximately 30%. Detecting pulmonary embolism in the segmental 

arteries of the lung is more challenging than in the main arteries and is very prone to being missed. 

A  computer‐based  approach  was  created  in  this  work  to  automatically  identify  pulmonary 

embolism  in  the  segmental  arteries  using  computed  tomography  images.  The  systemʹs 

infrastructure includes an enhanced Mask R‐CNN deep neural network that has been trained with 

images containing PE. The network accurately identifies the location of the pulmonary embolism 

on the computed tomography picture and successfully extracts its borders. The investigation was 

conducted by generating a local dataset. The studyʹs performance was evaluated using pulmonary 

embolisms identified manually by the expert radiologist. The sensitivity, specificity, accuracy, dice 

coefficient, and  Jaccard  index values  for 2130 pictures were 96.4%, 93.5%, 96.1%, 0.96, and 0.90, 

respectively. The  improved Mask R‐CNN model has demonstrated  superior performance when 

compared to the traditional Mask R‐CNN and U‐Net models. This high‐performance technology is 

designed  to  identify pulmonary embolism and will aid professionals  in assessing  the size of  the 

embolism. 

Keywords: pulmonary embolism; Mask R‐CNN; CTPA images 

 

1. Introduction 

Pulmonary embolism (PE)  is the obstruction of blood arteries in the  lungs caused by a blood 

clot[1]. Peripheral edema  is  third  in prevalence among cardiovascular  illnesses. The disease has a 

death rate of 30% [2–4]. A delay in diagnosing the condition raises the likelihood of impairment and 

mortality [5]. Early diagnosis is crucial for treating the disease effectively [6,7]. CTPA is the preferred 

method for diagnosing PE due to its quick and detailed imaging capabilities [8,9]. Blood arteries show 

bright  on  contrast‐enhanced CT  scans due  to  the  contrast material. The  embolism  appears dark 

because  it does not absorb  the  contrast agent. Figure 1 displays pulmonary embolism  in a high‐

quality computed tomography scan. 
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Figure 1. Representation of Pulmonary Embolism. 

Detection  of  PE  from  CTPA  images  is  performed  manually  by  experienced  radiologists. 

Therefore, it can be time consuming and sometimes difficult [10]. Some studies have shown that there 

is a 13% discrepancy between overnight and daytime assessments for the detection of PE [11–13]. In 

addition, in some emergency situations, rapid and accurate assessment of PE is of great importance 

[14]. Some semi‐quantitative methods can be used to measure the degree of vascular occlusion and 

determine  the severity of PE. The most common of  these methods are  the Mastora score and  the 

Qanadli  score,  known  as  the Vascular Obstruction  Index  (VOI), measured  by  an  expert  [15,16]. 

However, there is inconsistency between different experts in the use of these methods [17]. Therefore, 

the researchers used computer‐assisted systems to automatically detect PE. 

In this study, an improved mask R‐CNN method was proposed for the detection and localisation 

of  pulmonary  embolism  from  CT  images.  The  relationship  between  the  loss  function  and  the 

performance of the Mask R‐CNN algorithm was determined. A local dataset was used in the study. 

Details of the proposed method are given in the second part of the article. Experimental results are 

presented in the third part. 

1.1. Related Works 

Thanks  to  the  developing  technological  infrastructure,  the  performance  in  PE  detection  is 

increasing by using different algorithms. Early studies of pulmonary fixation included limited clinical 

applications and showed poor performance. In these studies, clinical findings were used instead of 

CT  images  as material. As  a method,  feature  extraction was  done with  simple  artificial  neural 

networks [18–20]. However, in recent years, there are also studies using up‐to‐date methods for the 

automatic  detection  of  PE  [21,22].  These  studies  have  shown  that  computer  aided  systems  are 

successful in detecting PE. It has also been shown that these systems can accurately detect small PEs 

that may escape the eye of the specialist [22,23]. In a study, PE detection was made automatically by 

classifying the features of PE with K‐Nearest Neighbors (KNN), Artificial Neural Network (ANN) 

and Support Vector Machine  (SVM) algorithms. A sensitivity of 98% was obtained  [24]. Machine 

learning algorithms have been widely used  in recent years and have achieved high performance. 

