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Abstract: Smallsats are becoming the predominant electro‐optical Earth observation (EO) imaging platforms. 

While  atmospheric  correction  of  smallsat data  enhances  its  utility,  an  established  pathway  to  do  so may 

constrain  accuracy  and utility. The  alternative, Closed‐form Method  for Atmospheric Correction  (CMAC), 

developed for smallsat application provides surface reflectance derived solely from scene statistics. In a prior 

paper, CMAC closely agreed with Land Surface Reflectance Code (LaSRC) software for correction of the four 

VNIR bands of Landsat‐8/9 images for conditions of low to moderate atmospheric effect over quasi‐invariant 

warehouse‐industrial targets. Those results were accepted as surrogate surface reflectance to support analysis 

of CMAC and LaSRC reliability for surface reflectance retrieval in two contrasting environments: shortgrass 

prairie  and  barren desert. Reliability was defined  and  tested  through  a  null  hypothesis:  the  same  top‐of‐

atmosphere  reflectance  under  the  same  atmospheric  condition will  provide  the  same  estimate  of  surface 

reflectance. Evaluated against the prior surrogate surface reflectance, the results found decreasing error with 

increasing wavelength for both methods. From 58 comparisons across the four bands, LaSRC average absolute 

error ranged from 0.59% (NIR) to 50.30% (blue). CMAC error was well constrained from 0.01% (NIR) to 0.98% 

(blue) sustaining the null hypothesis for reliability. 

Keywords:  surface  reflectance;  retrieval; LaSRC; CMAC;  scene  statistics; near  real‐time;  spectral 

diversity 

 

1. Introduction 

Through  smallsats,  electro‐optical  Earth  observation  (EO)  is  rapidly  expanding,  enabled  by 

advances in electronics, imaging sensors, data transmission and miniaturization of components. The 

resulting smallsat constellations provide rapid repeat  imagery  that are especially needed  to better 

understand and manage the unprecedented planetary‐scale threats from climate change. Perhaps the 

greatest  challenge  for  all EO data  application  is  that  it  is  obtained  through  the  atmosphere  that 

variably corrupts the data. The solution is to correct the data to surface reflectance, a process that 

seeks to remove the atmospheric effect entirely resulting in clear images and restored digital signals. 

However, atmospheric correction  is problematic  for  the many hundreds of EO  smallsats without 

onboard equipment to calibrate sensor output permitting direct conversion to surface reflectance. 

A  proposed  pathway  for  smallsat  surface  reflectance  correction  applies  the  Land  Surface 

Reflectance Code (LaSRC) and cross calibration to the data of two research grade satellite platforms 

atmospherically corrected by LaSRC: Landsat‐8/9 and Sentinel‐2 A/B [1–3]. Such cross calibration can 

introduce uncertainty due  to mismatched overpass  timing and spectral responses between sensor 

platforms. LaSRC currently requires ancillary data to assess the degree of atmospheric effect on the 

day of the smallsat’s image acquisition, both for calibration and application. This potentially adds 

another  layer  of  uncertainty  in  operational  surface  reflectance  retrieval  due  to  any  temporally 

mismatched image collection for the ancillary data. Ancillary data also delays image processing and 

output and may have coarser granularity that reduces spatial sensitivity. CMAC was formulated to 

avoid these sources of uncertainty. 
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The Closed‐form Method for Atmospheric Correction (CMAC) was developed to deliver surface 

reflectance with  no  delay  upon  image  download.  Its  development was  prompted  by  a  seminal 

observation of atmospherically driven reflectance changes. The novel CMAC pathway was  tested 

against Sen2Cor  for Sentinel‐2 correction  [1] and LaSRC  for Landsat‐8/9 correction  [2]. Corrected 

Landsat data by LaSRC, L2A, are available only through Earth Explorer and represent the general 

current state of the art in surface reflectance retrieval. CMAC proved accurate and precise for higher 

levels of atmospheric effect estimated  from each  image’s spectral data, alone. This present paper 

investigates an additional inquiry for CMAC application, whether the reliability of surface reflectance 

output from one area of interest (AOI) applies to all other environments, especially those with very 

different spectral characteristics. As a yardstick for this comparison, CMAC reliability is compared 

to  the  state‐of‐the‐art  LaSRC  correction  for  the  four  visible  and  near  infrared  bands  (VNIR)  of 

Landsat‐8/9. 

The paucity of surface reflectance data is a challenge for evaluating atmospheric correction. A 

few such datasets exist but virtually never in time and space to support sustained, focused testing to 

compare methods, thus necessitating a workaround for investigating the reliability of atmospheric 

corrections.  The workaround  for  this  investigation  relies  upon  a  truism  relative  to  atmospheric 

correction: correction accuracy  is greatest  for scenes  taken  through a “clean” atmosphere. This  is 

partially because clean images require much less adjustment to achieve surface reflectance, but also 

because the engineering tolerances to accurately retrieve surface reflectance become tighter and the 

solution accuracy more critical as atmospheric effects increase. In the prior investigation [2], CMAC 

and LaSRC closely agreed on images acquired under relatively clean atmospheric conditions. These 

data were accepted as surrogate surface reflectance to provide a reference to construct the datasets to 

support this analysis. 

This paper  investigates  (1)  the  reliability of CMAC  to provide  surface  reflectance output  for 

environments widely different from where CMAC was developed and calibrated, and (2) to evaluate 

the  functionality of CMAC  in  relationship  to  the widely accepted  state of  the art, LaSRC. A null 

hypothesis was formulated to express atmospheric correction reliability: Equivalent top‐of‐atmosphere 

reflectance  from images of different environments collected under the same  level of atmospheric effect, when 

atmospherically corrected, will yield equivalent surface reflectance (i.e., no difference). This hypothesis can 

be stated more simply as “the same input affected by the same conditions will yield the same output.” 

