
Article Not peer-reviewed version

Generative Modeling of Semiconductor

Devices for Statistical Circuit Simulation

Dominik Kasprowicz * and Grzegorz Kasprowicz

Posted Date: 26 April 2024

doi: 10.20944/preprints202404.1675.v1

Keywords: generative model; machine learning; variational autoencoder; VAE; semiconductor device

modeling; process variability; MOSFET; Monte Carlo

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1873369
https://sciprofiles.com/profile/2734735

Article

Generative Modeling of Semiconductor Devices for
Statistical Circuit Simulation

Dominik Kasprowicz 1,* and Grzegorz Kasprowicz 2

1 Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw,
Poland; dominik.kasprowicz@pw.edu.pl

2 Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland;
grzegorz.kasprowicz@pw.edu.pl

* Correspondence: dominik.kasprowicz@pw.edu.pl

Abstract: Emerging semiconductor devices often lack accurate analytical models. The same is usually true of any

devices working under extreme conditions like cryogenic temperatures. The usual workaround involves the use

of approximation models, usually based on lookup tables or neural networks individually fitted to measurement

data. In the case of experimental devices or ones working under extreme conditions, the number of units available

for measurement is limited. As a result, the number of approximation-model instances is too small to enable a

statistical simulation of even middle-sized circuits, which is a necessary step in integrated-circuit design since

it provides the realistic picture of the circuit’s behavior in the presence of manufacturing process variations.

Approximation models using structure parameters as inputs do exist in the literature, but are only useful if the end

user knows the statistical distributions of those parameters, which is not usually the case. We propose a technique

based on generative machine learning, namely the variational autoencoder, that uses only a small sample of

devices to capture the essential features of their I–V curves under process variations and subsequently generates

an arbitrary number of similarly disturbed curves. The model trained on as few as 20 instances per device type is

shown to precisely reproduce the distributions of period and power consumption of a ring oscillator.

Keywords: generative model; machine learning; variational autoencoder; VAE; semiconductor device modeling;

process variability; MOSFET; Monte Carlo

1. Introduction

Statistical simulation, a.k.a. Monte Carlo simulation, is an essential step in integrated circuit
design as it provides insight into the circuit’s behavior under process variations. Several hundred
simulations are usually necessary to capture the statistical properties of the circuit’s crucial parameters
like speed or power consumption. Reliable statistical simulation is only possible with models capable
of faithfully reproducing the variability in the electrical characteristics of components due to process
disturbances. In the case of mature semiconductor manufacturing processes, such statistical models
are included in the process design kit (PDK). The crucial parameters of these models, like e.g. effective
gate length or carrier mobility, are random variables whose covariance matrix is identified in the fab as
part of the process monitoring.

This is unfortunately not the case with experimental semiconductor devices, which usually lack
accurate analytical models. The same is usually true of devices fabricated in stable processes but
working under extreme conditions, for example at cryogenic temperatures. Device models found in
the PDKs are usually valid within a relatively narrow temperature range with no accuracy guarantee
outside this range. Worse still, the very nature of commonly used analytical models precludes their
use at extreme temperatures due to incomplete or inadequate modeling of the underlying physics and,
in some cases, severe numerical problems like intrinsic carrier concentration being smaller than the
smallest double precision number available on the simulation platform [1].

The usual workaround involves the use of approximation models, typically based on lookup
tables ([2–5]) or artificial neural networks [6,7] individually fitted to measurement data. Prior to the
design of a circuit, a number of test structures must be manufactured for electrical characterization. The

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-3480-6585
https://orcid.org/0000-0001-6128-0788
https://doi.org/10.20944/preprints202404.1675.v1
http://creativecommons.org/licenses/by/4.0/

2 of 14

approximation model is then individually fitted to the measurement data obtained from each device.
In the case of emerging devices the number of instances available for measurement is usually limited.
For devices operating at cryogenic temperatures the limiting factor is usually not the number of test
structures as such but the throughput of the cooler necessary to bring them to the target temperature.
As a result, the number of instances of the approximation model may be too small to enable a statistical
simulation of large circuits.

To circumvent this limitation, a number of parametric approximation models have been proposed
that take into account the actual values of disturbed process parameters. Such models require training,
i.e. their internal metaparameters must be optimized so as to make the model general enough to
correctly reproduce the I–V curves of any device as long as the process perturbations are contained
within a given range. The model introduced in [8] is fitted to I–V data of the nominal device as well as
to all “corner” devices, i.e. ones having one process parameter assuming its minimum or maximum
value. I–V curves for other devices can then be obtained by interpolating between those extreme
cases. This interpolation is done on a linear scale above the threshold voltage and on a log scale in
deep subthreshold. In moderate inversion the weighted average of these two approaches is used.
In [9], a lookup-table based model is provided for the nominal (i.e. deviation-free) device, while
the I–V curves of disturbed devices are obtained by transforming the output of this nominal model
with highly nonlinear functions of VGS and VDS. The parameters of those nonlinear functions are
assumed to be linear or quadratic functions of the process-parameter deviations. Once the coefficients
of those linear and quadratic functions are identified, it is very easy to reproduce I–V curves of a
device, as long as the actual values of disturbed process parameters are known for this device. The
Authors of [10] use an artificial neural network (ANN) to model the behavior of a nanosheet FET. The
network’s inputs include, apart from the device’s terminal voltages, also selected design and process
parameters like gate length or nanosheet thickness. A similar approach has been adopted in [11]. The
most conceptually advanced works use ANNS known as autoencoders (a brief description of this
architecture can be found in Section 2) to learn the nonlinear relationships between selected process
parameters and I–V curves of p-i-n diodes [12] or I–V and C–V curves of FinFETs [13].

