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Abstract: Highly-doped graphene samples show the conductance reduced and the shot-noise power enhanced
compared to standard ballistic systems in two-dimensional electron gas. These features can be understood within
a model assuming incoherent scattering of Dirac electrons between two interfaces separating the sample and the
leads. Here we find, by adopting the above-mentioned model for the edge-free (Corbino) geometry and by means
of the computer simulation of quantum transport, that another graphene-specific feature should be observable
when the current flow through a doped disk is blocked by high magnetic field. In case the conductance drops to
zero, the Fano factor approaches the value of F ~ 0.56, with a very weak dependence on the disk radii ratio. The
role of finite source-drain voltages and the system behavior upon tuning the electrostatic potential barrier from a

rectangular to parabolic shape are also discussed.

Keywords: graphene; shot noise; Corbino disk; Landauer-Biittiker formalism

1. Introduction

Although electronic properties of matter are governed by the rules of quantum mechanics [1], it is
very unlikely to find that any measurable characteristic of a macroscopic system is determined solely
by the universal constants of nature, such as the elementary charge (¢) or the Planck constant (/). In the
last century, two notable exceptions arrived with the phenomena of superconductivity [2], namely, the
quantization of magnetic flux piercing the superconducting circuit, being the multiplicity of the flux
quantum Py = h/(2e) [3,4], and the ac Josephson effect, with the universal frequency-to-voltage ratio
given by 2e/h = 1/® [5]. Later, with the advent of semiconducting heterostructures [6], came the
quantum Hall effect [7-12] and the conductance quantization [13], bringing us with the conductance
quantum gy = se?/h (with the degeneracy s = 1, 2, or 4). Further development of nanosystems led to
the observation of Aharonov-Bohm effect manifesting itself by magnetoconductance oscillations with
the period 2®¢ = h/e [14], as well as the universal conductance fluctuations [15-18], characterized
by a variance « B~1(se?/h)?, with an additional symmetry-dependent prefactor (8 = 1, 2, or 4).
Related, but slightly different issue concerns the Wiedemann-Franz (WF) law defining the Lorentz
number, Ly = %Z(kg / 6)2 (with the Boltzmann constant kp) [2], as the proportionality coefficient
between electronic part of the thermal conductivity and electrical conductivity multiplied by absolute
temperature. Although the WF law is followed, with a few-percent accuracy, in various condensed-
matter systems, it has never been shown to have metrological accuracy [19-24].

Some new ‘magic numbers’ similar to the mentioned above have arrived with the discovery of
graphene, an atomically-thin form of carbon [11,12]. For undoped graphene samples, charge transport
is dominated by transport via evanescent modes [25], resulting in the universal dc conductivity
4¢? /(7th) accompanied by the sub-Poissonian shot noise, with a Fano factor F = 1/3 [26-31]. For
high frequencies, ac conductivity is given by me?/(2h), leading to the quantized visible light opacity
ntae (with & ~ 1/137.036 being the fine-structure constant) [32-34]. A possible new universal value
is predicted for the maximum absolute thermopower, which approaches ~ kp/e near the charge
neutrality point, for both monolayer and gapless bilayer graphene [39-43].

Away from the charge-neutrality point, ballistic graphene samples show the sub-Sharvin charge
transport [35,36], characterized by the conductance reduced by a factor of 77/4 compared to standard
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Sharvin contacts in two-dimensional electron gas (2DEG) [37,38]. What is more, the shot noise is
enhanced (comparing to 2DEG) up to F ~ 1/8 far from the charge-neutrality [30,31]. Detailed
dependence of the above-mentioned factors on a sample geometry was recently discussed in analytical
terms [36], on the example of edge-free (Corbino) setup, characterized by the inner radius R; and
the outer radius R, (see Figure 1). It is further found in Refs. [35,36] that the ballistic values of the
conductance and Fano factor are gradually restored when the potential barrier, defining a sample area
in the effective Dirac-Weyl Hamiltonian, evolves from a rectangular toward a parabolic shape.