A point of continual  reference  in past papers  that we use again here  is application of  image 

appearance that includes clarity and color balance of atmospherically corrected images [1,2]. Though 

a subjective interpretation, images that appear clear are  logically closer to surface reflectance than 

those containing visible haze. Figure 1 is an example of an extremely hazy image portrayed as top‐

of‐atmosphere  reflectance  (TOAR)  and  CMAC  and  LaSRC‐corrected  views  and  illustrates  the 

importance  of  scene  appearance  for  judging  atmospheric  correction. While  the  lack  of  surface 

reflectance groundtruth in appropriate time and at an appropriate scale can be problematic for cross 

checking the accuracy of retrieved surface reflectance,  image appearance  is useful as a qualitative 

guide for correction accuracy. 
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Figure 1. The quality of atmospheric correction can be  judged by  image clarity and color balance. 

Landsat  8  image  of  Kelowna,  British  Columbia,  8‐08‐2021:  (a)  uncorrected  TOAR,  (b)  CMAC 

corrected, and (c) LaSRC corrected. 

2. Materials and Methods 

CMAC is a recently developed method intended for atmospheric correction of smallsat images. 

CMAC processing applies reflectance in two steps that first map and then reverse atmospheric effect 

spatially for each image. These steps and how they were developed are described in Appendix A and 

the interested reader can also consult previous journal papers [1,2] for additional information. 

This  investigation  applies  an  earlier  comparison  of CMAC  to  LaSRC  for  31  relatively  clear 

Landsat‐8 and 9 images of five AOIs of warehouse/industrial districts in Southern California (SoCal) 

known to have consistent surface reflectance [2]. In that analysis, the average cumulative distribution 

functions  (CDFs)  for  these  two disparate methods agreed  to such a close extent  that  they plotted 

virtually atop one another (Figure 2). Those paired datasets are employed here as surrogate estimates 

of surface reflectance. By averaging and interpolating the values for CDF extractions from images of 

the 31‐image cohort, datasets were constructed to assess CMAC and LaSRC output under the same 

atmospheric conditions  from  the same TOAR  input  from completely different environments  than 

where these methods were in close agreement. The high dark‐to‐bright dynamic range of reflectance 

in the SoCal dataset is an important distinction because the AOIs selected for comparison of method 

reliability have extremely low dark to bright dynamic spectral range. 

 

Figure 2. Bandwise reflectance CDFs for the four VNIR bands averaged for all 31 images of Landsat‐

8 and 9 of TOAR, CMAC and LaSRC  treatments extracted  from AOIs  in  two Southern California 

municipalities. The resulting curves show nearly complete agreement between CMAC and LaSRC. 

High dynamic spectral range, dark  to bright,  for each band  is demonstrated by  the wide range of 

extracted reflectance values. 

Landsat‐8 and 9 data were not considered separately given the close agreement of these paired 

satellites [4]. LaSRC applies a radiative  transfer  (RadTran) based workflow  that  is documented  in 

readily  attainable  remote  sensing  literature  that  readers  are  urged  to  consult  [5,6].  RadTran 

calculations  account  for  the  various  reflectance,  absorbance,  transmittance,  etc.,  components  to 

estimate the amount of light, radiance, measured by the sensor. 

Two locations were selected for analysis of method reliability, both with extremely low dark to 

bright dynamic spectral range very different from other areas where CMAC has been calibrated or 

applied. An AOI  just west  of Lake Newell, Alberta, Canada was  chosen  to  represent  shortgrass 

prairie, a vegetation cover occupying a band of semiarid climate that runs north to south for over 

2000 km across  the United States and Canada. A second site adjacent  to  the El Pinacate volcanic 

uplands  in Sonora, Mexico  represents profound desert of  exposed  sand with  sparse, widespread 

shrubby trees constituting less than three percent cover within the AOI investigated; such profound 

deserts are found in significant proportions of South America, Asia, Africa and Australia. Shapefiles 
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were mapped to enclose homogeneous cover for both AOIs (Figure 3). A regional view from the 7‐

04‐2022 Landsat‐8 El Pinacate region in Appendix B provides a wider view of the TOAR, CMAC‐

corrected and LaSRC‐corrected examples and further context for atmospheric correction over deserts 

with  low  dynamic  spectral  reflectance  contrasting with  adjacent  areas  surrounding  the Gulf  of 

California shore exhibiting high dynamic spectral reflectance. 

 

Figure 3. AOIs of Lake Newell (L8, 8‐06‐2023; top) and El Pinacate (L8, 7‐04‐2022; bottom) shown for 

three treatments: (a) TOAR; (b) CMAC; and (c) LaSRC. The area inside the Lake Newell AOI is 27.46 

km2 and 12.62 km2 for the El Pinacate AOI. 

Three  Landsat‐8  and  9  images were  selected  for  each AOI  from  the  Landsat  archives  and 

downloaded as both uncorrected and LaSRC‐corrected versions from Earth Explorer (Table 1). These 

six  images were  corrected by CMAC v1.1L, and  calibrated  for Landsat‐8/9 application;  the  same 

processing was also applied in the previous CMAC‐to‐LaSRC comparison [2]. The dataset to test the 

null hypothesis was constructed  through back comparison  to  the SoCal datasets  from AOIs with 

quasi‐invariant reflectance where CMAC and LaSRC showed close agreement. Any of the five SoCal 

AOIs would work for this application because the 31 images were affected by relatively moderate 

atmospheric effect, and because these two disparate methods resulted in virtually the same corrected 

data  distributions  per  AOI.  Two  were  selected,  Fontana  and  Rochester,  whose  reflectance 

distributions are shown in Figure 2. Since the true surface reflectance  is unknown and there were 

slight differences between CMAC and LaSRC in the SoCal results, this analysis regarded the SoCal 

surface reflectance estimates as most appropriate for application per atmospheric correction method: 

CMAC for CMAC and LaSRC for LaSRC. This ensured that the choice of datasets did not bias the 

results. For these comparisons, Atm‐I was applied to measure the atmospheric effect rather than the 

aerosol optical  thickness ancillary data applied  in LaSRC  from  the Moderate Resolution  Imaging 

Spectroradiometer (MODIS) [3]; however, the LaSRC datasets downloaded from Earth Explorer were 

generated with the workflow that applies MODIS AOT for assessment of atmospheric effect [5,6]. 