All the models presented in the above paragraph use as their inputs the actual values of process
parameters for particular devices. This poses two problems. One is that using such a model for
statistical simulation necessitates prior knowledge of the statistical distributions of process parameters.
While this data is available internally at the semiconductor fab, it is very unlikely to be disclosed to
outsiders. A more serious problem is that training such a model requires the actual values of process
parameters for each of the devices whose I–V curves the model learns to reproduce. This means the
training data cannot come from measurements of real devices, whose nanometer-scale dimensions
make it impossible to reliably measure the physical parameters like the gate length or doping level.
Instead, the training data must be obtained from TCAD simulations, where the designer is in control
of all the device parameters. TCAD tools, however, are highly configurable in terms of how (and if at
all) particular physical phenomena are to be modeled. As a result, it is not known how faithfully the
TCAD output reproduces the response of an actual device.

The approach presented in this work requires no assumption as to the sources of process variations
or even their statistical distributions. All that is required is a representative sample of ID(VGS, VDS)

characteristics, preferably coming from current-voltage measurements rather than TCAD simulations.
The proposed approach is based on generative modeling, a machine-learning technique in which a
model learns to generate new samples resembling the training data [14]. The training examples are
treated as observations of a multivariate random variable whose distribution must be discovered and
modeled. This distribution may be arbitrarily complex, in particular no assumptions as to normality
are made. Once the training is completed, the model may be used to generate “synthetic” data points
by sampling from this distribution. One of the earliest applications of generative modeling is creation
of images of non-existent persons’ faces, where an image is treated as a random vector, each of whose
components represents the intensity of a distinct pixel. In the presented work each component of the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

3 of 14

data vector is the device’s drain current ID for a given bias (VGS, VDS). The entire data vector is thus a
family of I–V curves of a single device sampled at predefined bias points.

The trained model can then be used to generate data of this kind in much larger quantities
(thousands or more) than the size of the training set (under a hundred). This procedure can be seen
as a case of data augmentation, where a small set of real data is used to generate synthetic data points
to build a dataset large enough for a given application [15]. Since each data point is just a vector of
discrete ID(VGS, VDS) samples for a single device, an ANN-based model must be subsequently fitted to
those samples to produce a continuous representation of the device’s I–V curves for Spice simulation.
The entire workflow is shown in Figure 1.

Vgs Vds Id
0.025

I-V measurements generative model
training

z

generative model
(VAE)

measurement data
from N devices

Vgs Vds Id
0.025

synthetic data
for M >> N devices

synthetic data
generation

single-device
ANN model

training

VGS
y

VDS

generic ANN-based
single-device model

single-device
ANN weights

layer 1 weights
0.123, 0.456, ...
layer 2 weights
...

test
structures

layer 1 weights
0.123, 0.456, ...
layer 2 weights
...

Monte Carlo
simulation

circuit performance
distribution

plugging device
models into circuit

N(0, I)

plugging weights into
generic model

circuit netlist

Figure 1. Details of the proposed procedure from test-structure I–V measurements through synthetic
I–V data generation to statistical circuit simulation.

The rest of the paper is organized as follows. Section 2 briefly reviews the concept of variational
autoencoder, i.e. the architecture of the generative model used in this work. Section 3 presents the
setup of the experiment, while Section 4 summarizes its results.

2. Autoencoders and Variational Autoencoders: Theoretical Background

An autoencoder is a type of ANN used to find a lower-dimensional representation of its input
data. The architecture of a typical autoencoder is sketched conceptually in Figure 2.

x z x̂

encoder decoder

latent
variable

input output

Figure 2. Architecture of an autoencoder. The blue bars represent layers of units (artificial neurons).
The bar sizes reflect the varying number of units in subsequent layers, translating into the dimension
of data processed by each layer.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

4 of 14

The high-dimensional input data vector is first propagated through subsequent layers of artificial
neurons (a.k.a. units) in the part denoted as encoder, with each layer containing fewer units than its
predecessor. This gradually reduces the dimensionality of the processed data, which can be seen as a
form of lossy compression. The vector at the encoder output is referred to as the latent representation
of the original data or just latent variable. This representation is subsequently processed by the block
denoted as decoder, gradually increasing its dimensionality until it reaches the size of the original
input vector. The training process involves minimizing the difference between the autoencoder’s
input and its output. This forces the encoder part to produce a latent representation that preserves the
essential features of the input data at the expense of less important features and noise.

A variational autoencoder (VAE) is an extension of this concept, with the latent variable being
forced during the training process to follow a known statistical distribution, usually the multidimen-
sional standard normal distribution N (0, I) [16]. The architecture of the VAE used in this work is
shown in Figure 3.

1378 400
200 100

μ

σ
x

ε

z

1378400200

100

100

100
x̂

200

N(0, I)

encoder decoder

Figure 3. Architecture of the variational autoencoder used in this work. Also shown are the activation
functions of all layers as well as the dimensions of the data vector at each stage. All layers are fully
connected.

