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Abstract: The dawn of Intelligence (AI) in healthcare stands as a milestone in medical innovation. A plethora
of different medical fields are heavily involved and pediatric emergency medicine is no exception. These new
tools do not merely provide more advanced and efficient systems for patients’ diagnosis, management and
treatment. They rather concern a strict shift from traditional methods based upon broad categories towards a
more personalized healthcare. Al offers many promises in pediatric emergency medicine with a wide range of
applications involving clinical decision making, patients” flows management and prioritization. Main barriers
to a widespread diffusion involve technological challenges but also ethical issues and the paucity of extensive
datasets in pediatric contexts. We conducted a narrative review structured in two parts. The first part explores
the theoretical principles of Al, providing all the necessary background to feel confident with these new state-
of-the-art tools. The second part presents an informative analysis of AI models in pediatric emergencies,
pointing out the actual applications and challenges until future feasible research perspectives.

Keywords: artificial intelligence; machine learning; pediatrics; deep learning; pediatric emergency medicine

1. Introduction

Artificial intelligence (Al), once considered a distant, futuristic project, has gradually become a
real-world approach in a wide range of medical fields, including pediatric emergency medicine[1-3].

The innovative concept of machines capable of autonomously elaborating and processing
information dates back to the 50s[4]. Over time, medicine has progressively been recognized as a
breeding ground for AI[2]. Nowadays, the latest generation of Al can use large datasets to analyze
interactions between the included variables and develop predictions with several use cases in
healthcare[2].

Since standard clinical decision-making often relies on strict flowcharts and classifications with
a well-structured approach, these new Al tools could induce a significant shift from conventional
methods[3,5]. Even though effective in many cases, traditional models tend to oversimplify,
occasionally missing the complexity of medical conditions. Al, through big data processing, is
moving from broad categories to detailed and "point-like" classes in healthcare, ultimately tailoring
the diagnosis and care pathway to the patients’ needs and ultimately fostering a more personalized
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medicine[6,7]. However, the development and deployment of Al solutions requires a drastic shift. Al
training requires a significant amount of data, readily available and machine-readable. This can slow
down the adoption of Al solutions in facilities where the digitalization process is not as advanced as
necessary[3]. Additionally, the introduction of new tools requires the end users, including healthcare
professionals and physicians, to be equipped with knowledge and skills to embrace them. The
upskilling and reskilling are a pressing issue, hindering future advances in patient care and
improvements in health outcomes. Therefore, a new approach is needed to combine Al and high-
quality input data[8]. This narrative review aims to provide a conceptual introduction to Al and raise
awareness of its emerging clinical tools and potential applications in pediatric emergency medicine.

2. Materials and Methods

We designed a narrative review of the literature. The first part explores the theoretical principles
of Al, providing all the necessary background to feel confident with these new state-of-the-art tools.
The second part presents an informative analysis of Al models in pediatric emergencies, pointing out
the actual applications and challenges until future feasible research perspectives. We examined the
following bibliographic electronic databases: PubMed and the Cochrane Library, from inception date
until April 2024. The search was limited to English-language papers that focused on Al in pediatric
emergency medicine.

Each selected paper was reviewed and analyzed in full text by two authors (L.D.S. and A.
Caroselli) and any discrepancies among them were solved by debate. Due to the heterogeneity of the
articles examined, we focused on a qualitative analysis.

3. Artificial Intelligence and subfields

Artificial Intelligence (Al) is the field of study that focuses on how computers learn from data
and on the development of algorithms that enable this learning[3].

Al involves numerous applications capable of processing information in non-conventional
ways[9]. In order to achieve the best performance, Al requires the management of large datasets
known as “Big data”[10]. “Big data” is a term that was introduced in the 1990s to include datasets too
large to be managed by common software[11]. The vast amount of information about patients' health
in massive digital archives is the source of big data in healthcare. As a matter of fact in recent years
there has been a progressive trend from paper-based to digitized data[12,13].

Big data in healthcare can be characterized by up to six main features, the so called “6 Vs”,
according to different authors:

e  Volume: the continuous and exponentially incremental flow of data spanning from personal
medical records up to 3D imaging, genomics, and biometric sensor readings ought to be
carefully managed[12]. Innovations in data management, such as virtualization and cloud
computing, are enabling healthcare organizations to store and manipulate large amounts of data
more efficiently and cost-effectively[14];

e  Velocity: the prompt and rapid transmission of data is a pivotal item nowadays, especially in
scenarios like trauma monitoring, anesthesia in operating rooms, and bedside heart monitoring,
where timely data analysis can be life-saving[12]. Besides, future applications, such as early
infection detection and targeted treatments based upon real-time data, have the potential to
notably decrease morbidity, mortality, and ultimately impact on outcome[14,15];

e  Variety: the ability to analyze large datasets, including multimedia and unstructured formats,
represents an innovation in healthcare[12]. The wide range of structured, unstructured, and
semi-structured data analyzed, stands as a revolutionary change that adds complexity to
healthcare data management[16]. Structured data can be easily stored, recalled, elaborated and
manipulated by machinery. They come from a variety of sources, including diagnoses,

