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Abstract: Let BT4l denotes a subclass of bounded turning functions connected with a four-leaf-type
domain. The goal of the study is to probe into coefficients of |b6|, |b7|, |b8|, the bounds of the
logarithmic coefficients and the third-order determinants of H3,1, H3,2, H3,3 for functions in this
class.
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1. Introduction and Definitions

Let H be a representation for a family of mappings of the following kind, denoted by g

g(ξ) = ξ +
∞

∑
n=2

bnξn (1)

in the unit disc U = {ξ ∈ C : |z| < 1}. We refer to S as a subfamily of H, which consists of univalent
functions in U .

For functions g ∈ H of the form g(ξ) = ξ + b2ξ2 + b3ξ3 + · · · and positive integers i and n, the
Hankel determinant Hi,n (g) is defined by

Hi,n (g) :=

∣∣∣∣∣∣∣∣∣∣
bn an+1 . . . bn+i−1
bn+1 an+2 . . . bn+i
...

... . . .
...

bn+i−1 bn+i . . . bn+2i−2

∣∣∣∣∣∣∣∣∣∣
(b1 = 1).

The Hankel determinant Hi,n(g) was introduced by Pommerrenke [1,2]. The third Hankel determinants
are follows:

H3,1(g) = b3b5 + 2b2b3b4 − b3
3 − b2

4 − b2
2b5, (2)

H3,2(g) = b4(b3b5 − b2
4)− b5(b2b5 − b3b4) + b6(b2b4 − b2

3), (3)

H3,3(g) = b5(b4b6 − b2
5)− b6(b3b6 − b4b5) + b7(b3b5 − b2

4). (4)

For the first time, the bounds of the third-order Hankel determinant H3,1(g) for the families of S∗, K
and R were investigated by Babalola[3]. Recently, the sharp bounds of the Hankel determinant H3,1(g)
of subclasses of analytic functions were obtained by many authors [4–10].

For g ∈ S , Let Fg(ξ) be defined as the logarithmic coefficients of g(ξ),

Fg(ξ) = log
g(ξ)

ξ
= 2

∞

∑
n=1

δnξn. (5)
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The δn = δn(g) are referred to as the the logarithmic coefficients of g. In the theory of univalent
functions, These coefficients play an important role for different estimates. The problem of the best
upper bounds for δn is still open. In fact even the proper order of magnitude is still not known. It is
known, however, for the starlike functions that the best bound is |δn| ≤ 1

n (n ≥ 1) and that this is not
true in general [11].

Using (1) and differentiating (5), we have

δ1 = 1
2 b2,

δ2 = 1
2 (b3 − 1

2 b2
2),

δ3 = 1
2 (b4 − b2b3 +

1
3 b3

2),

δ4 = 1
2 (b5 − b4b2 + b3b2

2 −
1
2 b2

3 −
1
4 b4

2),

δ5 = 1
2 (b6 − b2b5 − b3b4 + b4b2

2 + b2b2
3 − b3

2b3 +
1
5 b5

2).

(6)

In 2022, Sunthrayuth et al. [12] introduced a subclass of bounded turning functions associated
with a four-leaf function defined by

BT4l =

{
g ∈ S : g′(ξ) ≺ 1 +

5
6

ξ +
1
6

ξ5, (ξ ∈ U )
}

.

Sunthrayuth et al. [12] obtained Kruskal inequality, the bounds of the coefficient inequalities and the
two-order Hankel determinant of bounded turning class BT4l .

Utilizing the estimates of the coefficients of the Schwartz function, we study the third-order
Hankel determinants H3,1(g), H3,2(g) and H3,3(g) for the class BT4l , also, we obtain the bounds of the
logarithmic coefficients for g ∈ BT4l .

Let ω0 be the family of Schwarz functions. Thus, the function w ∈ ω0 may be expressed as a
power series

w(ξ) =
∞

∑
n=1

cnξn. (7)

Lemma 1 (see [13]). Suppose a function w is member of ω0. Then

|c2| ≤ 1 − |c1|2 , |c3| ≤ 1 − |c1|2 −
|c2|2

1 + |c1|
, |c4| ≤ 1 − |c1|2 − |c2|2,

|c5| ≤ 1 − |c1|2 − |c2|2 −
|c3|2

1 + |c1|
, |c6| ≤ 1 − |c1|2 − |c2|2 − |c3|2,

|c7| ≤ 1 − |c1|2 − |c2|2 − |c3|2 −
|c4|2

1 + |c1|
.

Lemma 2 (see [14,15]). Suppose a function w is member of ω0. then

|c1c3 − c2
2| ≤ 1 − |c1|2, |c2c4 − c2

3| ≤ (1 − c2
1)

2, |c3c5 − c2
4| ≤ 1 − c2

1.

Lemma 3 (see [12]). If g ∈ BT4l , then

|b2| ≤
5
12

, |b3| ≤
5

18
, |b4| ≤

5
24

, |b5| ≤
1
6

.