There are many studies in which MR, CT images are analyzed with deep learning algorithms and 

much  higher  performances  are  obtained  [25–27].  With  convolutional  neural  networks,  high 

performance can be achieved in PE detection via CTPA images [28,29]. Pham et al combined natural 

language processing and machine  learning  in diagnosing  thromboembolic disease  [30]. CT‐based 

deep learning and automated PE studies have distinct challenges compared to their counterparts in 

other locations. For example, PE data represent only a small fraction, next to the size of the baseline 

CT data. There are also signal‐to‐noise problems when the  intravenous contrast  injection protocol 

and patientʹs breath‐hold instructions are not followed [31,32]. For this reason, the correct creation of 

the neural network model and dataset used has a high effect on the performance. In particular, it is 

of great importance that the ground truths in the dataset are created correctly. Examples of recent 
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studies conducted with deep learning‐based techniques for the detection of PE are presented in Table 

1. 

Table 1. Deep learning‐based studies on PE detection. 

Author  Method 
Dataset size 

(n = studies) 
Performance scores 

Huang et al.  3D CNN  1997 
Sen. 87% 

Spec 90% 

Liu et al.  U‐Net  878 
Sen. 94.6% 

Spec. 76.5% 

Huang et al.  3D CNN  1837 
Sen. 87.3% 

Spec. 90.2% 

Weikert et al.  Res‐Net  29,465 
Sen. 92.7% 

Spec. 95.5% 

Rajan et al. (IBM) 
Context‐Augmented 

U‐Net 
2420  Auc. 0.94 

Tajbakhsh et al.  Alex‐Net  121  Sen. 83% 

2. Material and Methods 

2.1. Material 

The  dataset was  obtained  from  the Radiology Department  of Kahramanmaraş  Sütçü  İmam 

University. Computed tomography images of 50 patients, 27 of whom were female and 23 male, were 

used. The age  range of  the patients  is between 28 and 95.  Images were obtained with TOSHIBA 

AQUILION ONE 320/640 Slice instrument. A raw dataset was created with a total of 430 1212*1212 

images in .tif format by taking only PE‐containing sections. In this study, the sections in which PE is 

displayed as the largest surface area are used . The CT scans are 8 bit (0‐255) gray level images. An 

average of 9 PE‐containing sections were taken from each patient (min=8 , max=12). Ethics committee 

report was obtained for the data set. All of the PEs in the images in this dataset were labeled by Kamil 

DOĞAN, one of the authors of the study, a 15‐year expert radiologist, using the Matlab ImageLabeler 

toolbox. 

2.2. Data Augmentation 

The study only included patients with pulmonary embolism and no other accompanying tissues 

such  lymph nodes.  Images were  acquired  from  a  restricted  sample of  50 patients. These  images 

underwent data augmentation  techniques. The most often utilized  improvement methods  include 

image  rotation,  contrast  adjustment, vertical  and horizontal mirroring,  and  zooming. This  study 

utilized  horizontal  and  vertical  rotation  (±90°)  as  well  as  horizontal  and  vertical  mirroring 

approaches. The number of images has been multiplied by five.   

2.3. Preprocessing 

The dimensions of the raw images in the dataset are 1212 x 1212. PE is located in the middle 

region of all images in raw dataset. We obtained a 448x448 sub‐image from the middle region of the 

raw image to cover the sections with pulmonary embolism. Figure 2 shows the raw image and sample 

subimage with PE. 
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Figure 2. Obtaining the middle chamber containing PE. 

2.4. Mask R‐CNN Network Architecture 

Region‐based Convolutional Neural Networks (R‐CNN) [33], Faster R‐CNN [34] and Mask R‐

CNN [35] have high performance in object detection. Unlike other models, Mask R‐CNN performs 

both detection and segmentation. This network is the extended version of Faster R‐CNN network. as 

follows; Mask R‐CNN also has an extra segmentation pattern (segmentation mask). There are two 

phases  in Mask R‐CNN.  In  the  first  stage,  feature extraction  is performed  for  the  regions.  In  the 

second stage, bounding box detection, class detection and segmentation are performed according to 

the extracted features. The Mask R‐CNN architecture includes a backbone network. Figure 3 shows 

the Mask R‐CNN architecture. 

 

Figure 3. Mask R‐CNN architecture [35]. 

As seen in Figure 4, Mask R‐CNN has an FPN network that provides deep feature extraction. 

