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1. Introduction and Definitions

Let H be a representation for a family of mappings of the following kind, denoted by g
8(8) =&+ ) bul" (1)
n=2

in the unit disc Y = {¢ € C: |z] < 1}. We refer to S as a subfamily of #, which consists of univalent
functions in U.

For functions g € H of the form (&) = & + by + b3¢® + - - - and positive integers i and 7, the
Hankel determinant H; ,, (g) is defined by

bn an+1 e bn-‘,—i—l
byt Ay oo bugg

H;, (g) = : : : (b =1).
byyic1 buyi - by

The Hankel determinant H; , (¢) was introduced by Pommerrenke [1,2]. The third Hankel determinants
are follows:

Hz1(g) = bsbs + 2bybsby — b3 — b — b3bs, 2)
Hz(g) = ba(babs — b3) — bs(babs — bsby) + be(baby — b3), 3)
Hz;3(g) = bs(bybs — b3) — bg(b3bg — bybs) + by (b3bs — b3). 4)

For the first time, the bounds of the third-order Hankel determinant H3 1 (g) for the families of S*, K
and R were investigated by Babalola[3]. Recently, the sharp bounds of the Hankel determinant Hz1(g)
of subclasses of analytic functions were obtained by many authors [4-10].

For g € S, Let F(¢) be defined as the logarithmic coefficients of g(Z),

Fo(8) = logg(f) —2Y 5 (5)
n=1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The 6, = 9,(g) are referred to as the the logarithmic coefficients of g. In the theory of univalent
functions, These coefficients play an important role for different estimates. The problem of the best
upper bounds for &, is still open. In fact even the proper order of magnitude is still not known. It is
known, however, for the starlike functions that the best bound is |5,| < %(n > 1) and that this is not
true in general [11].

Using (1) and differentiating (5), we have

51 = %by,

& = 3(b3 — 3b3),

63 = 5 (bs— bzb3 +183), (6)
64 = 3(bs — byby + b3b3 — 363 — 1b3),

05 = 3 (b6 — babs — bsby + bsb3 + bab3 — b3bs + 303).

In 2022, Sunthrayuth et al. [12] introduced a subclass of bounded turning functions associated
with a four-leaf function defined by

BTy = {g €S:4(¢) < 1+g§+%§5,(§ EL{)}.

Sunthrayuth et al. [12] obtained Kruskal inequality, the bounds of the coefficient inequalities and the
two-order Hankel determinant of bounded turning class BTy;.

Utilizing the estimates of the coefficients of the Schwartz function, we study the third-order
Hankel determinants H31(g), H32(g) and Hz3(g) for the class BTy, also, we obtain the bounds of the
logarithmic coefficients for g € BTy;.

Let wy be the family of Schwarz functions. Thus, the function w € wy may be expressed as a

power series
e}

w(g) = Z cn" @)

n=1

Lemma 1 (see [13]).  Suppose a function w is member of wy. Then

2
<1— e |? <1—leil? = |c2 <1—lerl? = [on?
o] <1 —e1]”, ezl <1— e T+l lea] <1 —Je1]® = Jeal”,
2 2 |cs|? 2 2 2
les| <1 —fe1]” — Jea “Txlal lcs| <1 —le1]” — leal” = les],

2

c7l <1=|c1? = |eo|* = |es]? — [c4] .

‘7|_ |1| |2| |3| 1+|Cl‘

Lemma 2 (see [14,15]).  Suppose a function w is member of wy. then
leres — 3] <1—|c1]?  Jeaes — 3] < (1—c3)?, ezes —c3| <1—c3.
Lemma 3 (see [12]). Ifg € BTy, then

5 5 1

<o bl< o lbsl<g

|ba| < g

5
<5 |bs3| <

Lemma 4 (see [11]). Ifw € wy, then |c,| <1 (n >1).