Lemma 4 (see [11]). If w ∈ ω0, then |cn| ≤ 1 (n ≥ 1).
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Lemma 5 (see [16]). Let w ∈ ω0, then for γ ∈ C, we have∣∣∣c2 + γc2
1

∣∣∣ ≤ max {1, |γ|}

Lemma 6 (see [17]). If w ∈ ω0 is in the form (7). Then, we get

|c3 + γc1c2 + ςc3
1| ≤ 1,

where (γ, ς) ∈ D0 ∪ D1, with

D1 = {(γ, ς) ∈ R2 : |γ| ≤ 1
2

,−1 ≤ ς ≤ 1},

D2 = {(γ, ς) ∈ R2 :
1
2
≤ |γ| ≤ 2,

4
27

(|γ|+ 1)3 − (|γ|+ 1) ≤ ς ≤ 1},

Lemma 7 (see [18]). Let w ∈ ω0 and γ ∈ C, we obtain∣∣∣c4 + 2γc1c3 + γc2
2 + 3γ2c2

1c2 + γ3c4
1

∣∣∣ ≤ max{1, |γ|3}.

Lemma 8 (see [18]). If w ∈ ω0, then for all γ ∈ C, we have

|c5 + 2γc1c4 + 2γc2c3 + 3γ2c1c2
2 + 3γ2c2

1c3 + 4γ3c3
1c2 + γ4c5

1| ≤ 1.

2. THE BOUNDS OF THE THIRD HANKEL DETERMINANT FOR g ∈ BT4l

Theorem 1. If g ∈ BT4l , then

|b6| ≤
5

36
, |b7| ≤

5
42

, |b8| ≤
5

48
.

The bounds are sharp.

Proof. For a function g ∈ BT4l , there exists a Schwarz function w (ξ), such that

g′ (ξ) = 1 +
5
6

w (ξ) +
1
6

w5 (ξ) ,

Comparing the coefficients, we yield

b2 =
5

12
c1, b3 =

5
18

c2, b4 =
5

24
c3, b5 =

1
6

c4, (8)

b6 =
5c5 + c5

1
36

(9)

b7 =
5c6 + 5c4

1c2

42
, (10)

b8 =
5c7 + 5c4

1c3 + 10c3
1c2

2
48

. (11)
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From (9) and Lemma 1, we have

|b6| ≤ 1
36

[
5|c5|+ |c1|5

]
≤ 1

36
[
5(1 − |c1|2 − |c2|2 −

|c3|2
1 + |c1|

) + |c1|5
]

=
1
36

(
5 − 5|c1|2 + |c1|5 − 5|c2|2 −

5|c3|2
1 + |c1|

)

≤ 1
36

(
5 − 5|c1|2 + |c1|5)

≤ 5
36

.

From (10) and Lemma 1, we achieve

|b7| ≤ 1
42

[
5|c6|+ 5|c1|4|c2|

]
≤ 1

42
[
5(1 − |c1|2 − |c2|2 − |c3|2) + 5|c1|4|c2|

]
=

1
42

(
5 − 5|c1|2 + 5|c1|4|c2| − 5|c2|2 − 5|c3|2)

≤ 1
42

[
5 − 5|c1|2 + 5|c1|4(1 − |c1|2)

]
=

1
42

(
5 − 5|c1|2 + 5|c1|4 − 5|c1|6

)
≤ 5

42
.

From (11) and Lemma 1, we get

|b8| ≤ 1
48

[
5|c7|+ 5|c1|4|c3|+ 10|c1|3|c2|2

]
≤ 1

48
[
5(1 − |c1|2 − |c2|2 − |c3|2 −

|c4|2
1 + |c1|

) + 5|c1|4|c3|+ 10|c1|3|c2|2
]

=
1

48
[
5 − 5|c1|2 + (−5 + 10|c1|3)|c2|2 + 5|c1|4|c3| − 5|c3|2 − 5

|c4|2
1 + |c1|

]

≤ 1
48

[5 − 5|c1|2 + (−5 + 10|c1|3)|c2|2 + 5|c1|4(1 − |c1|2 −
|c2|2

1 + |c1|
)]

=
1

48
[5 − 5|c1|2 + 5|c1|4 − 5|c1|6 +

−5 − 5|c1|+ 10|c1|3 + 5|c1|4
1 + |c1|

|c2|2].

Setting c = |c1| and d = |c2|, we get

|b8| ≤
1

48
ϵ1(c, d)

where

ϵ1(c, d) = 5 − 5c2 + 5c4 − 5c6 +
−5 − 5c + 10c3 + 5c4

1 + c
d2.
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The critical points of ϵ1 satisfy
∂ϵ1
∂c = −10c + 20c3 − 30c5 + 15c4+40c3+30c2

(1+c)2 d2,

∂ϵ1
∂d = −10−10c+20c3+10c4

1+c d = 0.

Applying numerical computations, we have{
c0 = 0,

d0 = 0,

{
c1 = 0.8668,

d1 = 0.7940,

{
c2 = 0.8668,

d2 = −0.7940.