Pixel values for the blue, green, red and NIR bands were extracted from within the AOI polygons 

shown  in Figure 3 and exported  to spreadsheets  for analysis. Reflectance distributions  from each 

image for three treatments (i.e., TOAR, corrected CMAC and LaSRC) were extracted and represented 

as CDFs in 21 percentiles from 1%, 3% and in 5‐percentile steps between 5% and 95%. Data for the 

Rochester AOI was matched with the 8‐14‐2023 Lake Newell image to check for bias from selection 
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of the SoCal AOI, none was found in comparison to data for the Fontana AOI that was matched with 

the other five images (Table 1). 

Table 1. Data for the six Landsat‐8 and 9 images that were selected for this analysis. 

 

Construction of the dataset for testing the null hypothesis began by finding the Atm‐I of multiple 

images of the SoCal datasets whose averages equaled the median Atm‐I’s from the images selected 

for Lake Newell and El Pinacate. The individual values of the 21 percentile steps for the distributions 

are arrayed in columns in the spreadsheets, one column per image, ranked by increasing Atm‐I. This 

format facilitated averaging image values to support the comparisons by pairing the experimental 

image TOAR, CMAC  and LaSRC  values with  the  corresponding  averaged  values  for  the  SoCal 

images. 

Appendix C provides portions of the combined 7‐29‐2023 Lake Newell and Fontana datasets 

that were reformatted and annotated to support explanation of the workflow to identify values for 

the three defining properties of the null hypothesis: (1) Atm‐I conditions in the SoCal dataset were 

selected whose averages equaled the experimental datasets, thereby achieving the same atmospheric 

conditions; (2) interpolation to identify the exact TOAR and its percentile position in each of the six 

experimental images to match the SoCal TOAR input for atmospheric correction; and (3) identifying 

the corresponding atmospherically corrected output values from the SoCal dataset for testing the null 

hypothesis.  Interrelating  the  TOAR  data  and  the  surface  reflectance  calculated  from  it  was 

accomplished  within  each  dataset  using  their  percentile  positions.  The  7‐29‐2023  Lake  Newell 

spreadsheet  contained  in  the Supplementary Materials  can be  compared  to Appendix C  to assist 

following the calculation workflow. 

Error  for  the  atmospherically  corrected  data  was  estimated  by  treating  the  Fontana  and 

Rochester‐corrected surface reflectance estimates as the standard to assess CMAC and LaSRC error: 

%  error  =  100  x  (value  –  standard)/standard. This  comparison was  judged  to  be  valid  because  the 

atmospheric  correction  results  for  the  spectrally diverse  SoCal AOIs were  accepted  as  surrogate 

surface  reflectance.  “value”  in  this  formula  represents  the  Lake Newell  and  El  Pinacate  surface 

reflectance estimates. 

This  statistical  distribution‐based workflow was  repeated  for  all  four  bands  for  each  Lake 

Newell and El Pinacate image. In this manner, a series of common TOAR values, and the CMAC and 

LaSRC surface reflectances estimated from them, were interpolated from these two datasets. 

3. Results 

CDFs  for  the  four  bands  of  the  three  treatments  of  the  three  images  per  AOI  afford  a 

comprehensive  look at  the responses per correction method (Figure 4). The TOAR CDFs  for Lake 

Newell  illustrate diverse  reflectance due  to  the  vegetated  shortgrass prairie  in  comparison  to El 

Pinacate, where  the  reflectance  remained  consistent  for  the  ground  surface  virtually  devoid  of 

perennial vegetation. 
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Figure 4. Extracted reflectance by treatment with dot, dash and solid patterns that identify each image 

evaluated by the two methods. Other than TOAR for Lake Newell, the bands in the graphs stack from 

left to right according to increasing wavelength. These AOIs have extremely low spectral dynamic 

range compared to Figure 2 and plot here as almost vertical lines. 

The  extremely  low  variability  of  the El Pinacate distributions  in  Figure  4  illustrates  several 

trends. The CMAC‐corrected bands have greater spacing and are positioned left of LaSRC. All three 

treatments portray red reflectance distributions as having less coherence. 

The Lake Newell CMAC distributions are tighter than LaSRC. The unexpected discrepancy for 

NIR  observed  in  the  Lake Newell  data was  due  to  rain  prior  to  the  8‐14‐2023  image  that was 

investigated and confirmed as described in Appendix E. Lake Newell LaSRC CDFs for the highest 

atmospheric effect (8‐06‐2023, 1044 versus 920s for the other two dates) are displaced to the right. 

This discrepancy  is  an  indication  that  the  increase of Atm‐I  from  920s  to  1044  resulted  in under 

correction by LaSRC; an  interpretation based on  the  fact  that atmospheric  correction  reduces  the 

brightening effect of backscatter by moving the CDFs to the left. Hence under correction results in 

the 8‐06‐20223 being displaced rightward in relation to the corrected images from 7‐29‐2023 and 8‐

14‐2023  .  The  CMAC  corrections  of  the  visible  bands were  unaffected  by  Atm‐I  and maintain 

consistency and close agreement as would be expected for the reflectance of midsummer shortgrass 

prairie when vegetation growth is essentially static. 

Figure 5 presents the bandwise Lake Newell CDFs plotted with the surface reflectance points 

reconstructed from the SoCal AOIs identified through the workflow described earlier. For all bands, 

the reconstructed SoCal surface reflectance points of CMAC lie on the CDFs for Lake Newell. Many 

of the LaSRC points reconstructed in the same workflow, also lie on or close to the Lake Newell CDFs, 

partially  corroborating  that  CMAC  provides  accurate  surface  reflectance  estimates,  though 

disagreeing with the LaSRC CDFs. Thus, for the Lake Newell comparisons, the null hypothesis that 

CMAC provides output equivalent to the surface reflectance surrogate dataset of SoCal is accepted. 