To achieve this goal, the VAE is trained so as to minimize the following loss function:

LVAE = (1 − wKL) MSE(x, x̂) + wKL DKL
(
Q(z)|| N (0, I)

)
. (1)

MSE, referred to as the reconstruction error, is the mean squared error between the encoder input x and
decoder output x̂. In the context of this paper, x is some function of the drain current (to be detailed in
Section 3.2) and “mean” denotes an average taken over all the values of VGS and VDS as well as over
all the observations in the minibatch. DKL denotes the Kullback-Leibler divergence, i.e. a measure of
dissimilarity between two statistical distributions, defined as

DKL
(
Q(z) || P(z)

)
≡ Ez∼Q

(
log Q(z)− log P(z)

)
. (2)

The Kullback-Leibler divergence is a non-negative quantity dropping to zero if and only if distributions
P and Q are identical. In our case P(z) is the standard normal distribution N (0, I) and is treated as
the target. On the other hand, Q(z) results from processing the input variable x with the encoder.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

5 of 14

Since the encoder is a neural network with trainable parameters (weights1), Q(z) may be shaped
almost at will. Making DKL

(
Q(z) || N (0, I)

)
a component of the loss function subject to minimization

brings Q(z) possibly close to the standard normal distribution as the training progresses. The encoder
is thus trained to transform the multidimensional input variable x into a lower-dimensional latent
standard normal variable z. The decoder, on the other hand, is trained to reverse this process, i.e. to
transform z into a possibly accurate approximation x̂ of the VAE’s input x. The essential feature of
these transformations is that if two input vectors x are close in value, they are supposed to produce
similar values of z. Furthermore, since the decoder is trained to reverse the transformation performed
by the encoder, similar values of z are transformed into similar values of x̂. Thus, the decoder learns to
perform a smooth, albeit highly nonlinear, interpolation between training examples.

Once the VAE is trained, the encoder may be discarded. The decoder is then stimulated with
a random variable z drawn from the multidimensional standard normal distribution. If a value of
z is used that has never appeared at the decoder’s input during the training phase, the decoder
will produce an output that is not identical with any of its training examples and yet shares their
essential statistical properties. This way, the decoder stimulated with a source or random vectors
drawn from N (0, I), can be used as a generator of a multivariate random variable whose statistical
distribution, although not given in an analytical form, is inferred from the training data. For this reason
VAEs are widely used as generative models. While their original application was generating artificial
faces, they are used in other fields like text processing [17], generating audio signals [18], creating
level maps for video games [19] or mapping high-dimensional search spaces into lower-dimensional
ones in order to facilitate optimization [20]. However, no information regarding the use of VAEs in
semiconductor-device modeling is to be found in the literature.

In this work, a VAE-based model is used to generate I–V curves of a MOSFET with given nominal
channel dimensions and manufactured in a process subject to perturbations. Please note that the
variations of process parameters need not be known explicitly to successfully train the VAE. Also, the
latent vector cannot be treated as values of any particular process parameters. In other words, no reverse
engineering is performed and the confidentiality of the process-related data is not compromised.

3. Experimental Setup

To prove the usability of the VAE as a generative model of MOSFET I–V characteristics, a series of
numerical experiments was performed. “Reference” samples used to train the model were generated
using Spice simulation. The number of samples obtained this way was much greater than if they came
from measurement of fabricated structures. This enabled a detailed visualization of histograms of
selected circuit performances for subsequent comparison with the result obtained with the proposed
model. Anyway, the source of reference data (measurement vs. simulation) does not influence the
workflow presented below.

3.1. Benchmark Circuit

The benchmark used to evaluate the proposed approach was a 5-stage ring oscillator (RO) built
with nominally identical inverters. The performances of interest were oscillation period and power
consumption. Both these figures depend on the “driving capability” of devices forming the inverters.
The conventional figure of merit expressing a transistor’s driving capability is Ion, defined as the
drain-current value corresponding to both the drain and gate biased with the nominal supply voltage.
As shown in Figure 4, this point is never reached, or even approached, during normal operation of a
ring oscillator or clocked digital circuit. This stresses the importance of statistical characterization of a
device across a wide range of biases rather than just collecting the statistics of Ion or any other single
figure of merit.

1 The term “weights” is used throughout this paper as shorthand for both weights and biases of ANN units.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

6 of 14

0.0 0.2 0.4 0.6 0.8 1.0 1.2
VDS (V)

20

0

20

40

60

80

I D
(

A)

(a)

1.2 1.0 0.8 0.6 0.4 0.2 0.0
VDS (V)

25

0

25

50

75

100

125

150

I D
(

A)

(b)

Figure 4. The circles represent (ID, VDS) samples collected at 5 ps intervals from one n-channel and
one p-channel MOSFET (Figures (a) and (b), respectively) during a single oscillation period, plotted
against the respective device’s output curves. The top curve corresponds to |VGS| = 1.2 V (oscillator
supply voltage), the spacing between curves is ∆VGS = 50 mV.