Thus, in (0, 1)× (0, 1 − c2), there is no critical points which satisfies 0 ≤ d ≤ 1 − c2.
For c = 0,

ϵ1(0, d) = 5 − 5d2 ≤ 5.

For d = 0,
ϵ1(c, 0) = 5 − 5c2 + 5c4 − 5c6 ≤ 5.

For d = 1 − c2,

ϵ1(c, 1 − c2) = 5c2 + 10c3 − 5c4 − 15c5 + 5c7 = η1(c) ≤ η1(0.7202) = 2.5799.

Thus, we have

|b8| ≤
5

48
.

The bounds hold for c = 0. The proof of Theorem 1 is completed.

Theorem 2. If g ∈ BT4l , then

|H2,3(g)| ≤ 0.044516.

Proof. Let g ∈ BT4l . From (8), we receive

|H2,3 (g)| = |b3b5 − b2
4| =

5
1728

∣∣∣16c2c4 − 15c2
3

∣∣∣ = 5
1728

|15(c2c4 − c2
3) + c2c4|. (12)

Utilizing inequality, Lemma 1 and Lemma 2 in (12), we get

|H2,3 (g)| ≤ 5
1728

[15|c2c4 − c2
3|+ |c2||c4|]

≤ 5
1728

[15(1 − |c1|2)2 + |c2|(1 − |c1|2 − |c2|2)]

=
5

1728
[15 − 30|c1|2 + 15|c1|4 + (1 − |c1|2)|c2| − |c2|3)]

≤ 5
1728

[15 − 30|c1|2 + 15|c1|4 + (1 − |c1|2)|c2| − |c2|3].

Let |c1| = c and |c2| = d, we obtain

|H2,3 (g)| ≤ 5
1728 ϵ2(c, d).
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Consider 
∂ϵ2
∂c = −60c + 60c3 − 2cd = 0,

∂ϵ2
∂d = 1 − c2 − 3d2 = 0.

Applying numerical computations, we get{
c1 = 0,

d1 = −0.5774,

{
c2 = 0,

d2 = 0.5774,

{
c3 = −1,

d3 = 0,

{
c4 = 1,

d4 = 0,

{
c5 = 0.9998,

d5 = −0.0111,

{
c6 = −0.9998,

d6 = −0.0111.

Thus, there is no critical point in (0, 1)× (0, 1 − c2).
(1)For d = 0,

ϵ2(c, 0) = 15 − 30c2 + 15c4 ≤ 15.

(2)For c = 0,

ϵ2(0, d) = 15 + d − d3 ≤ ϵ2(0,

√
3

3
) =

2
√

3 + 135
9

= 15.384888.

(3)For d = 1 − c2,

ϵ2(c, 1 − c2) = 15 − 29c2 + 13c4 + c6 ≤ 15.

Therefore, we yield

|H2,3(g)| ≤ 10
√

3 + 675
15552

= 0.044516.

The proof of Theorem 2 is completed.

Theorem 3. If g ∈ BT4l , then

|H3,1(g)| ≤ 3025
46656

= 0.064836.

Proof. Assume that g ∈ BT4l . From (8) and (2), we achieve

|H3,1 (g)| =
1

46656

∣∣∣2250c1c2c3 − 1000c3
2 − 2025c2

3 + 2160c2c4 − 1350c2
1c4

∣∣∣
=

1
46656

∣∣∣1000c2(c1c3 − c2
2) + 1250c1c2c3 + 2025(c2c4 − c2

3) + 135c2c4 − 1350c2
1c4

∣∣∣ (13)
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By applying the triangle inequality, Lemma 1 and Lemma 2 in (13), we receive

46656 |H3,1(g)| ≤ 1000|c2||c1c3 − c2
2|+ 1250|c1||c2||c3|+ 2025|c2c4 − c2

3|+ 135|c2||c4|+ 1350|c1|2|c4|

≤ 1000|c2|(1 − |c1|2) + 1250|c1||c2|(1 − |c1|2 −
|c2|2

1 + |c1|
) + 2025(1 − |c1|2)2

+135|c2|(1 − |c1|2 − |c2|2) + 1350|c1|2(1 − |c1|2 − |c2|2)
= 2025 − 2700|c1|2 + 675|c1|4 + (1135 + 1250|c1| − 1135|c1|2 − 1250|c1|3)|c2|

−1350|c1|2|c2|2 −
135 + 1385|c1|

1 + |c1|
|c2|3.

Setting |c1| = c and |c2| = d, we have

46656 |H3,1 (g)| ≤ 2025 − 2700c2 + 675c4 + (1135 + 1250c − 1135c2 − 1250c3)d

−1350c2d2 − 135 + 1385c
1 + c

d3 = ϵ3(c, d)

where c ∈ [0, 1] and d ∈ [0, 1 − c2].
Taking the partial derivative with respect to c and y respectively, and we have

∂ϵ3

∂c
= −5400c + 2700c3 + (1250 − 2270c − 3405c2)d − 2700cd2 − 1250

(1 + c)2 d3

and

∂ϵ3

∂d
= 1135 + 1250c − 1135c2 − 1250c3 − 2700c2d − 405 + 4155c

1 + c
d2.