medications, instrument readings, and lab values, and can be sorted into numeric or categorical
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fields for easy analysis[12,17]. Unstructured data is commonly generated at the point of care,
including free-form text such as medical notes or discharge summaries and multimedia content
such as imaging[12,17]. The main challenge is to transform this data to make it suitable for Al
analysis, but this process faces some obstacles. First, adding structure to unstructured data
entails healthcare providers to manually review charts or images, sort the information out and
enter it into the system[18]. This makes the process slow, inefficient, and prone to bias. New
powerful tools such as Natural Language Processing can speed up and streamline the
information extraction process[17]. Secondly, healthcare professionals' preference for the natural
language simplicity of handwritten notes remains a major barrier to a widespread adoption of
electronic health records, which require field coding at the point of care to provide structured
inputs[12].

e  Variability refers to the consistency of data over time[16]. Data flows are unpredictable, they
change often and vary widely. It's essential to know how to manage daily, seasonal, and event-
driven data spikes[19].

e  Veracity: ensuring that big data is accurate and trustworthy is critical in healthcare, where
accurate information can mean the difference between life and death[12]. Nevertheless,
achieving veracity faces challenges, including variable quality and difficulties in ensuring
accuracy, especially with handwritten prescriptions.

e  Value consists of the worth of information to various stakeholders or decision makers[20].

Big data includes clinical data sourced from Computerized Physician Order Entry (CPOE) and
Clinical Decision Support (CDS) systems, as well as patient information stored in electronic patient
records (EPRs), and machine-generated/sensor data, including vital sign monitoring[12]. Big data
analytics may improve care and reduce costs by identifying connections and understanding patterns
and trends among different items[21]. In fact, it could potentially enhance healthcare outcomes
through information elaboration, healthcare provider guidance, preventative care candidates
identification, and disease profiling[12].

In regular healthcare analytics, project analysis is typically performed using easy-to-use business
intelligence tools on stand-alone systems; however, in big data analytics, the processing of large
datasets is distributed across multiple nodes, requiring a shift in user interfaces[22]. While traditional
analytics tools are easy to use and transparent, new tools are complex, programming intensive, and
require different skill sets to be most effective.

In order to guarantee an adequate output, this huge amount of data has to be verified by valid
tools. Blockchain is a technology characterized by the decentralization of entries, meaning that inputs
are agreed upon by a peer-to-peer network through various consensus protocols, rather than a central
authority controlling the content[23]. Furthermore, many blockchains offer anonymity or pseudo-
anonymity[23,24]. Specifically for healthcare data management, these features ensure data security
and privacy through a network of secure blocks linked by cryptographic protocols[23,25]. Another
key feature of blockchain is persistency: once data is inserted into a block and added to the chain, it
cannot be deleted[23]. This implies that if an inaccurate data is added to the blockchain, it becomes a
permanent part of the ledger. Thus, it is important to ensure the accuracy of data before adding it to
the blockchain[26].

The integration of Al and blockchain is promising: Al tools could leverage information acquired
from a secure, unchangeable, and decentralized system for storing sensitive data required by Al-
driven techniques[25]. An integration of Al and blockchain in the metaverse has been proposed in
order to provide digital healthcare through realistic interactions[27]. By using blockchain for data
security and privacy, healthcare providers and patients engage in consultations in a virtual
environment: participants are represented by avatars, and consultation data is securely recorded and
stored on the blockchain[27]. This data is then used by explainable Al models to predict and diagnose
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diseases, ensuring logical reasoning, trust, transparency, and interpretability in the diagnostic
process[27].

Machine learning (ML), a subset of computer science and artificial intelligence, seeks to identify
patterns in data to boost the effectiveness of various tasks[28]. In healthcare, ML uses automated,
adaptive and computationally advanced techniques to recognize patterns within complex data
structures [12]. ML models improve their performance by means of a continuous auto-training
process [13,14]. This approach differs from "traditional" methods and explicit human programming,
which rely on certain statistical assumptions and require a predefined set of dimensions, functional
relationships, and interactions [12,14] - an issue often avoided in ML.

To develop a reliable ML model, accurate training datasets are required; therefore, a
preprocessing phase is usually needed[3]. Most of the data is used to train the model with preliminary
analyses performed to identify the strongest relationships between variables and study outcomes.
The remaining data can be used for internal validation. At this stage, the model can be tested on
different datasets[3].

ML-aided tasks have already been incorporated into clinical practice, especially in imaging
interpretation[29-31]. Although they are still imperfect and require a skilled supervisor, they are
considered acceptable when rapid image feedback is needed and local expertise is lacking[9]. A
growing number of applications have been developed. Some of them, combining clinical, genetic,
and laboratory items are able to detect rare or common conditions that would otherwise be missed[9].
ML is divided into three branches, which are selected according to one of the three required research
tasks[32,33]: supervised ML for prediction, unsupervised ML for description, and reinforcement
learning for causal inference.