The inverters analyzed in this experiment were built with minimum-length 130nm-node MOSFETs
with the channel width of 180 nm in the n-channel devices and 680 nm in the p-channel transistors.
The channel widths were chosen so as to make the inverter’s threshold voltage equal to exactly half
of the supply voltage Vsup = 1.2 V. Three device parameters have been assumed to be subject to
Gaussian variations: channel length L, threshold voltage Vth0, and source/drain resistance RDSW .
The mean values and standard deviations of those parameters are summarized in Table 1. The Vth0
variation is used here as a substitute for deviations in a number of process parameters like gate
material work function, gate dielectric permittivity, and the profile of threshold-adjust implant as well
as halo/pocket implants.

Table 1. Mean values and standard deviations of the Gaussian distributions of the device parameters
used in the ring-oscillator experiment.

Parameter
n-channel p-channel

mean sdt. dev. mean std. dev.

Channel length, L (nm) 130 10 130 10
Threshold voltage, Vth0 (mV) 332 20 –350 20
Unit-width source/drain resistance, RDSW (Ω · µm) 200 40 400 80

Two Monte Carlo experiments were conducted on such ring oscillators. In the reference simulations,
the BSIM 3v3 MOSFET models were used. Then, they were replaced by ANN-based generated models.
The details of model generation will be given in the subsequent subsections. Since the current version
of the generative model only produces I–V data but not yet the C–V data, the ANN-based models
had to somehow use the same terminal capacitances as BSIM models for fair comparison of dynamic
properties of both models. To this end, the voltage-dependent BSIM capacitances had to be replaced
with such fixed values as to assure the same oscillation period. The network of fixed capacitances used
in each inverter is shown in Figure 5.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

7 of 14

Cio

Cognd

Cosup

in out

Wp/Lp =
680 nm/130 nm

Wn/Ln =
180 nm/180 nm

Figure 5. Architecture of single stage of the ring oscillator. The values of the equivalent capacitances
are fitted separately for each supply voltage value.

Cio represents the sum of gate-to-channel- and gate-to-drain overlap capacitances of both devices.
Cognd represents the drain-to-substrate capacitance of the n-channel device shown in the Figure plus
the gate-to-source overlap capacitance of the n-channel device in the next stage. Cosup plays a similar
role in the p-channel devices. The values of those three equivalent capacitances have been tuned so as
to produce a waveform identical with the one obtained with the BSIM capacitances enabled. Since
MOSFET capacitances are highly voltage dependent, this procedure had to be repeated separately every
time the supply voltage had been changed. The extracted equivalent capacitances were subsequently
used both in the reference Monte Carlo simulations (using BSIM models) and, later, in the simulations
with the proposed ANN-based models.

3.2. VAE-Based Generative Model of MOSFET I–V Data

The architecture of the model used to generate MOSFET I–V data is presented in Figure 3. The
model has been implemented in Python using the Pytorch library [21]. A single data point in the
training set was the family of ID(VGS, VDS) samples from a single device. VGS was swept from 0 V to
1.3 V with a fixed step of 25 mV, while VDS was swept from 50 mV to 1.3 V with a 50 mV step. The
procedure for P-channel devices was identical but all the voltages were negative. Thus, each device
was described with 53 × 26 = 1378 numbers.

Using ID as the VAE input works fine for VGS above the threshold voltage Vth0. However, ID values
below the threshold are many orders of magnitude smaller, so they have hardly any contribution
to the training loss function. As a consequence, the VAE does not even attempt to minimize the
reconstruction error in subthreshold. A common solution is to make the ANN reproduce the logarithm
of ID rather than ID itself. Such a transformation, however, brings the above- and below-threshold
values to the same order of magnitude and, as a consequence, almost equalizes the relative error across
the whole VGS range. This is not desirable, because relative-error levels that are acceptable for the
off-current are too high for the on-current. Therefore, in this work the subthreshold regime has been
slightly deprioritized by defining each component of the VAE input vector in the following way:

x(VGS, VDS) =
VGS − VGS min

VGS max − VGS min
ln

ID(VGS, VDS)

I0
, (3)

where the normalizing current I0 = 10 fA. This value was chosen because it is an order of magnitude
below the smallest current observed in the dataset. Therefore this choice of I0 guarantees that the
argument of the logarithm in (3) is always greater than unity, which leads to positive logarithm values.

Various variants of the VAE architecture have been tested, namely:

• Number of layers in both decoder and encoder ranging from three to five.
• The number of units in the encoder’s input layer and decoder’s output layer varying between 100

and 800, with all the other layers modified accordingly.
• The following combinations of activation functions in the decoder and encoder:

– ReLU in all layers,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

8 of 14

– sigmoid in all layers,
– sigmoid in the last layer, ReLU in the rest,
– ReLU in the last layer, sigmoid in the rest.

• Convolutional layers instead of fully connected ones.

The parameters of the final VAE can be found in Figure 3. All the layers are fully connected. While
convolutional layers are commonly used in VAEs whose goal is generation of images, this approach
turned out to produce extremely noisy results in our case. The final encoder architecture consists of
three layers, whose output vectors have a length of 400, 200, and 100, respectively, with the last number
being the size of the latent variable z. All the units in the encoder have the ReLU activation function.
The layers in the decoder expand the latent variable to 200, 400, and finally 1378 dimensions. All the
units in the decoder have the sigmoid activation function. The batch size used in training was 25,
except for the smallest training set consisting of 20 examples, where the batch size had to be reduced
to 5. Increasing the batch size over 25 items led to greater reconstruction errors.