Judged by the data plots in Figure 5, any error between the SoCal and the Lake Newell datasets was 

slight. 

In  contrast  to CMAC  results,  the points displayed  for LaSRC  reconstructed  from  the  SoCal 

dataset TOAR values disagree with the Lake Newell reflectance distributions in all twelve graphic 

comparisons  in Figure  5. The Lake Newell  analysis was performed  first. The  analysis  for  the El 

Pinacate AOI was begun to verify the same relationships for a different environment, one of profound 

aridity and almost no vegetation cover. 

El Pinacate data plotted in Figure 6 confirmed the results from the CMAC visible band in Figure 

5  calculated  from  the  shared SoCal TOAR  reflectance values. Fontana CMAC  surface  reflectance 

estimates lie close to the CMAC El Pinacate surface reflectance distributions for blue, green, and red. 

The SoCal LaSRC points plotted  closer  to  the CMAC distribution  than  to  the LaSRC El Pinacate 
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distributions. Figure 6 LaSRC NIR points plot differently  than  for Lake Newell  (Figure 5)  instead 

essentially  lying on  the reflectance distribution  for El Pinacate TOAR,  indicating  that virtually no 

correction for NIR occurred. 

Error  for surface  reflectance estimation by CMAC and LaSRC was calculated by  treating  the 

surrogate SoCal reflectance values as true surface reflectance that are presented in Tables 2 and 3. For 

CMAC,  the Lake Newell and El Pinacate  surface  reflectance estimates agree well with  the SoCal 

surrogate  true  surface  reflectance; CMAC  error was  low  and  almost  evenly distributed between 

positive and negative values, hence unbiased. CMAC  results were comparable between  the Lake 

Newell and El Pinacate datasets. The average absolute value of CMAC surface reflectance error did 

not exceed 1% for the blue band that experienced the greatest error. The average absolute value of 

LaSRC error for the Lake Newell shortgrass prairie was severe, around 50% for the blue band. The 

error for LaSRC was lower for El Pinacate but still an order of magnitude greater than CMAC. Error 

for both CMAC and LaSRC decreased with increasing wavelength. 

Sufficient  data  are  presented  in  Supplementary Materials  to  allow  the  interested  reader  to 

reconstruct and verify the workflow and the results. These include averages, interpolations and error 

calculations and spreadsheets. Values derived through this analysis are summarized in tables within 

Appendix D. Spreadsheets and shapefiles of  the Fontana and Rochester AOIs are provided along 

with  spreadsheets and  shapefiles  for  the Lake Newell and El Pinacate AOIs. Cloud‐based  image 

browsing, selection, and CMAC correction and download of Landsat‐8/9 and Sentinel‐2 VNIR bands 

can be accessed through a link in Supplementary Materials. 
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Figure 5. Lake Newell CDFs per band displayed with the points determined from the SoCal AOIs: 

Rochester  (for  8‐14‐2023)  and  Fontana  (for  7‐29‐2023  and  8‐06‐2023). The  scaling  of  the  x‐axes  is 

optimized  to provide equivalent  reflectance  intervals  for  the  same  range per band. Where points 

overlie each other, the LaSRC SoCal points are depicted in white and of smaller size.  
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Figure 6. Per band El Pinacate CDFs displayed with the points reconstructed from the SoCal AOI of 

Fontana. The scaling of the x‐axes is optimized to provide equivalent reflectance intervals for the same 

range per band. Where points overlie each other, the LaSRC SoCal points are depicted in white and 

of smaller size. 

Table 2. Error calculated for surface reflectance estimation of three images of El Pinacate calculated 

from the average of absolute values. Each cell is the error in surface reflectance output from a TOAR 

input. This comparison included 21 individual comparisons across the four bands for each method. 

        El      CMAC      Average        LaSRC      Average   

 

Pinacate 

  6‐02‐

22 

  7‐04‐

22 

  8‐29‐

22 

Abs. 

Value     

  6‐02‐

22 

  7‐04‐

22 

  8‐29‐

22 

Abs. 

Value 

Blue    1.3%  1.0%  1.0%    14.0%  13.9%  12.4%   
    ‐0.6%  ‐0.9%  ‐0.9%  0.98%  12.3%  12.2%  12.1%  12.81% 

  ‐0.4%  0.4%  ‐0.3%    1.3%  1.5%  2.5%   

Green    ‐0.3%  ‐0.3%  ‐1.0%  0.43%  1.3%  1.1%  3.3%  1.57% 
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    0.1%  0.1%  1.0%      0.5%  0.3%  2.4%     

Red  ‐0.3%  0.3%  ‐0.8%  0.46%  ‐2.1%  ‐2.2%  ‐2.5%  2.28% 

NIR  ‐0.5%  0.0%  0.5%  0.31%  ‐1.0%  ‐0.1%  ‐0.6%  0.59% 

Table 3. Error calculated for surface reflectance estimates for each band of three Lake Newell images. 

Overall averages were calculated from absolute values. Each cell  is the error  in surface reflectance 

output  from a TOAR  input. This comparison  included 37  individual comparisons across  the  four 

bands for each method. 

Lake      CMAC      Average        LaSRC      Average   

Newel

l 

  7‐29‐

23 

  8‐06‐

23 

  8‐14‐

23 

Abs. 

Value 

  7‐29‐

23 

  8‐06‐

23 

  8‐14‐

23 

Abs. 