Setting ∂ϵ3
∂c = ∂ϵ3

∂d = 0 and simplifying, we yield
−5400c − 10800c2 − 2700c3 + 5400c4 + 2700c5 + (1250 + 230c − 6695c2 − 9080c3 − 3405c4)d

−2700c(1 + c)2d2 − 1250d3 = 0,

1135 + 2358c + 115c2 − 2385c3 − 1250c4 − 2700c2(1 + c)d − (405 + 4155c)d2 = 0.

Applying Newton’s methods, we yield{
c1 = −1,

d1 = 0,

{
c2 = 0.1018,

d2 = −1.3080,

{
c3 = 1.0726,

d3 = −1.1909,

{
c4 = 1.7878

d4 = −0.3706,

{
c5 = 3.3060,

d5 = −6.5565,

{
c6 = −1.3977,

d6 = 0.0899.

Thus, there is no critical point in (0, 1)× (0, 1 − c2).
For c = 0,

ϵ3(0, d) = 2025 + 1135d − 135d3 ≤ ϵ3(0, 1) = 3025.

For d = 0,
ϵ3(c, 0) = 2025 − 2700c2 + 675c4 ≤ 2025.

For d = 1 − c2,
ϵ3(c, 0) = 3025 − 4665c2 + 1605c4 + 35c6 ≤ ϵ3(0, 0) = 3025.

Thus, we obtain

|H3,1(g)| ≤ 3025
46656

= 0.064836.
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The proof of Theorem 3 is completed.

Theorem 4. If g ∈ BT4l , then

|b2b5 − b3b4| ≤
15.503407

432
= 0.035888.

Proof. Let g ∈ BT4l . From (8), we obtain

|b2b5 − b3b4| =
1

432
|30c1c4 − 25c2c3|. (14)

Applying Lemma 1 and the triangle inequality in (14), we get

|b2b5 − b3b4| ≤
1

432
[30|c1|(1 − |c1|2 − |c2|2) + 25|c2|(1 − |c1|2 −

|c2|2
1 + |c1|

)]

=
1

432
[
30|c1| − 30|c1|3 + (25 − 25|c1|2)|c2| − 30|c1||c2|2 −

25
1 + |c1|

|c2|3
]
.

Setting |c1| = c and|c2| = d, we yield

|b2b5 − b3b4| ≤
1

432
ϵ4(c, d).

Taking the partial derivative with respect to c, and d respectively, we get

∂ϵ4

∂c
= 30 − 90c2 − 50cd − 30d2 +

25
(1 + c)2 d3

and

∂ϵ4

∂d
= 25 − 25c2 − 60cd − 75

1 + c
d2.

Setting ∂ϵ4
∂c = ∂ϵ4

∂d = 0,and simplifying, we receive{
−90c4 − 180c3 − 60c2 + 60c + 30 − 50c(1 + c)2d − 30(1 + c)2d2 + 25d3 = 0,

−25c3 − 25c2 + 25c + 25 − 60(c2 + c)d − 75d2 = 0.

Applying Newton’s methods, we have

{
c1 = −1,

d1 = 0,

{
c2 = 0.4098,

d2 = −0.8978,

{
c3 = 0.4271,

d3 = 0.4258,{
c4 = −0.4550

d4 = −0.2931,

{
c5 = −0.7258,

d5 = 0.3023.

Therefore, we get ε4(c, d) ≤ ε4(0.4271, 0.4258) = 15.503407.
(a)For c = 0,

ε4(0, d) = 25d − 25d3 ≤ ε4(0,

√
3

3
) =

50
√

3
9

.

(b)For d = 0,

ε4(c, 0) = 30c − 30c3 ≤ ε4(

√
3

3
, 0) =

20
√

3
3

= 11.546666.
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(b)For d = 1 − c2,

ε4(c, 1 − c2) = 25c − 20c3 − 5c5 = η2(c) = η2(0.6017) = 10.2913.

Thus, we get

|b2b5 − b3b4| ≤
15.503407

432
= 0.035888.

Theorem 5. If g ∈ BT4l , then

|b2b4 − b2
3| ≤

200.27
2592

= 0.077265.

Proof. Let g ∈ BT4l . From (8), we get

|b2b4 − b2
3| =

1
2592

|225c1c3 − 200c2
2|

=
1

2592
|200(c1c3 − c2

2) + 25c1c3|.

Applying Lemma 1, Lemma 2 and the triangle inequality, we receive

|b2b4 − b2
3| ≤

1
2592

[200(1 − |c1|2) + 25|c1|(1 − |c1|2 −
|c2|2

1 + |c1|
)]

=
1

2592
[
200 + 25|c1| − 200|c1|2 − 25|c1|3 −

|c1|
1 + |c1|

|c2|2
]

≤ 1
2592

(
200 + 25|c1| − 200|c1|2 − 25|c1|3

)
=

1
2592

η3(|c1|) ≤
1

2592
η3(0.0618) =

200.2700
2592

= 0.077265.