A validation set of 1000 devices was used all along the training process to monitor both compo-
nents of the loss, i.e. the reconstruction error and Kullback-Leibler divergence. Typical learning curves
for those two error components are shown in Figure 6. The training was interrupted after both error
components saturated. This happened after 5,000 to 40,000 epochs, with smaller training sets requiring
more epochs. The entire process took about five minutes on a desktop computer with computations
offloaded to an NVIDIA GeForce GTX 1660 SUPER GPU.

0 10000 20000 30000 40000 50000
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
co

ns
tru

ct
io

n
er

ro
r,

M
SE

 (-
)

20000 30000 40000 50000

6

8

1e 4

(a)

0 10000 20000 30000 40000 50000
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ku
llb

ac
k-

Le
ib

le
r d

iv
.,

D
KL

 (-
)

20000 30000 40000 50000

3.6

3.7

3.8

1e 2

(b)

Figure 6. (a) VAE reconstruction error and (b) Kullback-Leibler divergence (KLD) on the validation
dataset evaluated in the training phase every 100th epochs. The insets show that the KLD saturates
after approximately 20,000 epochs, while the reconstruction error takes approximately twice as long to
reach its minimum.

The optimal contribution of Kullback-Leibler divergence wKL in the loss function (see equation
(1)) was experimentally found to be 0.01. Larger values of wKL excessively prioritized the normality
of latent variable over reconstruction accuracy. The I–V curves reconstructed by the decoder in this
case either showed excessive ripples or, while preserving satisfactory smoothness, deviated heavily
from the input data. On the other hand, reducing wKL below 0.01 did not visibly improve the quality
of reconstructed I–V curves while making the latent-variable distribution significantly deviate from
N (0, I), thus precluding later use of the decoder as a source of I–V curves sharing the statistical
properties with the training data.

After training, the VAE was once again used to encode a subset of the validation dataset. The
Henze-Zirkler test for multivariate normality was subsequently performed on the latent variable to
make sure its distribution was sufficiently close to normal [22]. The test passed over 90% of the time,
which shows that the latent variable is indeed close to normal.

Figure 7 shows example I–V curves generated by a VAE trained on a dataset of 50 devices and
subsequently stimulated with six standard normal vectors. The curves are qualitatively similar to

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

9 of 14

actual MOSFET curves (presented in Figure 4 (a)) both on the linear scale (top row) and logarithmic
scale (bottom row). Ripples are very small and are further smoothed out at the next stage, where
ANN-based approximation models are fitted individually to the I–V curves of each device (see the
following Section).

0.0 0.5 1.0
VDS (V)

0

25

50

75

100

125

150

I D
(

A)

0.0 0.5 1.0
VDS (V)

0

25

50

75

100

125

150

0.0 0.5 1.0
VDS (V)

0

25

50

75

100

125

150

0.0 0.5 1.0
VDS (V)

0

25

50

75

100

125

150

0.0 0.5 1.0
VDS (V)

0

25

50

75

100

125

150

0.0 0.5 1.0
VDS (V)

0

25

50

75

100

125

150

0.0 0.5 1.0
VDS (V)

10 6

10 4

10 2

100

102

I D
(

A)

0.0 0.5 1.0
VDS (V)

10 6

10 4

10 2

100

102

0.0 0.5 1.0
VDS (V)

10 6

10 4

10 2

100

102

0.0 0.5 1.0
VDS (V)

10 6

10 4

10 2

100

102

0.0 0.5 1.0
VDS (V)

10 6

10 4

10 2

100

102

0.0 0.5 1.0
VDS (V)

10 6

10 4

10 2

100

102

Figure 7. Example sets of I–V curves generated by the presented VAE plotted on the linear (top row)
and logarithmic scale (bottom row). The curves correspond to bias ranges VGS = [0 V, 1.3 V] (top) and
VGS = [0 V, 0.7 V] (bottom) with a VGS step of 100 mV.

3.3. ANN-Based Models of Single Devices

The VAE presented in the previous Section generates a device’s I–V response as a set of discrete
points. To make this model usable, some interpolation between them is necessary. The approach
taken in this work uses ANNs fitted individually to every device. These ANNs were composed of the
following layers:

• Input layer: 2 linear units receiving VGS and VDS as their inputs.
• First hidden layer: 16 sigmoid units.
• Second hidden layer: 16 sigmoid units.
• Output layer: 1 linear unit producing response ŷ (see below).