ResNet50 [36] was used as the backbone network in the study. The Feature Pyramid Network (FPN) 
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is designed according to the pyramid concept. It is a network structure that stands out in speed as 

well as accuracy.  It has a multi‐scale  feature map.  It has an upstream and downstream network 

structure. The upstream path is a convolutional neural network for feature extraction. As the number 

of upstream layers increases, the semantic value increases. High level structures are detected. Since 

ResNet has a multi‐layer structure, its training speed and estimation performance are quite high. In 

the  basic  structure  of  ResNet,  there  are  hops  between  the  front  and  back  layers  to  assist  back 

propagation  in  the  training  process  of  deep  networks. After  the  FPN  network  comes  the  RPN 

network. Thanks to this network, regions containing possible objects are detected. The RPN region 

proposition  is a deep convolutional neural network. The RPN takes any size of data as  input and 

finds a bounding box bid based on the object score. It makes this suggestion by shifting a small mesh 

over the feature map generated by the convolutional layer. After the RPN network is ROIAlign. ROI 

alignment performs  the same process as ROI pooling. However, Roi Align solves  the problem of 

unnecessary offsets in segmentation problems by using bilinear interpolation. In this way, it achieves 

results much faster. Thanks to this layer, the image dimensions are rescaled and transmitted to the 

fully connected layer. After the fully connected layer, the class and bounding box information of each 

region is obtained. 

 

Figure 4. U‐Net Architecture [37]. 

2.5. Improved Mask R‐CNN Network Architecture   

In the study, Mask R‐CNN structure was modified. Thus, the developed Mask was trained as 

an R‐CNN  network.  In  order  to  improve  the  detection  of  pulmonary  embolism,  two weighting 

parameters  λ1  and  λ1  are  used  in  the  loss  function.  The  loss  function  consists  of  the  sum  of 

classification loss, positioning loss and segmentation loss as shown in equation 1. 

𝐿 ൌ 𝐿௖௟௦ ൅ 𝜆ଵ𝐿௕௢௫ ൅ 𝜆ଶ𝐿௠௔௦௞  (1)

Lcls corresponds to what level the classes detected incorrectly. In multi‐object detection, this value 

should be increased if more than one object is not detected. Lbox is an adjustable parameter for the 

correct determination of the objectʹs boundaries. This parameter can be increased if the bounding box 

is  incorrectly  positioned  when  the  object  is  detected.  On  the  other  hand,  λ1,  λ2  weights  the 

segmentation positioning losses of the object and thus the network performance can be improved. 

Lmask indicates how accurately the object is segmented. As shown in Equation 2 
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   𝐿௠௔௦௞ ൌ െ
1
𝑚ଶ ෍ ሾ𝑦௜௝𝑙𝑜𝑔𝑦ො௜௝

௞ ൅ ൫1 െ 𝑦௜௝൯𝑦௜௝log ሺ1 െ 𝑦ො௜௝
௞ ሻሿ

ଵஸ௜,௝ஸ௠

  (2)

is expressed as. Here y and  yො  denote the label and predictive value, respectively. 

2.6. U‐Net 

The  performance  of  the  improved  Mask  R‐CNN  algorithm  is  compared  with  the  U‐Net 

algorithm. For this reason, PE segmentation was also done with the U‐Net algorithm. The working 

principle of the U‐Net model is similar to the operation of autoencoders. The purpose of these models 

is to compress the input data and make the best learning with the least loss [37]. In this architecture, 

the number of neurons in the input and output layers is equal. However, the number of neurons in 

the hidden layer can vary. A U‐Net based neural network is shown in Figure 4. If the structure of the 

network is examined, U‐Net is a segmentation architecture built on a fully connected convolutional 

neural network. 

Since it resembles the letter U in shape, it got its name from this letter. There are two parts in 

this architecture. The first part is known as contraction (encoding) and the second part is known as 

expansion (decoding). The first part, the coding part, is a traditional CNN architecture and the image 

size is slowly reduced using some convolution and maximum pooling layers. The convolution layer 

consists of 3x3 filters, and the maximum pooling  layer consists of 2x2 filters. The second part, the 

decoding part, is completely symmetrical to the first part. In this part, the feature map is enlarged 

step by step by deconvolution towards the actual size of the image. Each convolution layer in the 

architecture is followed by an activation layer. 

2.7. Evaluation Metrics 

Sensitivity, specificity, accuracy, Dice and Jaccard were used to determine the performance of 

Mask R‐CNN in detecting pulmonary embolism. Sensitivity refers to the proportion of PE within the 

detected pixels. A low sensitivity value indicates that true lesions are not adequately detected. On 

the other hand, high sensitivity values indicate that the system is able to detect a high proportion of 

the regions that are recognised as lesions. Evaluating different criteria together gives more accurate 

results. These criteria are expressed as follows. Figure 5 shows the true positive (TP), true negative 

(TN), false positive (FP) and false negative (FN) areas of the pixel groups obtained by automatic and 

manual segmentation. The equations for the performance parameters used are given in equations 3, 

4, 5, 6 and 7 below. 