d0i:10.20944/preprints202404.1583.v1
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Lemma 5 (see [16]). Let w € wy, then for v € C, we have
2+ ve}| < max {1, |1}
Lemma 6 (see [17]). If w € wy is in the form (7). Then, we get
le3 +ye1c2 + 6671 <1,

where (7, ¢) € Do U Dy, with

1
Di={(r,¢) €R*:|y| < 5,-1<¢ <1},

D= {(r,) €B: 3 <l <2, (W + 1P~ (Wl +1) Sg <1},
Lemma 7 (see [18]). Let w € wg and v € C, we obtain
¢y +2ycic3 + cE + 373 c3en + c1’ < max{1,|v[*}.
Lemma 8 (see [18]). If w € wy, then for all v € C, we have

|es + 2yc1cq + 2ycpcs3 + 372c1c§ + 372 c1c3 + 43 clcz + c1| <1
2. THE BOUNDS OF THE THIRD HANKEL DETERMINANT FOR g € BTy
Theorem 1. If ¢ € BTy, then

5 5 5

< =
|be| < 3 |b7| < X |bg| < TR

The bounds are sharp.

Proof. For a function g € BTy, there exists a Schwarz function w (&), such that

5 1
@) =1+ gw(é) + 6“’5 (@),
Comparing the coefficients, we yield

5 5 5 1
= 18 by = 5453 bs = —cy, (8)

6
5c5 + 3
36
5c6 + 5cca
42 ’
5¢y + 56163 + 1Oclc2

bg = 18 11)

bg = ©9)

by = (10)
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From (9) and Lemma 1, we have

1 5
bl < %[5|05|+|Cl|]

1 |c3]?

B S B PN SN S <1 i 5
1 2 5 > 5lcs

— ~(5_5 _5 _
36( le1]” + [e1] |ca] 1+|C1|)
1 2 5

< —(5_

< 36(5 5lc1]* + |ex )

<2

- 36

From (10) and Lemma 1, we achieve

1 4
|b7] < E[5|C6|+5|C1| |eal]

1

< 43[5 (1= Je1]* = [eal? = [e3]?) + 5lea|*[ea|]
1
@(5 5/c1|? + 5lct|*[ca| — 5lca|* — 5lcs|?)
1

< = [5—=5lc1* +5]e1|*(1 = |e1]*)]
42
1
5(5 5/c1|* + 5c1|* — 5]cq|®)
£l

— 42

From (11) and Lemma 1, we get

1
|bs| < 4—[5|C7|+5|Cl| lc3] +10]c1 [*[e2]?]

< l[ (1_ |C1|2— |C2|2— |C3|2 ‘C |2 )+5|Cl| |C3|+10|Cl| |C2| ]

— 48 1+ e1]
= L[5 Sjeaf o+ (=54 10jes P)eal? + 5ler *ea] — Sleal? — 514
48 ! 1+ e
1 2 3 2 4 2 |C2|

< __[5_ _ _ R bt N

_48[5 5lc1]” 4+ (=5 +10[c1]”)[e2|* + 5leq [* (1 — e T+la |)]
1 —5—5]cy| 4+ 10[c1 | + 5|cq [*
= —[5—5|c1|? +5|c1|* — 5|c1]® + )
48[ c1]* + 5[cq | 1 |” + T4 ol lc2 )]

Setting ¢ = |c1| and d = ¢z, we get

1
|b8| < E€1<C/ d)

where

e1(c,d) = 5—5¢* +5¢* — 5% + C1++cc .
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The critical points of €; satisfy

81 = —10c + 2063 — 30c5 + 13H0CL0 2,

de; 710710c+20c3+1004d -0
od — T+c =Y

Applying numerical computations, we have
cp=0, c1 = 0.8668, c; = 0.8668,
dop =0, dq = 0.7940, dy = —0.7940.

Thus, in (0,1) x (0,1 — 62), there is no critical points which satisfies 0 <d <1 — 2.
Forc =0,
€1(0,d) =5 —5d*> < 5.

Ford =0,
e1(c,0) =5 —5¢2 4 5¢* — 5¢0 < 5.