Theorem 6. If g ∈ BT4l , then

|H3,2(g)| ≤ 0.025986.

Proof. Let g ∈ BT4l . From Lemma 3, Theorem 1, Theorem 2, Theorem 4 and Theorem 5, we yield

|H3,2(g)| ≤ |b4||b3b5 − b2
4|+ |b5||b2b5 − b3b4|+ |b6||b2b4 − b2

3|

=
5
24

× 0.044516 +
1
6
× 0.035888 +

5
36

× 0.077265

= 0.025986.

Theorem 7. If g ∈ BT4l , then

|b4b6 − b2
5| ≤

24.385252
864

= 0.028224.
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Proof. Let f ∈ BT4l . From (8) and (9), we have

|b4b6 − b2
5| =

1
864

|25c3c5 − 24c2
4 + 5c3c5

1| =
1

864
|24(c3c5 − c2

4) + c3c5 + 5c3c5
1|.

Using Lemma 1 and 2, we have

|b4b6 − b2
5| ≤ 1

864
(24|c3c5 − c2

4|+ |c3||c5|+ 5|c3||c5
1|)

≤ 1
864

[24(1 − |c1|2) + |c3|(1 − |c1|2 − |c2|2 −
|c3|2

1 + ||c1
) + 5|c1|5|c3|]

=
1

864
[24 − 24|c1|2 + (1 − |c1|2 + 5|c1|5 − |c2|2)|c3| −

1
1 + |c1|

|c3|3].

Setting c = |c1|, d = |c2| and e = |c3|, we yield

|b4b6 − b2
5| ≤ 1

864
ϵ5(c, d, e)

where ϵ5(c, d, e) = 24 − 24c2 + (1 − c2 + 5c5 − d2)e − 1
1+c e3 and (c, d, e) ∈ Ω = {(c, d, e) : 0 ≤ 1, 0 ≤

d ≤ 1 − c2, 0 ≤ e ≤ 1 − c2 − d2

1+c}. Consider

∂ϵ5

∂d
= −2de ≤ 0,

thus there are no points in Ω.
(1)For c = 0,

ϵ5(0, d, e) = 24 + (1 − d2)e − e3 = η4(d, e).

It is evident that there is on point in (0, 1)× (0, 1 − d2).
(2)For d = 0,

ϵ5(c, 0, e) = 24 − 24c2 + (1 − c2 + 5c5)e − 1
1 + c

e3 = η5(c, e).

Partial derivative of η5 with respect to c, and then with respect to e, we achieve

∂η5

∂c
= −48c + (−2c + 25c4)e +

1
(1 + c)2 e3,

and

∂η5

∂e
= 1 − c2 + 5c5 − 3

1 + c
e2.

Setting ∂η5
∂c = ∂η5

∂e = 0 and simplifying, we yield{
−48c(1 + c)2 + (25c6 + 50c5 + 25c4 − 2c3 − 4c2 − 2c)e + e3 = 0,

5c6 + 5c5 − c3 − c2 + c + 1 − 3e2 = 0.

We obtain a critical point (0.0039, 0.5785), thus, we have η5(c, e) ≤ η5(0.0039, 0.5785) = 24.385252.
(3)For e = 0,

ϵ5(c, d, 0) = 24 − 24c2 ≤ 24.
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(4)For e = 1 − c2 − d2

1+c ,

ϵ5(c, d, 1 − c2 − d2

1 + c
) = 24 + c − 24c2 − 2c3 + 6c5 − 5c7 +

−5c5 + 4c3 − c2 − 4c + 1
1 + c

d2

+
−2 + 4c
(1 + c)2 d4 +

1
(1 + c)4 d6 = η6(c, d) ≤ η6(0.0016, 0.5767) = 24.148169.

(5)For c = d = 0

ϵ5(0, 0, e) = 24 + e − e3 = η7(e) ≤ η7(

√
3

3
) = 24 +

2
√

3
9

= 24.384889.

(6)For c = e = 0,

ϵ5(0, d, 0) = 24.

(7)For d = e = 0,

ϵ5(c, 0, 0) = 24 + e − e3 ≤ 24.384889.

(8)For e = 0, d = 1 − c2,

ϵ5(c, 1 − c2, 0) = 24 − 24c2 ≤ 24.

(9)For d = 0 and e = 1 − c2,

ϵ5(c, 0, 1 − c2) = 24 + c − 24c2 − 2c3 + 6c5 − 5c7 = η8(c) ≤ η8(0.0206) = 24.0104.

(10)For c = 0, e = 1 − d2

ϵ5(0, d, 1 − d2) = 24 + d2 − 2d4 + d6 = η9(d) ≤ η9(

√
3

3
) = 24.148148.

Thus, we get

|b4b6 − b2
5| ≤

24.385252
864

= 0.035888.