(a)
@ B=B.,
(QTC = Ro + R,)
27,
() B=DB.
(27‘C = Ro - R,)
(b)
2r.
® B> B.
(c) (Tc ~ lB)

cCc

- c( o

Figure 1. (a) Schematic of Corbino disk in graphene, with the inner radius R; and the outer radius R,,

contacted by two circular electrodes (dark areas). A voltage source drives a current through the disk. A
separate gate electrode (not shown) allows us to tune the carrier concentration around the neutrality
point. The coordinate system (x,y,z) is also shown. (b) Cross section of the electrostatic potential
profile given by Eq. (2) with m — oo (i.e., the rectangular barrier) at y = z = 0. (c) Zoom-in of a single
barrier, for x > 0, showing also the profiles for m = 2 and 8, with symbolic representations of the
incident and reflected waves in inner electrode (x < R;) and the transmitted wave in outer electrode
(x > Ro) with the amplitudes r and t corresponding to the Fermi energy E > 0. (d)—(f) Characteristic
values of the magnetic field B = (0,0, B) separating different transport regimes. At B = B, the
cyclotron diameter 2r. = R, + R;j, and the particle leaving the inner lead approaches the outer lead
regardless the initial direction (d). At B = B, 5, we have 2r. = Ry — R;, and only the trajectory tangent
to the inner lead reaches the outer lead (e). For higher fields, classical trajectories do not contribute to
the charge transport, which is possibly only if the resonance with Landau level occurs for E ~ E,j,
withn =0,£1,£2,... (f).
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Here, we focus on the Corbino geometry, which is often considered when discussing fundamental
aspects of graphene [25,44-54]. In this geometry, charge transport at high magnetic fields is unaffected
by edge states, allowing one to probe the bulk transport properties [48-53]. Recently, we have shown
numerically that thermoelectric properties in such a situation are determined by the energy interval
separating consecutive Landau levels rather then by the transport gap (being the energy interval,
for which the cyclotron diameter 2r, < R, — R;) [54]. In this paper, we address a question how the
shot-noise behaves when the tunneling conductance regime is entered by increasing magnetic field at
a fixed doping (or decreasing the doping at a fixed field)? Going beyond the linear-response regime,
we find that the threshold voltage Uon, defined as a source-drain voltage difference that activates the
current at minimal doping, is accompanied by quasi-universal (i.e., weakly-dependent on the radii
ratio Ry /R;) value of F =~ 0.56. The robustness of the effect is also analyzed when smoothing the
electrostatic potential barrier.

The paper is organized as follows. In Sec. 2 we briefly present the effective Dirac Hamiltonian and
the numerical approach applied in remaining parts of the paper. In Sec. 3, we derive an approximation
for the transmission through a doped Corbino disk at non-zero magnetic field and subsequent formulas
for charge-transfer characteristics: the conductance and the Fano factor. Our numerical results, for
both the rectangular and smooth potential barriers, are presented in Sec. 4. The conclusions are given
in Sec. 5.

2. Model and Methods

2.1. Dirac Equation for the Disk Geometry

Our analysis of the device shown schematically in Figure 1 starts from effective wave equation
for Dirac fermions in graphene, near the K valley,

[vp(p+eA)-c+V(r)]¥ =EY, (1)

where the Fermi velocity is given by v = /3 toa/(2h), with t) = 2.7 eV the nearest-neighbor hopping

integral and a = 0.246 nm the lattice parameter, p = —if (dy, ay) is the in-plane momentum operator,

we choose the symmetric gauge A = g(—y, x) corresponding to the perpendicular, uniform magnetic

field B = (0,0,B), and o = (0y, (Ty), where oj are the Pauli matrices [55]. The electrostatic potential
energy in Eq. (1), V(r), is given by

V(r)= -V x % if r—Rav| < 1;0211?’

1 if |r—Ray| > =5,

2)

where we have defined Ry = (R; + R,)/2. In particular, the limit of m — co corresponds to the
rectangular barrier (with a cylindrical symmetry); any finite m > 2 defines a smooth potential barrier,
interpolating between the parabolic (m = 2) and rectangular shape. In principle, barrier smoothing
can be regarded as a feature of a self consistent solution originating from the diffusion of carriers; we
expect this feature to strongly depend on the experimental details, with graphene-on-hBN devices [48]
showing rectangular, rather then smooth, profiles.