Value 

  0.19%  ‐0.51%  1.10%      58.8%  62.3%  59.7%     

Blue    ‐1.29%  ‐0.68%  0.21%  0.61%  40.11%  48.73%  46.82%  50.30% 

    ‐0.32%  ‐  ‐      35.63%  ‐  ‐     

  ‐0.32%  0.26%  1.32%      26.91%  12.57%  18.67%     

Green    ‐0.20%  ‐0.10%  ‐0.01%  0.37%  20.36%  11.95%  16.19%  17.14% 

    ‐  ‐  0.37%      ‐  ‐  13.30%     

  ‐0.06%  0.31%  0.71%      10.83%  12.70%  11.35%     

Red    0.00%  0.33%  0.07%  0.22%  8.50%  10.35%  9.54%  9.96% 

    ‐0.07%  ‐0.20%  0.22%      8.36%  8.86%  9.19%     

‐0.10%  0.19%  ‐0.04%      3.10%  3.10%  3.14%     

    0.01%  ‐0.01%  ‐0.02%  3.09%  2.58%  3.11%  2.58% 

NIR    ‐0.03%  0.00%  ‐0.03%  0.09%  2.74%  2.31%  2.92%     

    ‐0.02%  ‐0.37%  0.02%      2.68%  1.78%  2.68%     

    ‐0.54%      0.00%      2.84%      2.58%     

4. Discussion 

The CMAC  surface  reflectance  estimates  for Lake Newell  and El Pinacate were within  99% 

agreement with  the CMAC  SoCal  surrogate  surface  reflectance  estimates  in  all  58  TOAR‐based 

comparisons across the four VNIR bands (agreement was calculated as 100% minus the % error). The 

strong agreement for CMAC results between datasets from widely diverse environments validates 

accuracy and reliability for CMAC processing and for its constituent assessment of atmospheric effect 

and conceptual model‐derived workflow that reverses it. Further corroborating CMAC accuracy is 

the observation that the LaSRC surface reflectance in Figures 5 and 6 for Lake Newell and El Pinacate 

lie closer to the CMAC distributions than to the LaSRC distributions, in many cases plotting atop the 

CMAC SoCal points. 

The CMAC data demonstrate  accuracy  independent  of  the dynamic  spectral  range  (highest 

minus  lowest reflectance values):  the SoCal AOIs had extremely wide ranges of values  (Figure 2) 

while the spectral ranges for Lake Newell and El Pinacate were extremely narrow (Figure 4). For the 

clear to moderately hazy conditions examined here, the null hypothesis is accepted: CMAC analyses 

produced  the  same  surface  reflectance  estimates  from  the  same  TOAR  input  under  the  same 

atmospheric conditions despite differences in the two terrestrial environments examined. 

The LaSRC analysis demonstrated surface reflectance estimates with average agreement as low 

as  50%; hence,  the null hypothesis  is  rejected – LaSRC was not  reliable  for  estimation of  surface 

reflectance across the two environments. This discrepancy may be related to the low dynamic spectral 

range of the Lake Newell and El Pinacate locations; however, this issue is more complicated because 
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the same bandwise dynamic spectral ranges were comparable between these two experimental AOIs, 

but the degree of error for Lake Newell was about four times that of the El Pinacate error. 

Atmospheric correction of satellite imagery by LaSRC, widely viewed as the state of the art in 

radiative  transfer  application  for  EO  imagery  is  proposed  as  the  basis  for  smallsat  atmospheric 

correction through a cross calibration process with harmonized data from Landsat‐8/9 and Sentinel‐

2 [3,7]. However, reliance upon LaSRC for smallsat applications can be expected to incorporate the 

same problems that reduce LaSRC accuracy. These problems will include loss of accuracy at higher 

levels of Atm‐I that was found for LaSRC under conditions of increasing haze from wildfire [2] and 

from  these  results,  lack  of  reliable  accuracy  hypothetically  related  to  low  spectral  diversity 

environments. 

CMAC is a unique pathway for atmospheric correction and its testing here and in the previous 

two  journal  papers  has  found  that  its  performance  was more  accurate  over  a  wider  range  of 

atmospheric effect than Sen2Cor and LaSRC. Rather than delaying surface reflectance output waiting 

for ancillary data, CMAC can process images immediately upon download from the satellite. Due to 

its  robust  and  simple  mathematical  structure,  CMAC  can  readily  be  calibrated  for  Smallsat 

application for any VNIR band combination due to its robust mathematical structure. CMAC will be 

adapted to correct data from hyperspectral sensors in a next‐generation program that will include 

accurizing  the  Atm‐I  model,  reliable  overwater  correction,  and  development/application  of  a 

calibration target and the technology to apply it under automation. 

The greatest source of uncertainty in the CMAC workflow  is for the measure of atmospheric 

effect, Atm‐I. While Atm‐I can be shown to be far more sensitive than the ancillary data currently in 

use by LaSRC from MODIS [2] it was generated by a static assumption of reflectance of a reference 

crop rather than actual reflectance measurements. The key to this upgrade is extensive groundtruth. 

Likewise,  extensive  groundtruth  will  also  permit  spectral modeling  to  isolate  and  remove  the 

specular reflectance component of water surfaces that could yield accurate water‐leaving reflectance. 

Though CMAC generally performs well over water, the overarching effect of image geometry has 

not yet been characterized. 

Calibration is the key for application of surface reflectance retrieval. This step is presently done 

vicariously  requiring  the  use  of  master  images  of  Sentinel‐2  compared  to  proxy  images  from 

smallsats. Even  though  these  steps  are  automated,  this program  is  inefficient because  it  requires 

visual assessment steps to assure accuracy. Vicarious calibration can be replaced by a workflow that 

employs a well‐engineered, constructed, managed, and monitored calibration target. Such a target is 

expected to yield greater precision, accuracy and automation for CMAC calibration. The benefit of 

periodic  automated  calibration  is  that  it  allows  detection  and  compensation  of  episodic  in‐orbit 

radiation‐related sensor degradation. [8]. 