Supervised ML (SML) is a predictive model, designed to estimate the likelihood of an event
occurring[3]. The predictive analytics applied span from basic computations such as correlation
coefficients or risk differences to advanced pattern recognition techniques and supervised learning
algorithms like random forests and neural networks, which serve as classifiers or predict the joint
distribution of multiple variables[33]. The supervised ML development process involves three
subsets of data. First, a training set of labeled data (e.g. histological specimens that have already been
labeled as normal or diseased by a human expert) is provided for the algorithm to learn by adjusting
weights to minimize the loss of function which calculates the distance between the predicted and true
outcome for a given data point[32,34]. Next, the model parameters are optimized using a second
validation set[32]. The validation set can also detect overfitting, which is observed when model
performance is significantly better on the training set. Finally, a third set is used to evaluate the
model's ability to generalize to new datasets[32]. Once the training session upon labeled data is
completed, then the system is applicable to unlabeled data. In this way the trained models predict
outcomes through either classification or regression, respectively in categorical or continuous types
of data[34].

Decision trees (DTs) are non-parametric supervised learning algorithms wused for
classification[35,36]. They map attribute values to classes and have a tree-like structure, including a
root node, branches, internal nodes (or decision nodes), and leaf nodes (or terminal nodes)[36,37].
Nodes conduct evaluations, based on the available information, and each node is linked to two or
more subtrees or leaf nodes labeled with a class, representing a possible outcome[36,37]. Various
types of DTs can be used both in classification and regression tasks[36]. DTs are often preferred over
other methods in fields such as healthcare due to their interpretability, despite being less accurate.
This is because they are easier to understand and explain compared to other, more complex methods
that might be more accurate but relatively uninterpretable[35].

Unsupervised ML (UML) is used for descriptive tasks, with the goal of data clustering and
revealing relationships within a data structure[33]. Descriptive tasks provide quantitative summaries
of specific features in a certain scenario and require analytics ranging from simple calculations to
complex techniques[33]. The main goal of unsupervised learning is to identify inherent groupings or
clusters within a data structure, in order to find out data differences, similarities and distributions in
feature space[3,28,32]. In unsupervised ML systems, training is data-driven, rather than human-
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driven, and uses unlabeled data (compared to Supervised ML, whose training features labeled data
and is driven by human experts)[33]. This category lacks a guiding response variable during
analysis[28].

Reinforcement Learning (RL) is a computational approach where an agent learns to achieve a
goal through a trial-and-error cycle in an interactive environment[32]. The agent's decision-making
strategy is improved through its interaction with the environment[38]. The goal of RL is the selection
of actions that will maximize future rewards[38]. This is achieved through iterative learning cycles
resulting in a reward or penalty in relation to a pre-defined target[34]. For instance, since there is a
need for blood glucose concentration monitoring and for an ideal determination of time and amount
for insulin delivery in diabetic patients, RL algorithms are potentially capable of learning the
individual glucose pattern of a diabetic patient in order to provide adaptive drug supply after a
learning process[39]. Changes in the glucose level lead to an action of the agent, in terms of insulin
injection or no treatment. Subsequently the agent receives a numerical reward, which along with the
next glucose level will impact upon the next action[39].

Al's subsets are represented in Figure 1. ML’s subtypes and algorithms are summarized in
Figure 2.

Artificial Intelligence

Machine learning

Deep learning

Generative Al

Figure 1. A comparative view of Al, machine learning, deep learning, and generative Al Created with
biorender.com.
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Figure 2. Machine learning algorithms. Created with biorender.com.
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Deep Learning (DL) refers to an even more complex subgroup of ML based on numerous
processing layers, which may use supervised, unsupervised and reinforcement ML
applications[34,40]. In a certain way, it mimics how the human brain builds its own model of the
world by learning from large amounts of sensory-motor data acquired through interactions with the
environment[38]. DL differs from ML in a number of characteristics. ML requires "manual” feature
extraction and processing[41]; it reaches a "plateau" where the quality of performance no longer
increases with the volume of data; its training time is somewhat "limited"[32]. On the other hand DL
is capable of automatically learning feature hierarchies; it requires a significant amount of data to
make predictions, and because it is more computationally intensive than ML, it may require longer
training times and state-of-the-art machines to run[32,34]. The complex architecture of DL, consisting
of several processing layers that are mostly inaccessible to human users (the so-called “black box of
Al”), may pose an issue for the model’s accountability in healthcare[34].

The application of these models is potentially limitless, though not without risk.