Symmetry of the problem allows one to look for the wave function in the form

7,01, ) = ef<f1/2>¢< . ) ®

Xve'?
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where j = +£1/2,43/2,... is the total angular-momentum quantum number, the components x, =
Xa(r), Xo = Xxp(r), and we have introduced the polar coordinates (r, ¢). Substituting the above into Eq.
(1) bring us to the system of ordinary differential equations

,_(i=1/2  eBr E—V(r)
M—( T xa+17hw Xbs 4)
, _E=V()_  [(j+1/2  eBr
Xp =t hog Xa r + 2h ®)

where primes denote derivatives with respect to r.

2.2. Analytic Solutions

For the disk area, R; < r < Ry, Egs. (4), (5) typically need to be integrated numerically; key details
of the procedure are presented in Appendix A. Here we focus on the special case of rectangular barrier
(m = o0), for which some analytic solutions were reported [44,45,56].

In particular, in the absence of magnetic field (B = 0), the spinors x; = (xa, xp)T corresponding to
different j-s can be written as linear combinations [44]

@) 210
X)) ) g et ), ©)
I iinj_H/z(kr) inH; +1/2(kr)

where H ( ) [H ( )] is the Hankel function of the first [second] kind, k = |E|/ (hvE), the doping
sign 77 = sgn E = %1 (with # = +1 indicating electron doping and 77 = —1 indicating hole doping),
and Aj, B, are arbitrary complex coefficients. For B > 0, Eq. (6) is replaced by [45,56]

_ {,‘(1) 6(2)
X](‘dISk) = Al i a +B| jT o | )
inzj1gj| 1172]-,2(;‘]-i

where z; | = +s; %) 7= /k2)sit1/2 (withs; = 1sgnj, B = eB/(2h)), and
7, 2(j i j = 258 j

2
W) _ g2l ) Majs,vis, pro), v=1,
S =e kr 8)
g (kr) Ul(ajs, vjs, Br?), v=2,
withls = j F 3 fors =1, |, ajs = [2(Is + |Is| + 1) —k?/B], and 7js = |Is| + 1. M(a,b,z) and U(a, b, z)
are the confluent hypergeometric functlons [57].
For the leads, r < R; or r > R,, the electrostatic potential energy is constant, V(r) = —V. We

further assume B = 0 and E > —Vj (electron doping) in the leads, allowing one to adapt the wave
function given by Eq. (6); i.e., for the inner lead, r < R;,

(inner) H]‘(E)l/z(Kr) H]'(P1/2(Kr)
X =1..:0 +1il ) / ©)
1Hj+1/2(Kr) 1H]+1/2(Kr)

and for the outer lead, r > R,

@)
X}outer) _ t H]( %/Z(Kr) ) (10)
1H; +1/2(I< )

where K = |E + Vp|/ (hvr) and we have introduced the reflection and transmission coefficient. The
first spinor in each of Egs. (9) and (10) represents the incoming (i.e., propagating from r = 0) wave, the
second spinor in Eq. (9) represents the outgoing (propagating from r = oo) wave.
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2.3. Mode-Matching Method

Since the current-density operator following from Eq. (1), j = evpo does not involve differen-
tiation, the mode-matching conditions for ¥ = R; and r = R, reduce to the equalities for spinor
components, namely

X](irmer) (Ro) _ X](‘diSk) (Ro) and X](disk) (Ri) _ X(outer) (Ri)- 11)
The resulting formula for transmission probability for j-th mode becomes particularly simple upon

taking the limit of heavily doped leads, Uy — oo. In particular, for B = 0, substituting Eq. (6) into the
above gives [58]

16 1
T = |t;]> = , (12)
] ] nZkZR.R (+) 2 (7) 2
S o o]
where
() _ 1 (2)
9% =Im [H]._l 2 (KR)HZ, 5 (KR,)
1) @
+ H o (kROH) 5 (KRo) . (13)
Analogously, for B > 0 one finds, using Egs. (7) and (8),
2/8)Ri-1 [T(yr)]”
T = 4 = e & /F) il |y (19
kK2RiR, (X]z + Y]Z) F(DC]‘T)
where I'(z) is the Euler Gamma function, and
Xj = w4+ zjazjpwy) |, Yj=zjpwh —zjwi,
it T 2iZi2W5 ) X) = 2jpWiy = Zja
1 2 1 2
wk, = 8 (R)ED (Ro) 21 (Ro)2) (Ry). (15)

For B < 0, one gets T;(B) = T_;j(—B).
Details of numerical mode-matching, applicable for smooth potentials, are given in Appendix A.