5. Conclusions 

This  investigation  confirms  that CMAC provides  reliable  surface  reflectance  retrieval  for  all 

environments. When  judged  by  the  appearance  of many  varied  images,  CMAC  has  accurately 

corrected  all  terrestrial  environments,  including  deserts,  arctic  and  alpine  tundra,  tropical  and 

temperate forests, savannahs, grasslands, and farmland on six continents. CMAC has also produced 

excellent results over the ocean as can be seen in Appendix B, Figure B‐3. Smallsats can be calibrated 

readily  for direct application of CMAC without  incorporating additional uncertainty of ancillary 

data. 

6. Patents 

Currently, one CMAC patent is granted. Two additional patent applications are pending before 

the US Patent Trade Office with one of these filed internationally through the Patent Cooperation 

Treaty (International Search Report ‐ language approved as filed). 
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Appendix A, Brief Description of CMAC Workflow 

A.1 Atmospheric Effect Mapped as a Grayscale 

The  first CMAC step employs  the spatially discrete spectral band statistics  from  the scene as 

input to a model that assesses atmospheric effect in images. The Atm‐I model was developed using 

dense dark vegetation  (DDV) measured by  field spectrometry  to establish a standard value  for a 

ubiquitous index crop. This crop was identified and sampled under a wide range of atmospheric and 

surface cover conditions that resulted in a robust scene‐based statistical model [1]. Application of the 

Atm‐I model generates a grayscale map  that expresses  the degree of effect across  the  image as a 

numerical  scalar  for  the  correction  needed  to  return  each  pixel’s  TOAR  to  its  original  surface 

reflectance. 

A.2 Reversing the Mapped Atmospheric Effect to Deliver Surface Reflectance 

The second CMAC step reverses the atmospheric effect based upon a conceptual model derived 

from an observed phenomenon that initially prompted CMAC development. For a hazy and clear 

pair of TOAR images over an AOI whose surface reflectance has remained relatively consistent, their 

CDFs will vary systematically as shown in Figure A.1. Imposition of increasing aerosol causes the 

distributions  to  rotate  counterclockwise,  and  for  decreasing  aerosol,  clockwise.  This  observation 

prompted development of a  conceptual model as  the basis  for  reversal of atmospheric  effect. To 

facilitate referencing this phenomenon, it was dubbed the “pinwheel effect.” This conceptualization 

was valuable only as a first step in formulating the CMAC approach for atmospheric correction. 
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Figure A1. CDFs of  two Sentinel‐2  spectral bands  extracted  from an AOI with  consistent  surface 

reflectance across both image snapshots. Increasing. Arrows show the direction of CDF rotation from 

increasing haze. This effect occurs in all VNIR bands. 

In the pinwheel effect, increasing dark reflectance in response to increasing haze is due to aerosol 

backscatter of  light. The decrease of bright  reflectance  is due  to attenuation  from absorption and 

diffuse  shading  by  aerosol  particles. When  viewed  as CDFs,  changing  levels  of  haze  cause  the 

distribution  to  rotate  around  an  axis point where  scatter  and  attenuation  balance  and  the value 

remains unchanged. Subsequent observation indicated that this axis point migrates rightward with 

increasing Atm‐I. hypothetically due to forward scatter as a property of the target’s brightness. Target 

brightness  influences  the magnitude of  the  reflected  energy and  its  interaction with atmospheric 

aerosol.  In  the  context of EO,  this  forward  scatter  is  the  illumination of  aerosol  from below  that 

increases in proportion to ground target brightness. Forward scatter is still somewhat hypothetical 

and is the subject of ongoing focus; however, it may hold the key to detecting and reversing the effect 

of specular reflectance over water. The Atm‐I model is sensitive to forward scatter and performs well 

to remove specular reflectance from water (Appendix B). 

Application of data distributions was a key factor for development of CMAC, since atmospheric 

correction seeks to return the range of TOAR pixel values to surface reflectance. CDFs are a robust 

means to approach the atmospheric correction problem since individual pixel values could be correct 

in a distribution that is incorrect, but not vice versa. Additionally, the ranked position of any value 

within reflectance distributions remains the same through various treatments; hence mathematically 

translated values can be  identified afterward by  their percentile position  in  the distribution. This 

feature enabled  finding equivalent properties  for  intercomparison of experimental data  extracted 

from very different environments to test the null hypothesis. 

The observed reflectance behavior of Figure A.1 was expressed as a graphic model by inversion 

and adjustment of the well‐known empirical line method [9]. The resulting linear model in Figure A‐

2 has precedence in a 40‐year‐old paper by two prominent researchers (Figure A‐.3). 

 

Figure A2. The CMAC conceptual model. Blue arrows indicate the rotational direction for increasing 

atmospheric effect. The dashed line represents all pixels, dark to bright, under one atmospheric effect 

for a single spectral band. 
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Figure A3. Figure 2 copied from Fraser and Kaufman, 1985 [10]. The solid lines represent common 

atmospheric aerosol and are equivalent to the dashed line in Figure 4., Dashed lines represent highly 

absorptive carbon particles to illustrate the importance of aerosol absorption upon reflectance. 

The  conceptual  model  of  Figure  4  was  translated  into  the  CMAC  Equation  that  reverses 

atmospheric effect for each pixel of an image (Equation 1). The pinwheel effect of Atm‐I in Figure 2 

is represented by the upward/downward blue arrows in Figure 4 that results in linear deviation of 

surface reflectance due to atmospheric effect. Slope and offset uniquely define any TOAR deviation 

line and are the parameters applied in Equation 1 to reverse atmospheric effect to retrieve surface 

reflectance. Slope and offset responses are unique for each sensor band and are determined through 

calibration. Presently, calibration is accomplished through image‐to‐image methods using a Sentinel‐

2 CMAC master calibration that was generated from several years of painstaking effort. Image‐to‐

image calibration will eventually be replaced with a well‐engineered and managed calibration target 

providing increased accuracy and precision so that data from one to several sensor overpasses can 

be applied in an automated process. Automated recalibration will guard against episodic radiation‐

induced sensor changes well‐known to occur in orbit [11]. 