Generative Al (GAI) is a type of DL technique that generates realistic facsimiles by evaluating
training examples and learning their patterns and distribution[42]. GAI can produce various types of
content by using existing sources such as text, audios, images, and videos[42]. One well-known
example of its application is ChatGPT, an Al-driven chatbot. Its potential in supporting medical
research and clinical practice is currently being assessed[43]. ChatGPT is based on Generative Pre-
trained Transformers (GPT - a type of DL model that enables natural language processing) that
generate human-like text based on large amounts of data[9,44]. A 2023 systematic review has
evaluated its utility in several fields such as data analysis, literature review, scientific writing, medical
record storage and management, up to generating diagnoses and management plans[45]. Frequently
raised issues concerning generative Al in academic writing include bias, plagiarism, privacy, and
legal concerns up to scientific fraud (e.g. fake image synthesis or convincing fraudulent articles
resembling genuine scientific papers)[46—48]. Therefore the World Association of Medical Editors
advises authors and editors to disclose chatbot use in their work and to provide themselves with tools
for detecting Al-generated content[34,42]. Furthermore, GAI can also generate non-textual items
(images, videos and audios).

Finally when applied to complex analysis of high-dimensional data, including clinical
applications, DL can achieve remarkable outcomes[40], e.g. computer-assisted diagnosis of
melanoma. In fact a Deep Convolutional Neural Network trained on images has achieved
performances comparable to dermatology experts in identifying keratinocyte carcinomas and
malignant melanomas[49].

Neural Networks (NNs) are the baseline architecture of DL models[50]. They are structured in
multiple layers consisting of neuron-like interconnected nodes[32] (Figures 3a and 3b). Once inserted,
data flows along the first layer to the structure of interconnected nodes in a "forward propagation”
mechanism[32]. The signal received by each node is a result of a weighted linear combination of node
outputs from the prior layer, meaning that they are multiplied by a weight assigned to each
connection and summed up. A nonlinear transformation is instead applied to the node’s
output[32,50]. The final result from the output layer is compared to the true value and a “back
propagation” algorithm optimizes results by using prediction error and adjusting weights[32].
Because NNs are highly parametrized, they might “over-fit” models to data: thus, a series of
regularization strategies have been implemented to prevent it[40]. To name one, dropout is a
regularization technique where random neurons are dropped, along with their connection, during
training[51]. This prevents units from co-adapting too much and helps it to generalize better to
unseen data.

All Al models used in clinics and research are summarized in Table 1.
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Forward propagation
Hidden layers

Input layer

Back propagation

b

Figure 3. (1) Neural networks are the basic architecture of DL models. They are structured in multiple
layers consisting of neuron-like interconnected nodes. Data flows through the input layer and into
the structure of interconnected nodes in a "forward propagation" mechanism. The final result from
the output layer is compared to the true value and a “back propagation” algorithm optimizes results
by using prediction error and adjusting weights. (b) This is a close-up of a node. The signal received
by each node is a result of a weighted linear combination of node outputs from the prior layer,
meaning that they are multiplied by a weight assigned to each connection and summed up. A
nonlinear transformation is instead applied to the node’s output. x1 - xn: inputs; w1 - wn: weights; X:
summation of weighted outputs from the previous layer; f: nonlinear transformation (activation
function); b: bias.
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Table 1. Al models used in clinics and research.

System Description

Nodes, akin to neurons, process information, while connections
between layers, termed edges, simulate synapses with weights.
Output is computed via mathematical operations on input and

hidden layers, with the learning algorithm adjusting weights to
minimize errors between predicted and target outputs, forming

Artificial Neural Network
(ANN)

probability-weighted associations stored within the network's
structure[52].

Backpropagation utilizes prediction errors to iteratively tune the
Backpropagation Neural propag P Y

Network weights, enabling the NN to learn patterns within the training data

and enhance model accuracy over time[32].

CNNs process data that comes in the form of multiple arrays such
as signals, images, audio spectrograms and videos, and is applied
in the recognition of objects[50].

Convolutional Neural Network
(CNN)

An ANN with numerous layers between the input and output
Deep Neural Network (DNN) layers which is capable of learning high-level features and requires
high computational power[53].

An application of DNN within probabilistic models, able to capture
complex non-linear stochastic relationships between random
variables[54].

A recurrent neural network (RNN) is any network whose neurons
send feedback signals to each other, and are capable of modeling

Probabilistic Neural Network
(PNN)

Recurrent Neural Network

RNN
( ) sequential data for sequence recognition and prediction[55,56].

R-CNN models use region based networks, which are capable to
detect an object in an image and holds great potential especially in
diagnostic imaging[57].

Region-based Convolutional
Neural Network (R-CNN)

A feedforward type of powerful and dynamic ANN. The signals
Multilayer Perceptron (MLP)  are transmitted within the network in one direction: from input to
output[58].
Bayesian statistical methods are applied to algorithms. They start
with existing 'prior' beliefs, which are then updated using data to

B ian Inf
ayestan tietence give 'posterior’ beliefs, which may be used as the basis for

inferential decisions[59].

Three items constitute this model: patient observation,
Causal Associational Network pathophysiological states, and disease classifications. Once
(CASNET) documented, the observations are associated with the fitting
states[60].
LightGBM employs a boosting strategy to combine numerous
decision trees, with each tree utilizing the negative gradient of the

Light Gradient Boosting

Machine (LightGBM) loss function as the residual approximation for fitting. It is

designed for optimal performance, particularly in distributed
systems[61].