Ford =1—¢2,
e1(c,1—c?) =5c®4+10c® — 5¢* —15¢° 4-5¢7 = 51(c) < 71(0.7202) = 2.5799.
Thus, we have

5
< —,
|bs| < 48

The bounds hold for ¢ = 0. The proof of Theorem 1 is completed. [
Theorem 2. If ¢ € BTy, then

Proof. Let g € BTy;. From (8), we receive

5

o o
1728

1728 [15(cocq — c%) + cocyl- (12)

|Fias (g)] = babs — B3| = > [16csc4 — 1563| =

Utilizing inequality, Lemma 1 and Lemma 2 in (12), we get

5 2
< _
[H23 (8] = {58 [15]cacy — 5] + [c2|[cal]

5 2\2 2 2

< — - — _

< 17 1B = a1 + feaf (1 = lea]” = feaf)]
5

= TZS[B —30|c1 2+ 15|c1[* + (1 = |e1%)|ea| — |e2]?)]
5

< ﬁ[lS —30[c1[? + 15]c1 [* + (1 — |e1P)|ea| = | 2]

Let |c1| = cand |¢;| = d, we obtain
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Consider

% —1-¢—3d>=0.

%2 — _60c + 60c® — 2cd = 0,
od

Applying numerical computations, we get

1 = 0, Cr = 0, C3 = -1, Cy = 1, (5 = 0.9998,
dy = —0.5774, d, = 0.5774, ds =0, d, =0, ds = —0.0111,

ce = —0.9998,
dg = —0.0111.
Thus, there is no critical point in (0,1) x (0,1 — c?).
(1)Ford =0,
€2(c,0) = 15 — 30c* + 15¢* < 15.
(2)For ¢ =0,
2 1
€(0,d) =15+d —d® < (0, ?) = @ = 15.384888.

(3)Ford =1 —¢?,
e(c,1—c?) =15—29¢% +13c* + ¢ < 15.
Therefore, we yield

1 7
|Hp3(8)| < % = 0.044516.

The proof of Theorem 2 is completed. [

Theorem 3.  If g € BTy, then

3025
|H31(8)] < Toesg = 0064836,

Proof. Assume that g € BTy. From (8) and (2), we achieve

1
s (2)] = e ‘2250c1czc;), —1000c3 — 202562 + 2160cycy — 1350c§c4‘

1

= 46656 ‘1000C2(C1C3 - C%) =+ 125061C2C3 + 2025(C2C4 - C%) + 135C2C4 — 1350C%C4‘ (13)
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By applying the triangle inequality, Lemma 1 and Lemma 2 in (13), we receive

46656 |Hz1(g)| < 1000|ca||cic3 — c3| +1250]cy ||cal|cs| +2025|cacy — 3] 4 135|ca||ca| + 1350]cy |*|c4]
|c2|?
1+ Jeq]

+135]c2| (1 = |1 [* = [ea|?) + 1350[¢1 [*(1 = |e1 ] = |e2 )

= 2025 — 2700|cy |* + 675cq |* + (1135 + 1250 | — 1135]¢; [* — 1250|c1]?)|c2 |

135 + 1385|cy |
1+ feq]

< 1000]ca|(1 — |eq|?) 4 1250]cy || c2| (1 — |e1* — ) +2025(1 — |¢;|?)?

—1350]cy |?|ca|* — lea 2.

Setting |c1| = c and |cp| = d, we have

46656 |Hz1 (g)] < 2025 —2700c* + 675¢* 4 (1135 4 1250c — 1135¢* — 1250¢%)d
135 + 1385c¢

—1350c%d% —
1+c

4> = e3(c,d)

where ¢ € [0,1] and d € [0,1 — ¢?].
Taking the partial derivative with respect to ¢ and y respectively, and we have

50— 54 27 1250 — 2270c — 34 —27 -
- 5400c 4 2700c> + (1250 Oc — 3405¢2)d 00cd L
and
0 4 41
% = 1135 + 1250c — 1135¢% — 1250¢° — 2700c%d — Wd?

Setting aaif = % = 0 and simplifying, we yield

—5400c — 10800c? — 2700c? + 5400c* + 2700c° + (1250 + 230c — 6695¢> — 9080c> — 3405¢*)d
—2700c(1 + ¢)2d? — 1250d° = 0,
1135 + 2358¢ + 115¢% — 2385¢3 — 1250c* — 2700c%(1 + ¢)d — (405 + 4155¢)d? = 0.