Theorem 8. If g ∈ BT4l , then

|b3b6 − b4b5| ≤
5

144
.

The bound is sharp.

Proof. Let g ∈ BT4l . From (8) and (9), we receive

|b3b6 − b4b5| =
1

1296
|50c2c5 − 45c3c4 + 50c2c5

1|.
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Using Lemma 1, we get

|b3b6 − b4b5| ≤ 1
1296

(50|c2||c5|+ 45|c3||c4|+ 50|c2||c5
1|)

≤ 1
1296

[50|c2|(1 − |c1|2 − |c2|2 −
|c3|2

1 + |c1|
) + 45|c3|(1 − |c1|2 − |c2|2) + 50|c1|5|c2|]

=
1

1296
[(50 − 50|c1|2 + 50|c1|5)|c2| − 50|c2|3 + (45 − 45|c1|2 − 45|c2|2)|c3| −

50|c2|
1 + |c1|

|c3|2].

By setting |c1| = c, |c2| = d and |c3| = e, we have

|b3b6 − b4b5| ≤ 1
1296

Ψ(c, d, e)

where Ψ(c, d, e) = (50 − 50c2 + 50c5)d − 50d3 + (45 − 45c2 − 45d2)e − 50d
1+c e2 , (c, d, e) ∈ Ω.

Differentiating partially with respect to c, d and e, respectively, we get

∂Ψ
∂c

= (−100c + 250c4)d − 90ce +
50d

(1 + c)2 e2,

∂Ψ
∂d

= 50 − 50c2 + 50c5 − 150d2 − 90de − 50
1 + c

e2,

and

∂Ψ
∂e

= 45 − 45c2 − 45d2 − 100d
1 + c

e.

By putting ∂Ψ
∂c = ∂Ψ

∂d = ∂Ψ
∂e = 0, and simplifying, we obtain

(250c6 + 500c5 + 250c4 − 100c3 − 200c2 − 100c)d − 900c(1 + c)2e + 50de2 = 0,

50c6 + 50c5 − 50c3 − 50c2 + 50c + 50 − 150(1 + c)d2 − 90(1 + c)de − 50e2 = 0,
−45c3 − 45c2 + 45c + 45 − 45(1 + c)d2 − 100de = 0.

By a numberical caculation, we get
c1 = −1,

d1 = d,

e1 = 0,


c2 = 0.8441,

d2 = 0.4127,

e2 = 0.2354,


c3 = 0.8441,

d3 = −0.4127,

e3 = −0.2354.

Thus, there’s no critical point which satisfies 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 − c2.
(1)For c = 0,

Ψ(0, d, e) = 50d − 50d3 + (45 − 45d2)e − 50de2 = Λ1(d, e).

Consider 
∂Λ1
∂d = 50 − 150d2 − 90de − 50e2 = 0,

∂Λ1
∂e = 45 − 45d2 − 100de = 0.

A numberrical caculation that there is no critical point in (0, 1)× (0, 1 − d2).
(2)For d = 0,

Ψ(c, 0, e) = (45 − 45c2)e ≤ 45(1 − c2)2 ≤ 45.
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(3)For e = 0,

Ψ(c, d, 0) = (50 − 50c2 + 50c5)d − 50d3 = Λ2(c, d) ≤ Λ2(0.7368, 0.2828) = 8.403278.

(4)For e = 1 − c2 − d2

1+c ,

Ψ(c, d, 1 − c2 − d2

1 + c
) = 45 − 90c2 + 45c4 + (50c − 50c3 + 50c5)d + (−90 + 45c + 45c2)d2

+
50 − 150c

1 + c
d3 +

45
1 + c

d4 − 50
(1 + c)3 d5 = Λ3(c, d).

Differentiating Λ3 partially with respect to c and d, we yield

∂Λ3

∂c
= −180c + 180c3 + (50 − 150c2 + 250c4)d + (45 + 90c)d2 − 100d3

(1 + c)2

− 45d4

(1 + c)2 +
150d5

(1 + c)4

and

∂Λ3

∂d
= 50c − 50c3 + 50c5 + (−180 + 90c + 90c2)d +

150 − 450c
1 + c

d2 +
180d3

1 + c

− 250d4

(1 + c)3 .

Setting ∂Λ3
∂c = ∂Λ3

∂d = 0 and simplifying, we receive

180c7 + 720c6 + 900c5 − 900c3 − 720c2 − 180c + (250c8 + 1000c7 + 1350c6 + 400c5

−600c4 − 400c3 + 150c2 + 200c + 50)d + (90c5 + 405c4 + 720c3 + 630c2 + 270c + 45)d2

−100(1 + c)2d3 − 45(1 + c)2d4 + 150d5 = 0,

50c8 + 150c7 + 100c6 − 100c5 − 100c4 + 100c3 + 150c2 + 50c + (90c5 + 360c4 + 360c3 − 180c2

−450c − 180)d + (−450c3 − 750c2 − 150c + 150)d2 + 180(1 + c)2d3 − 250d4 = 0

Applying Newton’s methods, we recieve{
c1 = −1

d1 = 0,

{
c2 = 0,

d2 = 0,

{
c3 = 0.8336,

d3 = 0.4141,

{
c4 = −0.9194,

d4 = −0.0957.