XGBoost is a gradient boosting framework that is highly efficient
and scalable. It features a proficient linear model solver and a tree

Extreme Gradient Boosting

(XGBoost) learning algorithm. It enables diverse objective functions, such as

regression, classification, and ranking. Its design allows for easy
extension, enabling users to define custom objectives[62].

Natural Language Processing NLP is a subfield of Al and ML used to interpret linguistic data
(NLP) (e.g. clinical note analysis and decision making) [9,40].
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Random forest models use randomization to create multiple
decision trees, each contributing to the final output. In
Random Forest Models classification tasks, the trees' outputs are combined through voting,
while in regression tasks, they are averaged to produce a single
output[63].

4. Current Research and Applications

Clinical Decision Support (CDS) systems can be defined as “computer systems designed to
impact clinician decision-making about individual patients at the point in time that these decisions
are made”[64]. These systems can be applied in a plethora of medicine fields, including pediatric
emergencies. Nevertheless, CDS are not free of limitations, and may sometimes be even perceived as
intrusive or ineffective by their users[3].

Compared to traditional rule-based CDS systems, Al-implemented CDS don'’t rely on statistical
algorithms and are occasionally defined as “non-knowledge”-based CDS[65]. As shown in Figure 4,
firstly a wide range of input data is inserted into the Al system. Secondly, this data is used to make
predictions. Finally, when a certain threshold is reached, a best practice alert is given to healthcare
providers.

Various data are
insered into Al
system

Futurable forecasts are
made on fi

elaborat

Figure 4. How AI-CDS works. Created with biorender.com.

4.1. Al for Triage Optimization

Triage is the process of quickly assessing sick children when they first present to Pediatric
Emergency Departments (PED) in order to classify them into one of the following categories: those
with emergency signs who require immediate treatment, those with priority signs who should be
given priority in the queue so they can be treated without delay, and those who are non-urgent cases.
An efficient triage, performed by healthcare providers, requires expertise but greatly relies on
subjective judgement to risk-stratify patients. Several factors such as a first impression of critical care
needs and a different subjective pain threshold of patients may affect triage evaluation[66-68]. By
analyzing the data collected during the triage phase, Al, particularly ML, could be a useful adjunct
tool for screening critical patients or those who are candidates for hospitalization[69].
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Firstly in 2018 a multisite, retrospective, cross-sectional study of Emergency Department visits
on adults compared an electronic triage system based on a random forest model applied to vital signs,
chief complaint, and medical history to standard triage[70]. Electronic triage predictions
demonstrated equivalent or improved detection of clinical patient outcomes[70].

Subsequently, a retrospective observation cohort study was conducted in Korea in 2019 on a
wide range of pediatric patients[71]. They developed prognostic models of critical care and
hospitalization through ML, DL, and conventional triage. The predicted variables adopted were the
following: age, sex, chief complaint, symptom onset to arrival time, arrival mode, trauma, and vital
signs. A DL-based algorithm was developed using a Multilayer Perceptron (MLP) [57] and derivation
data, consisting of patient data from January 2014 to June 2016. Test data was then fed into the
algorithm, and a risk score between 0 and 1 was obtained, corresponding to the risk of critical care,
involving direct admission to the Pediatric Intensive Care Unit (PICU) from the PED or transfer to
other hospitals for PICU admission. Two ML models were developed as well for performance
comparison, respectively using logistic regression and random forest. The DL algorithm significantly
outperformed the other methods both for intensive care and hospitalization prediction.

In 2022 a prognostic study tested the performance of ML methods in predicting clinical outcomes
in children in PED and compared them to conventional approaches[72]. Four learning prediction
models were developed: logistic regression with lasso regularization, random forest, gradient-
boosted decision tree, and deep neural network. All of them showed better discrimination ability
compared to conventional approaches for clinical outcomes, with a higher sensitivity for the critical
care outcome and higher specificity for hospitalization[72]. In 2023 Sarty et al used administrative
data collected through triage to train several machine learning models to predict patients who would
leave the PED without being seen (LWBS) by an healthcare provider[73]. Among the models applied,
XGBoost was the best-performing ML model with 95% recall and 87% sensitivity. The most
influential factors in this model were PED patient load, triage hour, driving minutes from home
address to PED, length of stay, and age. An earlier detection of LWBS would enable a possible
development of patient-focused strategies aimed at limiting the phenomenon[73].

4.2. Al for Stress Management

The distressful experiences experimented during healthcare treatments in childhood have been
linked to post-traumatic stress disorder and future avoidance of medical care as adults[74]. Stress
reduction and compliance maximization are key elements in the management of pediatric patients,
especially in emergency setting[75].

Innovative solutions targeting this include Al-enhanced Socially Assistive Robots (SAR),
creating a patient-specific support experience aimed at reducing their discomfort during painful
procedures such as peripheral intravenous line placement or surgical sutures. SAR systems generally
create a relationship without physically touching patients but just through interactions that may
include expressiveness, personality, dialog, empathy, and adaptation skills[76].