Equation 1:  SR = (TOAR - b) / (m + 1) 
where m is slope and b the offset of the TOAR deviation line. 

Appendix B, El Pinacate Region Data Processed by CMAC and LaSRC for Visual 
Comparison 

The 7‐04‐2022 Landsat‐8  image displayed  in TOAR, Atm‐I and CMAC and LaSRC corrected 

views. 
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Figure B1. TOAR View. The moderate level of haze obscures ground features over the desert. Light 

colored  features of  the ocean  result  from  a mix of  entrained  sediments  in  the water  column  and 

(hypothetically)  from specular reflectance of  the sky, This was  influenced by wind,  in evidence as 

streaks from the northwest. 
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Figure B2. Atm‐I Grayscale View. This atmospheric model output was applied to scale the degree of 

correction  removing  the atmospheric effect  in  the 7‐04‐2022  image:  the brighter  the  response,  the 

greater the correction. Of note is the brightness of the grayscale over the Sea of Corez hypothetically 

induced by specular reflectance. Atm‐I is a statistical representation of the atmospheric effect and, as 

such, has lower resolution than the original image, hence the faint streaks from wind effects visible in 

the TOAR view are smeared in this view. 
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Figure B3. CMAC Corrected View. With specular reflectance largely removed from the TOAR view 

of  the ocean, patterns  of  entrained  sediments  and  green‐tinted water  are now visible. Terrestrial 

features of windblown dunes and the complex hydrology surrounding the bay are visible after CMAC 

processing that were indistinct in the TOAR view. Future research is expected to define a relationship 

for the atmospheric statistical model (Atm‐I) measurement of specular reflectance to enable reliable 

atmospheric correction over water. 
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Figure 4. LaSRC corrected View. Like the CMAC correction, finer features of the image are visible 

after  LaSRC  correction.  Image  artifacts  over  the water  are  a  common  feature  created  by  LaSRC 

correction. Such artifacts are also visible in the LaSRC view of Figure 1 (panel c). 

Appendix C. Annotated Spreadsheet Explaining Dataset Construction 

This  annotated  example  spreadsheet  shows  the  calculation  workflow  for  comparison  of 

extracted L8 blue band data. Note that the TOAR, CMAC, and LaSRC tables are stacked vertically in 

the original spreadsheet but rearranged here for ease of illustration. Tables of five images are from 

the Fontana AOI whose TOAR values correspond with the TOAR column for the Lake Newell AOI 

(shaded). Portions of  the distribution are enclosed  in boxes defining where  the average TOAR of 

Fontana was found by interpolation of the Lake Newell distributions. The process began at A with 

selection of five sequential images of Fontana whose median Atm‐I values were averaged and found 

to equal  the median Atm‐I of  the Lake Newell AOI. The  interpolations of  the data  in  the shaded 
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column boxes were performed graphically in the original spreadsheets that are downloadable from 

supplementary materials. 

 

Appendix D, Summaries of Spreadsheet Statistics 

Data tables for three images each of the El Pinacate and Lake Newell AOIs. Derivation of these 

data can be found in the spreadsheets available in Supplementary Materials. Column 2 presents the 

TOAR  shared  values  in  common  among  the  SoCal,  El  Pinacate  or  Lake  Newell  datasets. 

Corresponding  percentiles  for  these  shared  TOAR  values  are  presented  in  the  3rd  column. 

Interpolated reflectance values based upon shared TOAR are provided for SoCal CMAC (col. 4 and 

5) and LaSRC (col. 7 and 8), are points plotted in Figures 5 and 6 and summarized in Tables 2 and 3 

from col. 6 and 9. 
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Table D1. El Pinacate Statistics. 

1  2  3  4  5  6  7  8  9 

6‐02‐22 

Commo

n   

  El 

Pinacate 

Fontan

a 

El 

Pinacate  CMAC    QIA 

El 

Pinacate  LaSRC 

L8  TOAR  Percentile  CMAC  CMAC 

% 

Error    LaSRC  LaSRC 

% 

Error 

Blue  1880  13.0%  1249  1266  1.3%  1256  1431  14.0% 

    1964  74.1%  1361  1352  ‐0.6%  1361  1528  12.3% 

    2399  1.5%  2308  2301  ‐0.3%  2333  2362  1.3% 

Green  2482  15.0%  2412  2403  ‐0.4%  2424  2456  1.3% 

    2559  55.8%  2511  2513  0.1%  2531  2542  0.5% 

Red  3613  31.0%  3833  3822  ‐0.3%  3773  3693  ‐2.1% 

NIR  4471  12.2%  4616  4595  ‐0.5%  4489  4442  ‐1.0% 

  7‐04‐

22 

Commo

n    El Pinacate 

Fontan

a 

El 

Pinacate  CMAC   

Fontan

a 

El 

Pinacate  LaSRC 

L8  TOAR  Percentile  CMAC  CMAC 

% 

Error    LaSRC  LaSRC 

% 

Error 

Blue  1880  20.0%  1249  1262  1.0%  1256  1430  13.9% 

    1964  82.0%  1361  1348  ‐0.9%  1361  1527  12.2% 

    2399  1.8%  2308  2300  ‐0.4%  2333  2367  1.5% 

Green  2482  19.6%  2412  2405  ‐0.3%  2424  2451  1.1% 

    2559  62.9%  2511  2515  0.1%  2531  2538  0.3% 

Red  3613  59.4%  3833  3844  0.3%  3773  3689  ‐2.2% 

NIR  4466  23.6%  4616  4659  0.9%  4489  4485  ‐0.1% 

  8‐29‐

22 

Commo

n    El Pinacate 

Fontan

a 

El 

Pinacate  CMAC    QIA 

El 

Pinacate  LaSRC 

L9  TOAR  Percentile  CMAC  CMAC 

% 

Error    LaSRC  LaSRC 

% 

Error 

Blue  1880  19.0%  1249  1250  0.0%  1256  1435  12.4% 

    1964  82.5%  1361  1335  ‐1.7%  1361  1533  12.1% 

    2399  7.0%  2308  2304  ‐0.3%  2333  2377  2.5% 

Green  2482  37.3%  2412  2418  1.0%  2424  2472  3.3% 

    2559  87.0%  2511  2529  1.0%  2531  2558  2.4% 

Red  3613  94.8%  3833  3902  ‐0.8%  3773  3726  ‐2.5% 

NIR  4541  86.0%  4721  4743  0.5%  4551  4522  ‐0.6% 

Table D2. Lake Newell Statistics (following page). 