Applying Newton’s methods, we yield

o =1, ¢y = 0.1018, 3 = 1.0726, s = 1.7878 cs = 3.3060,
d; =0, dy = —1.3080, d3 = —1.1909, dy = —0.3706, ds = —6.5565,
ce = —1.3977,
dg = 0.0899.
Thus, there is no critical point in (0,1) x (0,1 — c?).
Forc =0,
€3(0,d) = 2025 + 1135d — 135d° < €3(0,1) = 3025.
Ford =0,
e3(c,0) = 2025 — 2700c% + 675¢* < 2025.
Ford =1—¢2,

€3(c,0) = 3025 — 4665¢ + 1605¢* 4 35¢° < €3(0,0) = 3025.
Thus, we obtain

3025
|H31(8)| < Toesg = 0064836,
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The proof of Theorem 3 is completed. [

Theorem 4. If ¢ € BTy, then

15.503407
- < 22707 . .
[babs — bsbs| < =5 0.035888

Proof. Let g € BTy. From (8), we obtain

|b2b5 - b3b4| |30C1€4 25C2C3|. (14)

432

Applying Lemma 1 and the triangle inequality in (14), we get

2
C
300e1 (1 [er? — JeaP) + Bleal (1 — Jer 2 — 12y

bobs — bsb
|babs — b3by| < T

- 432[
25
1+ e

432 [30c1| —30[e1 [* + (25 — 251 |*)[ea| — 30]er [[ea|* — 2]

Setting |c1| = ¢ and|cy| = d, we yield

1
|b2bs — bsba| < J=5ea(c,d)
Taking the partial derivative with respect to ¢, and d respectively, we get

2
%4 _ 30 90c2 — 500d — 3042 4 2

3
ac (1 —|—c)2d

and

864 75
Frl = 25 — 25¢2 —60cd—1+c

d2.

Setting %4 = %4 — 0,and simplifying, we receive

—90c* — 180c3 — 60c? 4 60c + 30 — 50c(1 + c)?d — 30(1 + ¢)?d? + 2543 = 0,
—25¢3 — 25¢% 4 25¢ + 25 — 60(c? + ¢)d — 75d%> = 0.

1= -1, ¢y = 0.4098, c3 = 04271,
Applying Newton’s methods, we have

d =0, dy = —0.8978, dy = 0.4258,
{ cs = —0.4550 { 5 = —0.7258,

dy = —0.2931, ds = 0.3023.
Therefore, we get e4(c,d) < €4(0.4271,0.4258) = 15.503407.

(a)Forc =0,
V3, 50V/3

£4(0,d) = 25d — 25d° < £4(0, 3 )= 9

(b)Ford =0,

>

e4(,0) = 30c —306° < e4(757,0) = %ﬁ = 11.546666.
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(b)Ford =1—¢?,

e4(c,1—c?) = 25¢ — 20c® — 5¢° = 112(c) = 112(0.6017) = 10.2913.

Thus, we get
15.503407
— < ——=0. .
|babs — babs| < 1 0.035888
O
Theorem 5. If ¢ € BTy, then
200.27
_ B2 < =
|baby — b3| < 2500 0.077265.

Proof. Let g € BTy. From (8), we get

1
W2 = _ 2
|b2b4 b3| 2500 |225C1C3 200C2|
1
= @|200(C1C3 - C%) + 25C1C3|.

Applying Lemma 1, Lemma 2 and the triangle inequality, we receive

1 2
|baby — B3| < =——[200(1 — |c1|?) +25|cq|(1 — |e1|* — |c2 )]

= 2502 Tl
= ﬁ [200 + 25]ey | - 200[cy 2 — 25y — - |+Cl|lc1| &P
= ﬁ(200+25|61| —200[e1 [ — 251 %)

= 251@173(|61|) < ﬁ%(o.oma = % — 0.077265.

O
Theorem 6. If ¢ € BTy, then
|H32(g)| < 0.025986.
Proof. Let ¢ € BTy. From Lemma 3, Theorem 1, Theorem 2, Theorem 4 and Theorem 5, we yield
[Hs,2(8)| < |ba||bsbs — b3| + |bs||babs — bsba| + |be||b2bs — B3|

5 1 5
=1 x 0.044516 + 3 x 0.035888 + 3% x 0.077265
= 0.025986.