Thus, there is no critical point satisfing 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 − c2.
(5)For d = c = 0,

Ψ(0, 0, e) = 45e ≤ 45.

(6)For e = d = 0,

Ψ(c, 0, 0) = 0.

(7)For c = e = 0,

Ψ(0, d, 0) = 50d − 50d3 = Λ4(d) ≤ Λ4(

√
3

3
) =

100
√

3
9

= 19.2444.
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(8)For d = 1 − c2 and e = 0,

Ψ(c, 1 − c2, 0) = 50c2 − 100c4 + 50c5 + 50c6 − 50c7 = Λ5(c) ≤ Λ5(0.7145) = 10.6734.

(9)For e = 1 − c2 and d = 0,

Ψ(c, 0, 1 − c2) = 45(1 − c2)2 ≤ 45.

(10)For e = 1 − d2 and c = 0,

Ψ(0, d, 1 − c2) = 45 − 90d2 + 50d3 + 45d4 − 50d5 = Λ6(d) ≤ Λ6(0) = 45.

Hence, we get

|b3b6 − b4b5| ≤
45

1296
=

5
144

.

The equality holds for c1 = c2 = 0 and c3 = c4 = 1.

Theorem 9. If g ∈ BT4l , then

|H3,3(g)| ≤ 0.016103.

Proof. Let g ∈ BT4l . From Lemma 3, Theorem 1, Theorem 2, Theorem 3 and 4, we receive

|H3,3(g)| ≤ |b5||b4b6 − b2
5|+ |b6||b3b6 − b4b5|+ |b7||b3b5 − b2

4|

≤ 1
6
× 0.035888 +

5
36

× 5
144

+
5

42
× 0.044516

= 0.016103.

3. THE BOUNDS OF THE LOGARITHMIC COEFFICIENTS FOR g ∈ BT4l

Theorem 10. If g ∈ BT4l , then

|δ1| ≤
5

24
, |δ2| ≤

5
36

, |δ3| ≤
5

48
, |δ4| ≤

13827
165888

= 0.083351, |δ5| ≤
173400

2488320
= 0.069686.

The first three bounds are the best possible.

Proof. Let g ∈ BT4l . From(6),(8) and (9), we have

δ1 =
5c1

24
, (15)

δ2 =
5

36
(c2 −

5
8

c2
1), (16)

δ3 =
5
48

(c3 −
5
9

c1c2 +
25
216

c3
1), (17)

δ4 =
1

165888
(13824c4 − 7200c1c3 + 4000c2

1c2 − 3200c2
2 − 625c4

1). (18)
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δ5 =
1

2488320
(172800c5 − 86400c1c4 − 72000c2c3 + 45000c2

1c3 + 40000c1c2
2 − 5000c3

1c2 + 37685c5
1). (19)

Applying Lemma 4 to (15), we have

|δ1| ≤
5

24

Applying Lemma 5 to (16), we get

|δ2| ≤
5

36
.

Utilizing the triangle inequality and Lemma 6 with γ = − 5
9 and ζ = 25

216 , we yield

|δ3| ≤
5

48
.

Rearranging (18), we obtain

|δ4| =
1

165888
|6912(c4 − c1c3 −

1
2

c2
2 +

3
4

c2
1c2 −

1
8

c4
1) + 6912c4 − 288c1c3 + 256c2

2 − 1184c2
1c2 + 239c4

1|

≤ 1
165888

|6912(c4 − c1c3 −
1
2

c2
2 +

3
4

c2
1c2 −

1
8

c4
1)|+

1
165888

|6912c4 − 288c1c3 + 256c2
2 − 1184c2

1c2 + 239c4
1|

=
1

165888
D1 +

1
165888

D2,

where D1 = |6912(c4 − c1c3 − 1
2 c2

2 +
3
4 c2

1c2 − 1
8 c4

1)|

D2 = |6912c4 − 288c1c3 + 256c2
2 − 1184c2

1c2 + 239c4
1|. (20)

Using Lemma 7 with γ = − 1
2 , we get D1 ≤ 6912. Rearranging (20), we get

D2 = |6912c4 − 288c1(c3 + 2c2
1c2 + c4

1) + 256c2
2 − 608c2

1c2 + 527c4
1|.

Using Lemma 1, Lemma 6 and the triangle inequality, we receive

D2 ≤ 6912(1 − |c1|2 − |c2|2) + 288|c1|+ 256|c2|2 + 608|c1|2|c2|+ 527|c1|4

= 6912 + 288|c1| − 6912|c1|2 + 527|c1|4 + 608|c1|2|c2| − 6656|c2|2 = Υ1(c, d)

where |c1| = c, |c2| = d.
Consider 

∂Υ1
∂c = 288 − 13824c + 2108c3 + 1216cd = 0,

∂Υ1
∂d = 608c2 − 13312d = 0

Applying Newton’s methods, we have{
c1 = 2.5173

d1 = 0.2894,

{
c2 = −2.5173,

d2 = 0.2942,

{
c3 = 0.0208,

d3 = 0.