SARs have already been tested in the PED setting with great results in mitigating children’s
discomfort and pain but, to best perform, they need human inputs. They have a limited and scripted
behavior and therefore, they lack a tailored and flexible feedback in this unpredictable emergency
background[74,77]. Nevertheless, it is pivotal to acknowledge that the aim of the SAR is not to replace
human involvement in mitigating distress and pain management, but to add a tool that healthcare
providers may use.

Two clinical research articles collected concerns and expectations to implement the design of an
Al-enhanced SAR[78,79]. Healthcare providers felt that the proposed SAR should be equipped with
a wide range of skills to meet children’s needs, involving encouraging dialogue, positive
reinforcement expressions, humor, and cognitive behavioral strategies (e.g., breathing techniques
and meditation) [76]. Caregivers saw the primary function of the SAR as a distractor during painful
procedures. Specifically, they suggested behaviors including tricks, jokes, playing music, singing,
and dancing [75].
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4.3. Al for Traumatic Brain Injury Assessment

Head trauma is one of the leading causes of PED admissions worldwide[80]. Since the majority
of them are constituted by minor traumas, it is essential to make a straight distinction to ensure a
prompt management when needed[81]. CT (Computed Tomography) scan is considered the gold
standard examination to detect a brain injury but it has several drawbacks: it is expensive, may
eventually require sedation and boosts the risk of cancer in a lifetime due to radiations exposure[82].
A set of rules, known as the PECARN rules, has been validated to risk-stratify this category of patients
to find out which patients ought to undergo a radiological imaging[83].

In recent years, Al approaches have been applied to the diagnosis and management of traumatic
brain injury in pediatric patients[84,85].

In 2017 Dayan et al. implemented the PECARN rules with a multi-faced intervention, focused
on computerized CDS, to provide the bedside pediatrician with directive indications for CT use and
supporting data (e.g. risk estimates for TBI)[86]. CDS components involved: determination of
whether the patient matched the age-specific PECARN very low risk criteria; a recommendation that
CT was not indicated if the child met the very low risk criteria; risk estimations for clinically relevant
TBL and links to the prediction rule principles and paper. They showed this intervention was
associated with modest, safe, but variable decreases in CT use without missing any relevant brain
damages[86].

In 2018 Hale et al. developed an Artificial Neural Network (ANN) trained on clinical items and
radiologist-interpreted imaging findings to identify patients at risk for clinically relevant TBI[87]. A
total of 12,902 pediatric patients were enrolled in this study from the PECARN TBI dataset. Trough
the elaboration of clinical and radiological data ANN showed 99,73% sensitivity with 98.19%
precision, 97.98% accuracy, 91.23% negative predictive value, 0.0027% false negative rate, and 60.47%
specificity for clinically relevant TBI[87].

In 2019 Bertsimas et al. compared an approach based on optimal classification tree (OCT) with
original PECARN rules in Traumatic Brain Injury (TBI) management, examining the same sample of
children previously treated with PECARN rules[88]. OCTs are classification trees similar to the
classification and regression trees (CARTSs) that were used to derive the original PECARN rules but
fitted with a novel method (Mixed Integer Optimization) that could outperform the classical CART-
fitting algorithms[35]. Outcomes suggested that OCTs performed as well as or better than PECARN
rules in identifying children at very low risk of clinically important traumatic brain injury[88]; thus,
the potential application of OCTs may provide a valuable tool to decrease unnecessary CT scans
while maintaining adequate sensitivity for identifying patients with clinically significant TBI.

In 2023 Miyagawa et al. used a decision tree method to predict the necessity of CT scans in
children under 2 years of age with mild TBI. This kind of SML achieved this outcome with a rate of
95% of accuracy[89]. Focusing on the contribution of each predictor on the decision tree, days of life
resulted to be the most significant. According to these findings, days of life could be used as a main
factor for decision making for head trauma in children younger than 2 years of age, and could
substitute age in years in clinical flowcharts[89].

Nowadays a significant proportion of pediatric neuroimaging performed attempts to generate
outcome prediction of brain injury, either hypoxic and traumatic[90,91]. Subtle mild TBI anomalies
not visualized on CT or on conventional MRI (Magnetic Resonance Imaging) can be detected trough
state-of-the-art neuroimaging. One of the most significant among them is diffusion MRI, which
enables for qualitative and quantitative assessment of specific white matter tracts in the nervous
system[92]. The study of the network of white nerve fibers, known as the "connectome," has recently
received increasing attention[93]. Connectome mapping using post-processing methods through
diffusion MRI-based fiber tracking, such as track density imaging and edge density imaging, is a new
frontier in research because it can reveal abnormalities even in mild TBI, such as white matter damage
not seen on CT and MRI[94]. Raji et al. used Support Vector Machines (SVMs) to analyze patients
with TBI based on edge density imaging[95]. SVMs examine and group labelled data into classes,
split by the widest plane (support vector). They are often employed when there is a non-linear
correlation among data, and, as such, a separation line is not easily recognizable[96]. In their study,
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Raji et al. identified three white matter regions distinguishing mild TBI from controls using edge
density imaging maps. Bilateral tapetum, sagittal stratum and callosal splenium identified mild TBI
subjects with sensitivity of 79% and specificity of 100%; accuracy from the area under the ROC curve
(AUC) was 94%. In this study edge density imaging could provide better diagnostic delineation of
pediatric mild TBI than neurocognitive assessment of memory or attention[95].