O

Theorem 7. If ¢ € BTy, then

24385252
— B3| < SEOO902 g 028224,
[babs — bs| < 864
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Proof. Let f € BTy. From (8) and (9), we have

= 2 2 b = 4 2.
|bybe — | 864| Scacs — 24ci + 5ezcy| = 864|2 (c3c5 — )+03C5+50301|
Using Lemma 1 and 2, we have
1 5
lbybg — D3| < gga (24leacs — czl + |eslles| + 5lesl[e7])
< L a1~ ) + lesl(1 - Jea = fea = AL ) 5y Pl
< 3 1 3 1 2 1+l 1]7]c3
1 1
24 — 24|c1 >+ (1 = |c1|> 4+ 5lc1|® = |ea]?
864[ |C1‘ ( |C1| + |C1| |C2| )|C3| 1+ |C || 3| ]

Setting ¢ = |c1|,d = |cz] and e = |c3|, we yield

babs — 12| < ——es(c,d,e)

— 864
where e5(c,d,e) = 24 —24c? + (1 — ? +5¢° — d?)e — %e and (¢, d,e) € Q = {(c,d,e): 0<1,0<
d<1-c%,0<e<1—¢? ——} Consider
86’5
— = —-2de <
54 de <0,

thus there are no points in ().
(1)For ¢ =0,

€5(0,d,e) =24+ (1 —d?)e — e = n4(d, e).

It is evident that there is on point in (0,1) x (0,1 — d?).
(2)Ford =0,

1
e5(c,0,e) =24 —24¢® + (1 —c* +5¢°)e — 7 +Ce3 = 15(c, e).

Partial derivative of 75 with respect to c, and then with respect to e, we achieve

915 4 1 3
—B=_y4 —2c+2 —
3 8¢+ (—2c + 25¢ )e+(1+c)2e,
and
s 2 5 3
y—l—c + 5¢ —1+Ce.

Setting aa% = %i: = 0 and simplifying, we yield

—48¢(1 + ¢)? + (25¢° 4 50¢° 4 25¢* — 2¢3 — 4c? — 2c)e + €3 = 0,
5¢0 +5¢° —c3 — >4 c+1—3e% =0.

We obtain a critical point (0.0039,0.5785), thus, we have #5(c,e) < #5(0.0039,0.5785) = 24.385252.
(3)Fore =0,

es(c,d,0) = 24 — 24¢> < 24.
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(4)Fore =1 — c? a2

T Tt
d? —5¢° + 4¢3 —? —4dc+1
_2_ v _ a2 9B a5 7 2
es(c,d,1—c¢ 1-|-c) 24+ ¢ —24c” —2¢” + 6¢° — 5¢” + Tre d
—2+4c 4 1 6
d° = ,d) < 0.0016,0.5767) = 24.148169.
(5)Forc=d =0
2
e5(0,0,0) =24+ ¢ — & = py(e) < 177(‘/?5) —24+ %5 — 24.384889.

(6)Forc =e =0,
€5(0,d,0) = 24.
(7)Ford =e =0,
€5(c,0,0) =24 + ¢ — > < 24.384889.
(8)Fore=0,d=1-— 2,
e5(c,1—c2,0) = 24 — 24c* < 24.
(9)Ford =0ande=1—c?,
€5(c,0,1 —c?) =24 4 ¢ — 24c* — 2¢3 4 6¢° — 5¢7 = yg(c) < 17g(0.0206) = 24.0104.

(10)Forc = 0,e =1 —d?

€5(0,d,1 —d?) =24 +d? — 2d* + d° = y9(d) < ng(g) = 24.148148.
Thus, we get
24.385252
_ 2| < SO
|babs — B3| < =2~ 0.035888.
O

Theorem 8. If g € BTy, then

5
— <=
|b3be — bsbs| < Taa

The bound is sharp.