Thus, in (0, 1)× (0, 1 − c2), there is no critical point.
(1)For c = 0,

Υ1(0, d) = 6912 − 6912d2 ≤ 6912.
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(2)For d = 0,

Υ1(c, 0) = 6912 + 288c − 6912c2 + 527c4 = γ1(c) ≤ γ1(0.0208) = 6915.

(3)For d = 1 − c2,

Υ1(c, 1 − c2) = 256 + 288c + 7008c2 − 6737c4 = γ2(d) ≤ γ2(0.7313) = 2287.6.

Therefore, we have

|γ4| ≤
13827

165888
= 0.083351.

Rearranging (19), we obtain

|δ5| =
1

2488320
|86400(c5 − c1c4 − c2c3 +

3
4

c1c2
2 +

3
4

c2
1c3 −

1
2

c3
1c2 +

1
16

c5
1)

+86400c5 + 14400c2c3 − 19800c2
1c3 − 24800c1c2

2 + 38200c3
1c2 + 32285c5

1|

≤ 1
2488320

|86400(c5 − c1c4 − c2c3 +
3
4

c1c2
2 +

3
4

c2
1c3 −

1
2

c3
1c2 +

1
16

c5
1)|

+
1

2488320
|86400c5 + 14400c2c3 − 19800c2

1c3 − 24800c1c2
2 + 38200c3

1c2 + 32285c5
1|

=
1

2488320
D3 +

1
2488320

D4,

where D3 = |86400(c5 − c1c4 − c2c3 +
3
4 c1c2

2 +
3
4 c2

1c3 − 1
2 c3

1c2 +
1

16 c5
1)| and

D4 = |86400c5 + 14400c2c3 − 19800c2
1c3 − 24800c1c2

2 + 38200c3
1c2 + 32285c5

1|. (21)

Using Lemma 8 with γ = − 1
2 , we get D3 ≤ 86400. Rearranging (21), we get

D4 = |86400c5 + 14400c2(c3 − 2c1c2 + c3
1)− 19800c2

1(c3 − c1c2 − c3
1) + 4000c1c2

2 + 4000c3
1c2 + 12485c5

1|.

Utilizing the triangle inequality, Lemma 1, Lemma 6 and 5, we obtain

D4 ≤ 86400|c5|+ 14400|c2||c3 − 2c1c2 + c3
1|+ 19800|c1|2|c3 − c1c2 − c3

1|+ 4000|c1||c2|2 + 4000|c1|3|c2|+ 12485|c1|5

≤ 86400(1 − |c1|2 − |c2|2 −
|c3|2

1 + |c1|
) + 14400|c2|+ 19800|c1|2 + 4000|c1||c2|2 + 4000|c1|3|c2|+ 12485|c1|5

= 86400 − 666000|c1|2 + 12485|c1|5 + (14400 + 4000|c1|3)|c2|+ (−86400 + 4000|c1|)|c2|2 − 86400
|c3|2

1 + |c1|
≤ 86400 − 666000|c1|2 + 12485|c1|5 + (14400 + 4000|c1|3)|c2|+ (−86400 + 4000|c1|)|c2|2 = Υ2(c, d)

where |c1| = c , |c2| = d. Consider
∂Υ2
∂c = −133200c + 62425c4 + 12000c2d + 4000d2 = 0,

∂Υ2
∂d = 14400 + 4000c3 + (−172800 + 8000c)d = 0.

We have a critical point (0.000209, 0.083334). Thus, we get Υ2(c, d) ≤ Υ2(0.000209, 0.083334) =

86999.968.
(1)For c = 0,

Υ2(0, d) = 86400 + 14400d − 86400d2 = γ3(d) ≤ γ3(
1

12
) = 87000.
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(2)For d = 0,

Υ2(c, 0) = 86400 − 66600c2 + 12485c5 ≤ 864000.

(3)For d = 1 − c2,

Υ2(c, 1 − c2) = 14400 + 4000c + 91800c2 − 4000c3 − 86400c4 + 12485c5 = γ4(c) ≤ γ4(0.7771) = 43098..

Therefore, we receive

|δ5| ≤
173400

2488320
= 0.069686.

The proof of Theorem 10 is completed.

4. Conclusion

In this paper, we considered a subclass of bounded turning functions linked with a four-leaf-type
domain. Utilizing the estimates of the coefficients of the Schwartz function, we obtained the coefficients
of |b6|, |b7|, |b8|, and the third-order determinants of H3,2, H3,3 of the class BT4l for the first time. Also,
one can easily use this new methodology to obtain the bounds the coefficients of |b6|, |b7|, |b8|, and the
third-order Hankel determinant of H3,2, H3,3 for other subclasses of univalent functions.
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