4.4. Al for Pediatric Sepsis Prediction

Sepsis is the main cause of death worldwide in pediatric patients resulting in an estimated 7.5
million deaths annually[97]. Sepsis is a life-threatening organ dysfunction associated with infection.
Prompt and accurate identification of sepsis requires data-driven screening tools with affordable
precision and high sensitivity[98]. Several scores for sepsis identification have been designed over
years, even though they often lack in sensibility and specificity[99,100].

Systemic Inflammatory Response Syndrome (SIRS) criteria were previously included in
pediatric sepsis definition by Goldstein et al. but they had poor predictive properties[101].

In 2024 the Society of Critical Care Medicine task force suggested that sepsis in children is
defined by a Phoenix Sepsis Score of at least 2 points in children with suspected infection, meaning
potentially life-threatening disfunction of respiratory, cardiovascular, coagulation, or neurological
systems[98]. Even though the Phoenix sepsis criteria performed well, future independent validation
is needed, especially in low-resources settings. In recent years computerized sepsis prediction
systems have been developed to overcome intrinsic limitations of pediatric sepsis scores. By accessing
electronic health record (EHR) data for clinical decision support, these systems can early detect septic
patients whose treatment would otherwise be delayed[102]. In 2018 Kamaleswaran et al. conducted
an observational cohort study. They analyzed continuous minute-by-minute physiological data of
493 PICU patients over a timeline of 24 hours to assess the onset of severe sepsis[103]. 20 of this cluster
of patients developed severe sepsis. The authors demonstrated that Al could identify patients with
severe sepsis before they clinically show relevant findings by just assessing quantifiable
physiomarkers, such as heart rate (HR), mean blood pressure (MBP), systolic blood pressure (SBP),
diastolic blood pressure (DBP), and oxygen saturation (Spo2). Furthermore, these algorithms were
able to detect severe sepsis 8 hours earlier than a currently implemented real-time electronic
screening tool in critically ill children. These findings pointed out how is pivotal for bedside monitors
to be combined with artificial intelligence to improve their predictivity of severe sepsis.

In 2019 Le et al. tested a ML-based prediction algorithm using EHR[104]. The ML system
adopted was based upon boosted ensembles of decision trees. Ensemble classifiers sum up the output
from weak apprentices, each of which would be inadequate to solve the problem autonomously,
generating a more efficient learner. Every single baseline learner in this paper was a decision tree.
Each tree was constructed by repeatedly splitting the feature space, acquiring thresholds within the
features which most reduce entropy, and therefore enhance information[104]. Their algorithm
outperformed in terms of sensibility, specificity and accuracy the Pediatric Logistic Organ
Dysfunction score (PELOD-2) (p < 0.05) and the pediatric Systemic Inflammatory Response
Syndrome (SIRS) score (p < 0.05) in the prediction of severe sepsis[104].

In 2022 Stella et al. used a different approach which focused on predicting the need of
resuscitation within 6 hours of triage, rather than diagnosing sepsis[105]. In this way the model could
provide actionable decisional support. Data was extracted from EHC and involved demographics,
triage vitals, triage nurse comments, chief complaint information, as well as orders placed and
medications administered within 6 hours of arrival. Several models were employed including:
standard and regularized regression, random forests, gradient boosted trees and generalized
additive[105]. Moving the aim from the diagnosis of severe sepsis to the provision of resuscitative
care allowed avoiding the development of severe sepsis, rather than treating the full blown
condition[105].

In 2023 Mercurio et al. conducted a retrospective observational study of children presenting to
a PED at a tertiary care children's hospital with fever, hypotension, or an infectious disease
International Classification of Diseases (ICD)-10 diagnosis[106]. They proved that combining clinical
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and sociodemographic variables, sensibility and specificity performance of ML methods were as high
as 93% and 84% respectively in identifying patients with diagnosis of sepsis. The random forest
classifier performed the best, followed by a classification and regression tree[106]. The maximum
recorded heart rate and the maximum mean arterial pressure resulted the two most significant factors
in determining the model. Other unexpected variables such as age, immunization status and
demographics data have proved relevant in early detection of sepsis as well[106].