Proof. Let g € BTy;. From (8) and (9), we receive

1
[bsbe — babs| = 552 [50cacs — 45e3cs + 50563 .
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Using Lemma 1, we get

1
|b3bg — bybs| < ﬁ(50|02||c5| +45|c3||ca] 4+ 50]ea||c3])
1 |c3)?
c 1—ler?— 1o ]2 — 4 1— e — 10012 5
< g 500al(1 = feaf? = feaf? = 20) + 48leal (1 fea = [eaf) + 500 Pl
= L (50— 50jcy 2 + 50c1 )]zl — 50lcal? + (45 — 45]ex P — 45lcal?)lcs] — A2 1.
12% T+ ||

By setting |c1| = ¢, |c2| = d and |c3| = ¢, we have

1

where ¥(c,d,e) = (50 — 50c? 4 50¢%)d — 50d° + (45 — 45¢> — 45d2)e — 29262, (c,d, ) € Q.

Differentiating partially with respect to ¢, d and e, respectively, we get

oY 4 50d
50 = (—100c + 250c*)d — 90ce + me ,
T 50 — 50c¢” + 50¢” — 150d4- — 90de me ,
and
b4 1
O 454502 - 4502 - 20,
de 1+c¢
By putting %—E’ = %—T = a—f = 0, and simplifying, we obtain

(250c® + 500c® + 250c* — 100¢® — 200c? — 100c)d — 900c(1 + c)?e + 50de? = 0,

50c® 4 50c° — 50c® — 50c? + 50c + 50 — 150(1 + c)d? — 90(1 + c)de — 50e? = 0,
—45¢% — 45¢% 4 45¢ + 45 — 45(1 + ¢)d? — 100de = 0.

By a numberical caculation, we get

c1=-1, ¢, = 0.8441, c3 = 0.8441,
di=d, d, = 0.4127, ds = —0.4127,
e1 =0, er = 0.2354, ez = —0.2354.
Thus, there’s no critical point which satisfies0 < ¢ <land0<d <1 — 2.
()Forc =0,
¥(0,d,e) = 50d — 50d° + (45 — 454%)e — 50de® = Aq(d, e).
Consider

91 = 50 — 15042 — 90de — 50¢% = 0,
1 — 45— 454% — 100de = 0.

A numberrical caculation that there is no critical point in (0,1) x (0,1 — d?).
(2)Ford =0,

¥(c,0,e) = (45 — 45c%)e < 45(1 — ¢?)% < 45.
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(3)Fore =0,

¥(c,d,0) = (50 — 50c* 4 50c°)d — 50d° = Ay(c,d) < A»(0.7368,0.2828) = 8.403278.

— 2 d?
(4)Fore=1—c"— 7,

2
Y¥(c,d,1—c?— 1”1 ) =45- 90c? 4 45¢* + (50c — 50¢® + 50c°)d + (—90 + 45¢ + 45¢%)d?
50 —150c 5 45 50 s
- =A .
1+c¢ 1+c¢ (1+c)3d 3(e,d)

Differentiating A3 partially with respect to ¢ and d, we yield

— =-1 1 -1 2 d+ (454+90c)d” — ———
3 80c + 180c” + (50 — 150c~ + 250c™)d + (45 + 90c) +02
454 N 1504°
(14+¢c)2  (1+0c)*
and
0A; 3 5 9 150 — 450c ,  180d°
W_50c 50c¢” + 50c> + (—180 + 90c + 90c*)d + T e e
~2504*
(14¢)3
Setting aa% = a% = 0 and simplifying, we receive

180c” 4 720c® + 900c® — 900c3 — 720c — 180c + (250c® + 1000c” + 1350c® 4 400c®
—600c* — 400c® + 150c% + 200c + 50)d + (90c® + 405¢* + 720c® + 630c? + 270c + 45)d?
—100(1 + ¢)?d3 — 45(1 + ¢)?d* +150d° = 0,

50c® + 150¢” + 100c® — 100c® — 100c* + 100c® + 150c? + 50c + (90c® + 360c* + 360c® — 180c?
—450c — 180)d 4 (—450c3 — 750c% — 150¢c + 150)d? + 180(1 + ¢)?d® — 250d* = 0

Applying Newton’s methods, we recieve
c1=-1 cp =0, c3 = 0.8336, ¢y = —0.9194,
dp =0, d, =0, ds = 0.4141, dy = —0.0957.
Thus, there is no critical point satisfing 0 <c<land 0 <d <1— 2.
(5)Ford =c =0,

Y(0,0,e) = 45¢ < 45.