2.4. Landauer-Biittiker Formalism

In case the nanoscopic system is connected to external reservoirs, characterized by the electro-
chemical potentials ¢ and y + el (for simplicity, the two reservoirs are considered; for more general
discussion see Ref. [59]), the conductance of the system is related to the transmission probabilities for
normal modes (Tj-s) via

<I> <0 pteleg
Clley) = 1= = 2% [T de L 1i(e), (16)
Uetr  Uegr Ju 7

where (I) denotes the average electric current and the zero-temperature limit is taken. The conductance
quantum is go = 4e?/h, taking into account spin and valley degeneracies. U, denotes the effective
voltage difference between the reservoirs (notice that the actual voltage applied may differ from U,

due to charge-screening effects). Similarly, the Fano factor, relating the current variance, <(I —(I) )2>,

to the value <(I - (I>)2> _
Poisson
events (occurring, e.g., in the tunneling limit of T; < 1 for all j-s), is given by

one would measure in the absence of correlations between scattering

F(Uyg) = <(1_<1>)2> () /Wue“dezT-(e)[l—:r-(e)] (17)
eff <(I—<I>)2>P Gueff " - ] ] ’
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where <(I —(I) )2>P - =e(I)/ At = eGU,g/ At with At denoting the time of measurement.

o1sson
In the linear-response regime (Ueg — 0), Egs. (16) and (17) reduces to
G(Uegt — 0) =0 ) T, (18)
i
and YT T

F(U.e — 0) = Q, 19
(Uer — 0) YT (19)

where T; = T;(u). For the disk geometry, summation range is limited by the number of propagating
modes in the inner lead, |j| < jmax = |KRi] — % with [x] denoting the floor function of x. (For
heavily-doped leads, jmax — ©°.)

As anotable example, we consider the zero-doping limit (4 — 0). In such a case, Eq. (14) simplifies
to [45,60]

Tl = 0) = —5—— : 20)
cosh”[(j + ®/®Pp) In(Ro/R;)]

where ® = 71(R2 — R?)B is the flux piercing the disk area and we have defined @y = 2 (1/¢) In(Ro/R;).
Assuming the narrow-disk range, R, =~ Rj, we can approximate the sums occurring in Egs. (18) and
(19) by integrals, obtaining

270y

and F~= Fdiff = % (21)
The above reproduces pseudodiffusive conductance and the shot-noise power for a disk geometry [44].
For larger R,/ R;, both characteristics are predicted to show approximately sinusoidal conductance
oscillations with the field B [45,60,61].

The case of doped disk, for which one may expect to observe some features of the sub-Sharvin
charge transport [35,36], is discussed next.

3. Approximate Conductance and Fano Factor at the Magnetic Field

Before calculating the conductance G and Fano factor F within the mode-matching method
described in Sec. 2, we first present the approximating formulas for incoherent transport, obtained by
adapting the derivation of Ref. [36] for the B > 0 case.

3.1. Corbino Disk in Graphene as a Double Barrier

A key step in the derivation is to observe that, in the multimode regime (kR; > 1) for which
one can consider well-defined trajectories, the disk symmetry cause that incident angles 6; and 65,
corresponding to the interfaces at ¥ = R; and r = R,, (see Figure 2) remain constant (up to a sign) after
multiple scatterings. Therefore, one can apply the double-contact formula for incoherent transmission
[62,63], namely

{T}ncoh = i/n d¢ e
meOh T2 ) T2 T~ A 1T~ 2/(1 - Ty)(1 - T2) cos ¢
B hT
T T+ T-Th’

(22)

where the transmission probabilities Ty, T», corresponding to a potential step of infinite height, are
given by
2 cos 6,

I=—— 1=1,2, 23
! 1+ cos 0, 23)

d0i:10.20944/preprints202404.1507.v1
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and ¢ is assumed to be a random phase acquired during the propagation between r = R; and r = R,
(or vice versa). Similarly, we calculate the incoherent squared transmission, useful when evaluating
the Fano factor,

2
7
{Tz} :i/ d(’b T1T2
incoh 27 J-x 2—T1—T2+T1T2—2\/(1—T1)(1—T2)COS(P

_ (MTL)*2-T— T+ T\ T») (24)
14+ N1, -TTy)3 '

B.1 < B < B
(Ro— R <2ro < R, + R;)

Figure 2. Propagation between consecutive scatterings on interfaces at r = R; and r = R, in a uniform
magnetic field B.; < B < B.». A zoom-in shown an arc of single cyclotron orbit centered at 7 = ry,
with its radii 7, and incident angles 6; (for r = R;) and 6; (for r = Ry).