7‐29‐23 L9 

TOA

R 

Lk New. 

% 

Fo. 

CMAC 

LN 

CMAC 

C % 

Error   

Fo. 

LaSRC 

LN 

LaSRC 

L % 

Error 

    1220  2.6%  435  436  0.19%  418  664  58.79% 

Blue  1282  43.0%  515  508  ‐1.29%  540  756  40.11% 

    1320  82.0%  564  562  ‐0.32%  605  821  35.63% 
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    1139  14.2%  758  755  ‐0.32%  742  941  26.91% 

Green  1187  57.0%  816  814  ‐0.20%  833  1002  20.36% 

    1087  2.3%  932  932  ‐0.06%  964  1069  10.83% 

    1156  51.7%  1075  1075  0.00%  1111  1205  8.50% 

Red  1282  94.5%  1197  1196  ‐0.07%  1225  1328  8.36% 

    1812  1.4%  1819  1817  ‐0.10%  1826  1883  3.10% 

    1913  9.8%  1913  1913  0.01%  1918  1977  3.09% 

NIR  2001  34.4%  2006  2005  ‐0.03%  2009  2064  2.74% 

    2088  64.3%  2091  2091  ‐0.02%  2090  2146  2.68% 

    2243  85.5%  2171  2159  ‐0.54%  2167  2229  2.84% 

  8‐06‐23 

L8 

TOA

R 

Lk New. 

% 

Fo. 

CMAC 

LN 

CMAC 

C % 

Error   

Fo. 

LaSRC 

LN 

LaSRC 

L % 

Error 

    1412  6.6%  488  485  ‐0.51%  446  725  62.31% 

Blue  1470  82.7%  567  563  ‐0.68%  594  883  48.73% 

    1245  8.7%  738  740  0.26%  881  992  12.57% 

Green  1310  78.1%  827  826  ‐0.10%  980  1097  11.95% 

    1249  1.5%  943  946  0.31%  997  1124  12.70% 

    1308  10.3%  1018  1021  0.33%  1072  1183  10.35% 

Red  1419  87.2%  1164  1162  ‐0.20%  1216  1324  8.86% 

    1940  1.0%  1823  1827  0.19%  1845  1903  3.10% 

    2056  15.9%  1959  1958  ‐0.01%  1971  2022  2.58% 

NIR  2150  50.8%  2067  2067  0.00%  2069  2117  2.31% 

    2230  80.1%  2159  2151  ‐0.37%  2156  2195  1.78% 

  8‐14‐23 

L9 

TOA

R 

Lk New. 

% 

Ro. 

CMAC 

LN 

CMAC 

C % 

Error   

Ro. 

LaSRC 

LN 

LaSRC 

L % 

Error 

    1227  5.1%  450  455  1.10%  444  710  59.70% 

Blue  1265  30.4%  498  499  0.21%  511  751  46.82% 

    1078  1.8%  687  696  1.32%  748  888  18.67% 

    1125  13.5%  746  746  ‐0.01%  808  939  16.19% 

Green  1221  88.2%  862  865  0.37%  930  1053  13.30% 

    1171  2.6%  948  955  0.71%  981  1093  11.35% 

    1275  45.3%  1069  1070  0.07%  1100  1205  9.54% 

Red  1369  91.7%  1177  1179  0.22%  1201  1312  9.19% 

    1808  1.8%  1709  1708  ‐0.04%  1725  1780  3.14% 

    1897  12.2%  1803  1803  ‐0.02%  1818  1874  3.11% 

NIR  1967  34.0%  1878  1877  ‐0.03%  1890  1946  2.92% 

    2032  61.1%  1947  1947  0.02%  1959  2012  2.68% 

    2096  82.2%  2015  2015  0.00%  2025  2077  2.58% 
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Appendix E, Why the Disconnect for 8‐14‐23 NIR Band CDF? 

Change detection confirmed rainfall between prior to 8‐14‐2023 visible as a darkened smear to 

the west of Lake Newell. Figure 5 provides a color reference for the 8‐06‐2023 image. This analysis 

was performed to confirm the validity of the extracted NIR values to explain why the 8‐14 NIR results 

did not conform with the other two dates in Figure 4. The linear features that cross the area west of 

Lake Newell are gravel roads (confirmed on Google Earth) that drain rapidly and dry much quicker 

than the surrounding prairie. The prominence of these roads on the change detection image confirms 

that  the  darker  area  is  not  an  atmospheric  issue.  Lakes  appear  black  here  because  the  TOAR 

reflectance was elevated due to haze (higher Atm‐I) and are brighter on the 8‐06‐2023 . 

Steps in this image analysis were: 

1. Subtract the 8‐06‐2023 NIR raster from the 8‐14‐2023 NIR raster. Minimum and maximum 

display values were selected to accentuate the display of wetter conditions guided by the 

magnitude of the differences visible for NIR in Figure 4. 

 
2. The resulting dark pattern was then compared against other variables across the AOI to ensure 

that this pattern was not explainable by some other image property – none were found. 

3. The analysis supports the conclusion that the AOI received rainfall from a localized 

thunderstorm likely within several days prior to 8‐14‐2023. 
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