(6)Fore =d =0,
Y(c,0,0) =0.
(7)Forc=e =0,
1
¥(0,d,0) = 50d — 50d° = A4(d) < A4(§) = 009\@ = 19.2444.
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(8)Ford=1—c?ande =0,
¥(c,1—c?0) = 50c? —100c* + 50¢® + 50c® — 50c” = A5(c) < A5(0.7145) = 10.6734.
(9Fore=1—c?andd =0,
¥(c,0,1 —c?) = 45(1 — c?)? < 45.
(10)Fore =1—d%?and c =0,
¥(0,d,1—c?) =45 —90d> + 50d° + 45d* — 50d° = Ag(d) < Ag(0) = 45.
Hence, we get
45 5
— < = =
1babs = babs| < 3556 = 143
The equality holds forcy =c; =0andcz =c4 =1. O
Theorem 9. If ¢ € BTy, then
|Hz3(g)| < 0.016103.
Proof. Let ¢ € BTy. From Lemma 3, Theorem 1, Theorem 2, Theorem 3 and 4, we receive
[Ha3(g)| < |bs||babs — b3| + |bs|[bsbs — babs| + |b||bsbs — b |
1 5 5 5
< - . — X — + — .
S x 0.035888 + 36 X 114 + ) x 0.044516
= 0.016103.
O
3. THE BOUNDS OF THE LOGARITHMIC COEFFICIENTS FOR g € BTy
Theorem 10. If g € BTy, then
5 5 5 13827 173400
Nl < —, Ml <= &<, |4<—=0 1,05 < ——— =0. .
[ < 2g 1l <5 103 < g lal < Jeoggg = 0.083351, 05| < peesng = 0-009686
The first three bounds are the best possible.
Proof. Let g € BTy;. From(6),(8) and (9), we have
- 5C1
0= (15)
5 5,
52 %(CZ - gcl), (16)
5 5 25 4
_ 5.5 2 17
J3 48(C3 geic2+ 216C1)’ (17)
5y = 65888 (13824c4 — 7200c;c3 4+ 4000c3¢; — 3200c3 — 625¢7). (18)
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(172800c5 — 86400c 4 — 72000c2c3 + 45000c2¢3 + 40000c; c3 — 5000c3cs + 37685¢3). (19)

%5 = 3188320

Applying Lemma 4 to (15), we have

5
5| < =
ol < o
Applying Lemma 5 to (16), we get
5
G| < —.
%21 < 35
Utilizing the triangle inequality and Lemma 6 with ¢ = —g and { = %, we yield
5
J < —.
193] < 43
Rearranging (18), we obtain
1 12,8, 14 2 2 4
|84] = m|6912(q — €163~ 50 + 26162~ gcl) + 6912¢4 — 288cc3 + 256¢5 — 1184c7cp + 239¢] |
1 1 3 1 1
< crggg 6912(cs —c1c3 — Ecg + ZLc%c2 — gc‘1*)| + Tgag 091264 — 2880105+ 256¢3 — 1184c3cy + 239¢f|
1 1
165888 ' ' 165888
where D, = |6912(C4 — (103 — %C% + %C{'Cz — %C%H
D, = |6912cs — 288cyc5 + 2565 — 1184c3cs + 239ct|. (20)

Using Lemma 7 with ¢ = —%, we get D < 6912. Rearranging (20), we get
Dy = |6912cs — 288c1(c3 + 2c3cy 4 cf) + 256¢3 — 608c3cy + 527cH|.
Using Lemma 1, Lemma 6 and the triangle inequality, we receive

Dy  <6912(1 — |c1]? = |c2]?) 4 288|cq| 4+ 256]ca|? 4 608|cq || ca| + 527 |cq |*
= 6912 + 288|cy| — 6912|c; |* + 527|cy1|* 4 608|c1|?|c2| — 6656|c2]* = Y1(c,d)

where |c1| = ¢, || = d.
Consider

s3]

53]

90— 288 — 13824c¢ + 2108¢> + 1216¢d = 0,
90 = 608c? — 133124 = 0

Applying Newton’s methods, we have
{ c; =2.5173 { 0 = —2.5173, { c3 = 0.0208,

dq = 0.2894, dy = 0.2942, ds = 0.