For reasons outlined in Section 3.2, the ANN output was a function of the logarithm of the device drain
current ID. This, however, posed a problem at ID = 0, which takes place at VDS = 0. Therefore, this
particular bias was not used in the training set. To make the model correctly reproduce a MOSFET’s
behavior at zero drain-to-source bias anyway, it is common to train the ANN using the following
expression (see e.g. [7,10] or [11]):

y = ln
ID

VDS
. (4)

At the inference stage, when the model is used in the simulator to produce a response ŷ, this expression
is solved for ID:

ÎD = VDS · exp(ŷ), (5)

which forces ÎD = 0 at VDS = 0. This approach has been adopted in this work. However, like in the
VAE presented in Section 3.2, it resulted in excessive prioritization of the subthreshold region, leading
to unacceptably high error levels above the threshold. This effect was reversed by using the following
sigmoid weighting function:

σ(VGS) =
1

1 + exp(−VGS/Vs)
, (6)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

10 of 14

where Vs = 0.1 V for n-channel devices and −0.1 V for p-channel devices. Finally, (4) and (6) were
combined to form the loss function used at the training stage:

LANN = ∑
∀(VGS ,VDS)

σ(VGS)
(y − ŷ)2

y2 . (7)

The ANNs training was performed in Pytorch. The training of ANN models of individual devices
can be greatly speed up by exploiting the relative similarity of the I–V responses of all the devices
of the same channel type and size, which implies similar values of the weights of their models. This
allows reusing the weights of the first successfully trained model as an initial guess in training the
models of all the subsequent devices of the same type. While training the ANN model from scratch
lasts on average 31 seconds per device on a desktop computer, this time is reduced to 4.2 seconds
when reusing a previously generated model as the initial guess. Thus, this simple technique provides
a speedup of almost 7.5 times.

The model of individual devices (referred to as single-device model) is split in two parts. A generic
Verilog-AMS file is common to all devices, while weights, distinct to individual devices, are stored in
separate files included into the main file during simulation. These two parts can then be loaded into a
circuit simulator like Synopsys HSPICE® (used in this experiment) or Cadence Spectre®. For every
device instance and every Monte Carlo run a new set of weights is read into the generic model.

4. Results

The setup presented in the previous Section was used in a series of Monte Carlo experiments
to assess the feasibility of the proposed approach. Of particular interest was the influence of the
training set size on the accuracy of reproducing the statistical distribution of RO period and power
consumption. Training sets of 20, 50, 150, and 500 instances were tried for each device type. In a
real-world setting, the proposed generative model will have to be trained based on measurement
data coming from a relatively small set of test structures. This is in contrast to more “conventional”
tasks like image generation, where a model is trained on datasets containing thousands or tens of
thousands images.2

Two experiments were run, differing in the ring oscillator supply voltage. In the first experiment,
the nominal supply voltage for the 130 nm MOSFET node Vsup = 1.2 V was used. In the other, Vsup

was reduced to 0.4 V, which corresponds to devices operating slightly above the threshold voltage
or, for strong positive deviations in |Vth0|, in subthreshold (see Table 1 for mean values and standard
deviations of Vth0). 5,000 ROs were generated in either experiment, each with unique ANN-based
models of n-channel and p-channel devices. By way of reference, another 5,000 ROs were simulated
with BSIM models. Histograms of the RO period and power consumption are presented in Figure 8
(Vsup = 1.2 V) and Figure 9 (Vsup = 0.4 V).

As shown in Figures 8 and 9, the statistical distributions of the oscillation period and power
consumption display a significant skewness. This is especially true at lower supply voltages, i.e. with
devices working in weak and moderate inversion, where the relationship between the drain current
and the parameters subject to variations (mostly channel length and threshold voltage) is close to
exponential. Such distributions cannot be accurately described with just the mean value and standard
deviation. More information is conveyed by percentiles. The X-th percentile, here denoted as pX, is
defined as the value that is not exceeded by the random variable more often than X-percent of the time.
Thus, p50 is the median, while p99 is the value exceeded only by the top 1% cases. Selected percentiles
of RO period and power for both values of Vsup are given in Table 2.

2 By way of example, the training dataset of the MNIST database of images of handwritten digits, frequently used a benchmark
for many machine-learning algorithms, including generative models, contains 6,000 images of each digit.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

11 of 14

180 200 220 240 260 280 300
Ring oscillator period, T (ps)

0

100

200

300

400

500

600
Co

un
t Vsup = 1.2 V

BSIM
ANN

(a)

60 70 80 90 100 110 120
Ring oscillator power, P (W)

0

200

400

600

800

1000

Co
un

t

Vsup = 1.2 V

BSIM
ANN

(b)

Figure 8. Histograms of (a) period and (b) power consumption of 5,000 ring oscillators described in
Section 3.1. The ANN-based device models were generated by VAEs trained using 50 instances per
device type. BSIM results serve as reference.

0 5 10 15 20 25 30
Ring oscillator period, T (ns)

0

200

400

600

800

Co
un

t

Vsup = 0.4 V

BSIM
ANN

(a)

0 100 200 300 400 500
Ring oscillator power, P (nW)

0

100

200

300

400

500

600

Co
un

t Vsup = 0.4 V

BSIM
ANN

(b)

Figure 9. Histograms of (a) period and (b) power consumption of 5,000 ring oscillators with devices
operating in moderate inversion (Vsup = 0.4 V). The ANN-based device models were generated by
VAEs trained using 50 instances per device type. BSIM results serve as reference.

Table 2. Selected percentiles of the ring-oscillator period and power consumption based on 5,000 Monte
Carlo Spice runs. BSIM results (bottom row) serve as reference. Other results were obtained with the
proposed procedure using a generative model trained on datasets of varying sizes.