 

Figure 5. Representative overlap of automatic and manual segmentation when calculating similarity 

index performances. 

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
்௉

்௉ାிே
  (3) 
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   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 ൌ
்ே

்ேାி௉
      (4) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
  (5) 

 𝐷𝑖𝑐𝑒 ൌ
2 ∗ 𝑇𝑃

𝐹𝑃 ൅ 2 ∗ 𝑇𝑃 ൅ 𝐹𝑁
  (6) 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 ൌ
𝑇𝑃

𝐹𝑃 ൅ 𝑇𝑃 ൅ 𝐹𝑁
  (7) 

3. Experimental Results 

In  this study,  thorax CT  images of 50 patients with pulmonary embolism were used.  Images 

containing a  total of 430 pulmonary embolisms were created by  taking  the sections  in which  the 

pulmonary embolism was seen from these  images. The study was carried out  in four stages: data 

augmentation, preprocessing, PE segmentation, and performance evaluation. Preprocessed images 

were used as input to the Mask R‐CNN network. Images of 36 patients (1505) were used for training, 

and  images  of  14  patients  (645) were  used  for  testing.  Feature  extraction  for  PE  detection was 

performed with the ResNet50 convolutional neural network pre‐trained with the COCO dataset. Both 

hold‐out validation  (70%  train 30%  test)  and  10‐fold  cross‐validation were used  for performance 

evaluation.  Figure  6  shows  the  automatically  and manually  segmented  PE’s.  The  PE manually 

segmented by the expert doctor is shown in red and the PE automatically segmented by the proposed 

system is shown in blue. Mask R‐CNN performs both detection and segmentation. The detection of 

PE is shown with yellow bounding box. 

 

Figure 6. Automatic and manual segmentation of PE and detection performance, A. Original Size 

images, B. Zoomed images. 

Manual and automatic segmentations are shown in colour in Figure 7. The regions identified by 

the expert but not detected by the system are shown in red. The regions detected by the system as PE 

but not by the doctor are shown in green. The pixels belonging to the PE detected in both ways are 

shown in yellow. It is seen that the proposed system detects PE with a high performance.   
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Figure 7. Colored drawing of manually and automatically segmented PE. 

The average sensitivity, specificity, and accuracy values obtained  from  the  test data with  the 

proposed method for hold‐out validation are given in Figure 8. The average sensitivity value was 

96.4%, the specificity value was 93.5% and the accuracy value was 96.1%. It is seen that the proposed 

improved Mask R‐CNN has a high performance in PE detection. 
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Figure 8. Average PE detection performance values with hold out validation. 

Dice  and  Jaccard  similarity  indices were  also used  in  this  study  to determine  the  similarity 

between automatic and manual PE detection. The minimum and maximum Dice values were found 

to be 0.95 and 0.97 respectively. The minimum and maximum Jaccard values were found to be 0.88 

and 0.91 respectively. Figure 9 shows the graph of the Dice and Jaccard values obtained for the test 

images. The mean values obtained for the test data are given in Table 2. The mean values of the Dice 

and Jaccard similarity indices were obtained as 0.96 and 0.90 respectively. The performance of the 

study was tested using both hold‐out validation and 10‐fold cross‐validation. Table 2 shows the PE 

segmentation performance of Mask R‐CNN and Enhanced Mask R‐CNN. Enhanced Mask R‐CNN 

was found to be more successful, especially when 10‐fold cross‐validation was performed. 

 

Figure 9. Dice and Jaccard similarity index values for test images. 
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Table 2. Comparison of segmentation performances of Mask R‐CNN and Improved Mask R‐CNN. 

  HOLD OUT VAL.    10‐FOLD CV 

  Dice  Jaccard  Dice  Jaccard 

MASK R‐CNN  0.937  0.885  0.879  0.826 

IMPROVED MASK R‐CNN  0.962  0.901  0.945  0.837 

The  performances  of  improved Mask R‐CNN  and U‐Net  and  classical Mask R‐CNN  in PE 

detection are compared as shown in Table 3. The results showed that the improved Mask R‐CNN 

provided higher sensitivity, specificity and accuracy values than the classical Mask R‐CNN and U‐

Net models. In particular, the fact that the sensitivity value was higher with the enhanced Mask R‐

CNN indicates that it has a higher success rate in detecting the pixels of the lesion compared to the 

other two methods. 