Thus, in (0,1) x (0,1 — ¢?), there is no critical point.
(1)For ¢ =0,

Y1(0,d) = 6912 — 6912d> < 6912.

d0i:10.20944/preprints202404.1583.v1
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(2)Ford =0,
Y1(c,0) = 6912 + 288¢ — 6912¢% + 527¢* = v (c) < 71(0.0208) = 6915.
(3)Ford =1 — ¢?,
Yi(c,1—c?) = 256 + 288c + 7008c> — 6737c* = v, (d) < 72(0.7313) = 2287.6.

Therefore, we have

13827

74| <

Rearranging (19), we obtain

_ 1 3 2,83, 13 15
|85] = 2488320|86400(C5 C1C4 CzC3+4C102+4C1C3 2C1C2+ 16C1)

+-86400c5 4 14400c,c3 — 19800c3c3 — 24800c;c3 4 38200c3 ¢y 4 322856 |

1 3 , 3, 15 154
S m|86400(C5 — C1C4 — C2C3 + 1C1C2 + 1C1C3 — §C1C2 + EC1)|

+5158370 |86400cs5 + 14400c5c3 — 19800c3c3 — 24800c1c5 + 382005 ¢y + 32285¢3|

1 1
= 2188320 % * 2488320 0¥

where D3 = [86400(c5 — ¢1¢c4 — Co¢3 + %clc% + %C%C3 — %C%Cz + 11—66?)| and

Dy = |86400cs 4 14400c5c5 — 19800c3c5 — 24800c7c3 + 38200c3c, + 32285¢3|. (21)
Using Lemma 8 with ¢y = —%, we get D3 < 86400. Rearranging (21), we get
Dy = |86400cs + 14400c (c3 — 2c1¢2 + ¢3) — 19800c% (c3 — c162 — ¢ ) + 4000c1 c3 + 4000c3 ¢y + 12485¢3|.
Utilizing the triangle inequality, Lemma 1, Lemma 6 and 5, we obtain

Dy < 86400|cs| + 14400]ca||c3 — 2c1co + ¢3| + 19800|c1|?|c3 — c1c2 — €3] + 4000|cy ||c2|? + 4000|cy |*[ca| + 12485]c; |°

2
< 86400(1 — |c1)? — |ca)? — : |f’||c I) + 14400 c2| + 19800|c1|? + 4000|c1||c2|? + 4000|c1|3|ca| + 12485|cq |°
1
2
= 86400 — 666000|cy | 4 12485|c; |° + (14400 + 4000|c1|?)|ca| + (—86400 + 4000|c1|)|c2|? — 86400 |f‘||c |
1

< 86400 — 666000|c1 | + 12485|c; |° + (14400 + 4000|c1 |?) |ca| 4+ (—86400 + 4000|c1|)|c2|* = Ya(c, d)
where |c1| = ¢, |c2| = d. Consider

‘% = —133200c + 62425¢* + 12000c2d + 400042 = 0,
92 — 14400 + 4000c3 + (—172800 + 8000c)d = 0.

We have a critical point (0.000209,0.083334). Thus, we get Yo(c,d) < Y3(0.000209,0.083334) =
86999.968.
(1)For c =0,

1
Y2(0,d) = 86400 + 144004 — 86400d> = 73(d) < 73(15) = 87000.
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(2)Ford =0,
Y,(c,0) = 86400 — 66600c> + 12485¢° < 864000.
(3)Ford =1 — ¢?,
Y, (c,1— c?) = 14400 4 4000c + 91800c> — 4000c> — 86400c* + 12485¢° = y4(c) < 74(0.7771) = 43098..

Therefore, we receive

65| < 173400
5

The proof of Theorem 10 is completed. [J

4. Conclusion

In this paper, we considered a subclass of bounded turning functions linked with a four-leaf-type
domain. Utilizing the estimates of the coefficients of the Schwartz function, we obtained the coefficients
of |bg|, |by|, |bg|, and the third-order determinants of Hj», H3 3 of the class BTy for the first time. Also,
one can easily use this new methodology to obtain the bounds the coefficients of |bs|, |b7|, |bg|, and the
third-order Hankel determinant of Hj 5, H3 3 for other subclasses of univalent functions.
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