Training
set size

Vsup = 1.2 V Vsup = 0.4 V

Period (ps) Power (µW) Period (ns) Power (nW)

p50 p90 p99 p50 p90 p99 p50 p90 p99 p50 p90 p99

20 234.92 252.64 268.64 82.20 89.43 97.08 7.80 11.60 17.34 223.33 310.59 394.87
50 235.54 256.67 274.96 82.19 90.29 97.59 9.04 15.62 25.84 192.22 304.45 411.75

150 233.07 254.17 272.17 83.12 91.27 98.29 8.42 13.55 21.26 206.22 307.91 407.74
500 232.35 253.30 270.77 83.63 92.43 100.97 7.80 13.56 27.89 222.89 328.22 438.61

BSIM 234.04 254.88 271.16 83.12 93.01 106.80 8.63 13.46 21.11 202.77 303.48 417.68

5. Discussion

The histograms of ring-oscillator period and power consumption obtained with the proposed
model are in good agreement with BSIM-based simulations. Thus, the generative model reproduces
well the statistical properties of the I–V curves of devices used for its training. The agreement is
satisfactory even for near-threshold operation (Vsup = 0.4 V), where the relationship between the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

12 of 14

perturbed device parameters and the drain current is close to exponential, i.e. strongly nonlinear. As a
result, the values of period and power span an entire order of magnitude and their distributions show
a pronounced skewness. The numerical data presented in Table 2 show that even the top percentiles
p90 and p99, corresponding to the long right tails, can be predicted with a reasonable accuracy. This is
important because the right tails of power- and period distributions directly influence the parametric
yield of a digital circuit. For training sets of 150 devices all percentiles are estimated within 5 percent
of their true value (and in most cases within 2 percent). For training sets of 20 and 50 devices the errors
are closer to 10 percent and, for p99, sometimes larger. It must be remembered, however, that p99 is
defined as the value that is exceeded only by 1 percent of the population. Estimating this quantity
with a model trained on just 20 or 50 observations is necessarily prone to error. Still, the number of
training cases used in this experiment is several orders of magnitude smaller than what is normally
used in image-generation applications. Unlike images of faces, digits or other objects, MOSFET drain
current plotted in the (VGS, VDS) space forms a relatively smooth surface. Also, differences between
individual cases are quite subtle. Thus, a relatively small set of training examples may capture all the
necessary statistical properties of the entire population. Interestingly, there is no clear relationship
between the accuracy of period and power estimation and training-set size. Both going below 50 cases
and above 150 cases seems to increase the error.

Please note that the I–V curves were sampled on a fixed uniform (VGS, VDS) grid. Lowering the
RO operating voltage from 1.2 V to 0.4 V means that samples corresponding to two-thirds of VGS biases
and the same proportion of VDS biases were left unused. Still, even in such conditions the histograms
obtained with the proposed model look very close to those coming from the BSIM simulations.

A single RO simulation took an average of 161 ms with the BSIM model and 886 ms with the
ANN-based model. Thus, the currently used Verilog-AMS-based implementation of the proposed
model is approximately 5.5 times slower than BSIM. One may expect that implementing the model
directly in the simulator source code would significantly speed up the simulation.

To sum up, the proposed method seems attractive because I–V characterization of 20-50 transistors
is often feasible even in cases of emerging devices or ones working in a cryogenic cooler. Extension of
this method for C–V curves would enable taking into account deviations of MOSFETs’ capacitances,
thus making the statistical simulation even more realistic.

Author Contributions: Conceptualization, D.K.; methodology, D.K.; software, D.K.; validation, D.K.; formal
analysis, D.K.; investigation, D.K.; resources, D.K.; data curation, D.K.; writing—original draft preparation, D.K.;
writing—review and editing, D.K.; visualization, D.K.; supervision, D.K.; project administration, G.K.; funding
acquisition, G.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Centre for Research and Development of Poland, grant
QUANTERAII/1/80/SIQCI/2022.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Datasets available on request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural network
KLD Kullback-Leibler divergence
MOSFET Metal-oxide-semiconductor field-effect transistor
MSE Mean squared error
PDK Process design kit
RO Ring oscillator
VAE Variational autoencoder

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

13 of 14

References

1. Beckers, A.; Jazaeri, F.; Enz, C. Cryogenic MOS Transistor Model. IEEE Transactions on Electron Devices 2018,
vol. 65, no. 9, 3617–3625. https://doi.org/10.1109/TED.2018.2854701.

2. Kimura, M; Inoue, S.; Shimoda, T. Table Look-Up Model of Thin-Film Transistors for Circuit Simulation
Using Spline Interpolation with Transformation by y=x+log(x). IEEE Transactions on CAD 2002, vol. 21, no. 9,
1101–1104. https://doi.org/10.1109/TCAD.2002.801090.

3. Yang, B.; McGaughy, B. An Essentially Non-Oscillatory (ENO) High-Order Accurate Adaptive Table Model
for Device Modeling. In Proceedings of the 41th Design Automation Conference, San Diego, CA, USA, 7-11
June 2004, 864–867.

4. Bourenkov, V.; McCarthy, K.G.; Mathewson, A. MOS Table Models for Circuit Simulation. IEEE Transactions
on CAD 2005, vol. 24, no. 3, 352–362. https://doi.org/10.1109/TCAD.2004.842818.

5. Thakker, R.A.; Sathe, C.; Sachid, A.B. et al. A Novel Table-Based Approach for Design of FinFET Circuits.
IEEE Transactions on CAD 2009, vol. 28, no. 7, 1061–1070. https://doi.org/10.1109/TCAD.2009.2017431.