Table 3. Comparison of the improved Mask R‐CNN method with U‐Net and Mask R‐CNN. 

  Hold Out Val.  10‐ Fold CV 

𝐌𝐞𝐭𝐡𝐨𝐝  𝐒𝐞𝐧. ሺ%ሻ  Spec.ሺ%ሻ  Acc.ሺ%ሻ  𝐒𝐞𝐧. ሺ%ሻ  Spec.ሺ%ሻ  Acc.ሺ%ሻ 
U‐Net  91  88  90.7  88.3  86.9  88.9 

Conventional Mask R‐

CNN   
94.3  90.1  95  92.4  87.6  92.1 

Improved Mask R‐CNN  96.4  93.5  96.1  96  90.1  95.7 

The accuracy values obtained at different λ values are given  in Table 4. The results obtained 

show that the highest performance for this study is λ1=0.9, λ2=0.8. The case of λ1=1 and λ2=1 is valid 

for classical Mask R‐CNN. Here, λ1 is the coefficient of the loss function of the bounding box (Lbox) 

and λ2 (Lmask) is the coefficient of the loss function of the mask. 

Table 4. Accuracy values for different λ1 and λ2 values. 

𝝀𝟏  𝝀𝟐 
Hold Out 

Accuracy (%) 

10‐Fold CV 

Accuracy (%) 

1  1  95    92.1 

1  0.9  95.2  94.3 

1  0.8  95.1  94.2 

1  0.7  93.7  93.6 

0.9  0.9  95.7  94.5 

0.9  0.8  96.1  95.7 

0.8  0.9  93.1  92.9 

0.8  0.8  92.5  91.2 

The performance of the proposed improved Mask R‐CNN and other methods in detecting PE is 

compared in Table 5. As can be seen, the proposed improved Mask R‐CNN shows a high performance 

in detecting PE. 

Table 5. Comparison of the proposed method for the detection of pulmonary embolism with recent 

studies. 

Authors  Year  Method  Performance Values 

Huhtanen et al. [38]  2022  InceptionResNet V2 
Sen. 

0.83 

Spec. 

0.90 

Xu. et al. [39]  2022  Scaled‐YOLOv4 
Recall 

0.92 

AP50 

0.83 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2024                   doi:10.20944/preprints202404.1810.v1

https://doi.org/10.20944/preprints202404.1810.v1


  11 

 

Khan et al. [40]  2023  DenseNet201 
Sen. 

0.88 

Spec. 

0.88 

Olescki et al. [41]  2023 
Improved   

U‐Net 

Sen. 

0.82 

Acc. 

0.83   

Grenier et al. [42]  2023 
Hybrid   

3D/2D UNet 

Sen. 

0.91   

(0.86‐0.95) 

Spec 

0.91   

(0.86‐0.95) 

Ours  2024 
Improved   

Mask R‐CNN 

Sen. 

0.96 

(0.93‐0.98) 

Spec 

0.93 

(0.92‐0.95) 

4. Conclusions 

The location and size of the pulmonary embolism, known as a pulmonary artery occlusion, is 

important  for  the  treatment  of  the  disease.  The  study  developed  a  computer‐based  system  for 

detecting pulmonary embolism from computed tomography scans. The system uses a deep neural 

network  trained on  images  in  the  local dataset. Modified Mask R‐CNN was used as  the network 

model.  This  modification  process  involves  weighting  the  loss  functions  in  the  Mask  R‐CNN 

algorithm with different coefficients. The results obtained showed that the Mask R‐CNN algorithm 

developed according to the classical Mask R‐CNN and U‐Net was more successful in removing the 

PE boundaries. In this study, only CT  images with PE and without PE‐like  lesions such as  lymph 

nodes were selected. Axial sections with PEs were used from these images. Segmentation of PEs in 

these sections was performed. It is possible that other regions may be detected as PEs in axial sections 

without PEs. The performance values obtained represent the correct extraction performance of the 

pixels of the PE. The study has highlighted that the performance of the modified mask R‐CNN can 

be  improved  in  object  segmentation  applications.  Since  the  system  determines  the  location  and 

boundaries of the PE, it can help specialists make a decision about the PE. 
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