5. Discussion

Although further validation is required, Al might represent an useful supporting tool for PED

decision-making and has the potential to improve the timely allocation of resources and
interventions[72]. Recognizing and addressing a series of barriers is crucial for a safe development of
efficient Al tools[107,108].
The first key challenge is ensuring Al an accurate input. Expert clinicians ought to select features to
be accurately included in datasets for ML training because inaccurate training datasets lead to
suboptimal diagnostic accuracy[109]. ML subsequent iterations may amplify these errors, reinforcing
biases introduced in the early phases[32]. In most cases monocentric datasets fail to correctly address
the heterogeneity of pediatric conditions, particularly in the Emergency Department. Pediatric
populations accessing different PEDs may differ heavily, particularly when comparing rural and
urban PEDs, leading to significant biases in the training phase. Failure to account for this can lead to
misdiagnosis[110]. Additionally, the peculiarities of the emergency-urgency network of a certain
region may lead to some centers being the reference hubs for a subset of pathologies (e.g.,
neurological disorders), leading to an overrepresentation of certain conditions in the dataset.

These datasets should be the result of a multidisciplinary team of professionals working towards
a predefined goal. As a notorious quote says: “garbage in — garbage out”, meaning input datasets are
crucial in determining the final outcome[111]. Ensuring data quality requires a dedicated
infrastructure, i.e. patient health records, diagnostic images, and real-time data monitoring. Relying
excessively on paper-based systems and having operator-built databases introduces several potential
pitfalls for error, potentially reducing the final accuracy and reproducibility of the algorithms[112].
Confirmation bias is another item to be considered. Al recognizes patterns on which it has trained
upon but unlikely identifies what it is not taught[113].

To this purpose, ensuring external validation is vital for quality control. When applied to an
external dataset a certain clinical support tool could result neither sensible or specific[91]. Besides,
the algorithm's performance can quickly reduce as clinical practices dynamically evolve. Hence, a
continuous influx of data is pivotal to refine the model and keep it current[32].

Some of these limitations are particularly true for pediatrics. Children stand only for a marginal
portion of healthcare resources and their datasets are frequently small[3]. Granular data (i.e.,
displaying a high level of detail in the way data is structured), ideal for ML applications, is rarely
available in pediatrics. Targeting a right balance between granularity and simplicity is a key factor in
optimizing Al performance and ensuring significant outcomes from complex datasets[114].
Furthermore, in children data is not homogenously distributed resulting in inequality with some data
sharply prevailing on others due to significative variations in features according to the patient’s age.
Al models ought to account for variations and changes in disease risk that occur according to
age[115]. Vital and auxological parameters have to be interpreted according to age as well. Even
radiologic images need to be interpreted taking into account the age and the resulting changes in
anatomy, physiopathology and possible differential diagnosis. All the previously mentioned issues
could be challenging in validating an automated analysis[116].

The absence of evidence-based and variability in care are other factors limiting the application
of Alin pediatrics. In fact, a wide range of pediatric conditions has no gold standard care universally
shared and treatment significantly varies among different institutions[117,118].

The integration of Al and ML into pediatric emergency wards demands a workforce that is
proficient in these technologies. Healthcare professionals must be upskilled or reskilled to
understand the capabilities and limitations of Al and ML, interpret the outputs of these systems, and
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integrate this information into clinical decision-making processes[119]. Training programs and
continuous education initiatives are essential to equip healthcare professionals with the knowledge
and skills needed to work alongside Al and ML technologies effectively[120]. This not only enhances
the quality of patient care but also ensures that healthcare professionals can remain competitive and
adapt to the evolving landscape of healthcare technology.

Most of the studies retrieved by our review were conducted outside of the European Union. This
can be partly linked to the attention that Al-assisted software and medical devices receive in the EU,
e.g. compared to the United States. The EU’s recently approved Al Act[121] categorizes Al as "high
risk" when it is implemented in health and care; this wary approach is not far from what was
previously observed in the General Data Protection Regulation and similar norms, which impose
stricter regulations on the use of health data for research and training purposes[122]. Most of the
studies we reviewed were conducted in the U.S.A., whose Food and Drug Administration has issued
several documents defining Al and ML software as “medical devices”[123], providing additional
guidance on good practice to develop them. A recent scoping-review suggested similar results on the
broader field of clinical trials[124].

Finally, AI poses ethical questions, especially when it comes to liability. Will pediatricians be
responsible for eventual consequences that do not fit predictions? At present time clinicians may be
liable for harm to patients if they observe Al indications to use nonstandard care methods. Current
law only protects doctors from liability when they follow the standard care. Nevertheless, as Al gets
integrated in gold standards, we could speculate physicians would probably avoid liability when
following Al indications[125].

6. Conclusions

Al offers many promises in pediatric healthcare with a wide range of applications involving
clinical decision making, patients’ flows management and prioritization. In a bunch of years Al could
integrally reshape how we approach pediatric emergencies. On the other side it raises technical,
professional, and moral queries as well. Main barriers to a widespread diffusion involve
technological challenges but also ethical issues, age-dependent variations in data interpretation, and
the paucity of extensive datasets in pediatric contexts.

Overall, the next steps in pediatric Al are aimed at matching the actual gap between research
and clinical practice, striking a delicate balance between its transformative potential and current
limitations.
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