6. Xu, J.; Gunyan, D., Iwamoto, M et al. Drain-Source Symmetric Artificial Neural Network-Based FET Model
with Robust Extrapolation Beyond Training Data. In Proceedings of the 2007 IEEE/MTT-S International
Microwave Symposium, Honolulu, HI, USA, 3-8 June 2007, 2011–2014. https://doi.org/10.1109/MWSYM.
2007.380244.

7. Wang, J.; Kim, Y.-H.; Ryu, J. et al. Artificial Neural Network-Based Compact Modeling Methodology
for Advanced Transistors. IEEE Transactions on Electron Devices 2021, vol. 68, no. 3, 1318–1325. https:
//doi.org/10.1109/TED.2020.3048918.

8. Wang, J.; Xu, N.; Choi, W. et al. A Generic Approach for Vapturing Process Variations in Lookup-Table-Based
FET Models. In Proceedings of the 2015 International Conference on Simulation of Semiconductor Processes
and Devices (SISPAD), Washington, DC, 9-11 September 2015, 309–312. https://doi.org/10.1109/SISPAD.20
15.7292321.

9. Kasprowicz, D. Table-Based Model of a Dual-Gate Transistor for Statistical Circuit Simulation. IEEE Transac-
tions on CAD 2019, vol. 38, no. 8, 1493–1500. https://doi.org/10.1109/TCAD.2018.2852756.

10. Woo, S.; Jeong, H.; Choi, J.; Cho, H.; Kong, J.-T.; Kim, S. Machine-Learning-Based Compact Modeling for Sub-
3-nm-Node Emerging Transistors. Electronics 2022, 11, 2761. https://doi.org/10.3390/electronics11172761.

11. Lyu, Y.; Chen, W.; Zheng, M. et al. Machine Learning-Assisted Device Modeling With Process Vari-
ations for Advanced Technology. IEEE Journal of the Electron Devices Society 2023, vol. 11, 303–310.
https://doi.org/10.1109/JEDS.2023.3277548.

12. Mehta, K.; Raju, S.S.; Xiao, M. et al. Improvement of TCAD Augmented Machine Learning Using Au-
toencoder for Semiconductor Variation Identification and Inverse Design. IEEE Access 2020, vol. 8, pp.
143519–143529. https://doi.org/10.1109/ACCESS.2020.3014470.

13. Mehta, K.; Wong. Prediction of FinFET Current-Voltage and Capacitance-Voltage Curves Using Machine
Learning with Autoencoder. IEEE Electron Device Letters 2021, vol. 42, no. 2, 136–139. https://doi.org/10.110
9/LED.2020.3045064.

14. Foster, D. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 1st ed.; Publisher:
O’Reilly Media, 2019.

15. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 2019,
6. https://doi.org/10.1186/s40537-019-0197-0.

16. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International
Conference on Learning Representations, Banff, Canada, 14-16 April 2014.

17. Miao, Y; Yu, L; Blunsom, P. Neural Variational Inference for Text Processing. In Proceedings of the 33rd
International Conference on Machine Learning ICML’16, New York City, USA, 19-24 June 2016, vol. 48,
1727–1736

18. Karamatlı, E.; Cemgil, A.T; Kırbız, S. Audio Source Separation Using Variational Autoencoders and Weak
Class Supervision. IEEE Signal Processing Letters 2019, vol. 26, no. 9, 1349–1353. https://doi.org/10.1109/
LSP.2019.2929440.

19. Mak, H.W.L.; Han, R.; Yin, H.H.F. Application of Variational AutoEncoder (VAE) Model and Image Process-
ing Approaches in Game Design. Sensors 2023, 23, 3457. https://doi.org/10.3390/s23073457.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.1109/MWSYM.2007.380244
https://doi.org/10.1109/MWSYM.2007.380244
https://doi.org/10.1109/TED.2020.3048918
https://doi.org/10.1109/TED.2020.3048918
https://doi.org/10.1109/SISPAD.2015.7292321
https://doi.org/10.1109/SISPAD.2015.7292321
https://doi.org/10.1109/LED.2020.3045064
https://doi.org/10.1109/LED.2020.3045064
https://doi.org/10.1109/LSP.2019.2929440
https://doi.org/10.1109/LSP.2019.2929440
https://doi.org/10.20944/preprints202404.1675.v1

14 of 14

20. Touloupas, K.; Sotiriadis, P.P. Mixed-Variable Bayesian Optimization for Analog Circuit Sizing through
Device Representation Learning. Electronics 2022, 11, 3127. https://doi.org/10.3390/electronics11193127.

21. Pytorch library for deep learning in Python. Available online: https://pytorch.org (accessed 6 March 2023).
22. Henze, N.; Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications

in statistics-Theory and Methods, 1990, 19(10), 3595-3617.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2024 doi:10.20944/preprints202404.1675.v1

https://doi.org/10.20944/preprints202404.1675.v1

	Introduction
	Autoencoders and Variational Autoencoders: Theoretical Background
	Experimental Setup
	Benchmark Circuit
	VAE-Based Generative Model of MOSFET I–V Data
	ANN-Based Models of Single Devices

	Results
	Discussion
	References