Next, the incoherent conductance in the linear-response regime is evaluated by inserting {7}, .on
(22) into Eq. (18),
Gincoh = Gsharvin {{T }incoh ) u—sin 6, (25)
with
Gsharvin = 280kR;. (26)

For the Fano factor, one can analogously derive from Eq. (19)

2
r -1 <{T }incoh>u:sin91
ineoh = 1 — .
nee <{ T}incoh > u=sin 6;

The summation over 2kR; modes is approximated in Eqgs. (25), (27) by averaging over the variable
u = sin 61, within the range of —1 < u < 1. Explicitly,

(27)

1 r1
<{Tn}incoh>u:sin91 = E/u du{Tn}inCOh/ n= 1/ 2r (28)

where the lower integration limit (u.) is defined via the value of sin 61, below which the trajectory
cannot reach the outer interface (r = R,). (In other words, for u = sin6; < u., the geometric derivation
to be presented below leads to |sinf,| > 1.)

The missing elements, necessary to calculate ({T" }i;.on) y—sing,
on 01 and B [see Egs. (22), (23), and (24)], as well as the dependence of u. on B. Since we have assumed

in Eq. (28) is the dependence of 6,
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constant electrostatic potential energy in the disk area, the trajectory between subsequent scatterings
(see Figure 2) forms an arc, with the constant radii

re = hk/(eB) = |E|/ (vpeB), (29)

(i.e., the cyclotron radius for massless Dirac particle at B > 0), centered at the distance ry from the
origin. Now, solving the two triangles with a common edge r, (dashed line) and the opposite vertices
in two scattering points, we find

12 = R? + 12 4 2Ryr. sin b, (30)

(for the triangle containing a scattering point at r = R;), and
12 = R% 412 — 2R,rc sin b, (31)

(for the triangle containing a scattering point at r = R,). Together, Egs. (30) and (31) lead to

R2 — R? — 2Rjrcu

g )
sin 6, 2Ror (32)
Subsequently, the value of u. in Eq. (28) is given by
-1, if B< By
2_p2
e = et — R, if By < B< Bea, (33)
1, if B> By
where we have additionally defined
2
Bcrm - hk m = 1, 2.. (34)

e[Ro = (=1)"Ri]’

3.2. The Zero-Field Limit

Typically, averages occurring in Egs. (25) and (27) need to be evaluated numerically. Analytic
expressions are available, e.g., for zero magnetic field [36]

(2a+ Lyarcsina +3v1 — a2 — Z(a% +2)

Gincoh(B—0) = Gsharvin - / (35)
Fineon(B—0) = {211 V1 — a2(53 + 27942 + 88a*) — 37ta(12 + 82a* + 45a* + a°)
+6(1 + 45a% + 82a* + 124°) arcsina}
/{6(1 —a?)? [na(az +2)—6aV/1—a2—2(22+1) arcsina} }, (36)

where we have defined the inverse radii ratio a = R;/R,.

3.3. The Zero-Conductance Limit

In the this paper, we focus on the limit of B — B.,— (i.e., B approaching B, from below), for
which Gjpcon — 0. Introducing the dimensionless 0 < e < 1, one can express the cyclotron diameter,
see Eq. (29), as

2rc = Ro — Ri + ¢(Ro — Rj). (37)

In turn, the value u,, see Eq. (33), can be approximated (up to the leading order in ¢) as

R
ucwl—s<1+1§). (38)
1
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It is now convenient to define the variable

1—u

W=,
¢(1+ Ro/R;)

(39)

such that the integration over u. < u < 1, occurring when evaluating ({T" },..on) y—sin p, from Eq. (28),

can be replaced by integration over 1 > a > 0. Transmission probabilities (T, T) for the interfaces at
r = Rj and r = R,, see Egs. (22), (23), (24) and (32), can now be approximated as

Ty ~24/20(1+ 1)€!/?, (40)
Ty ~24/2(1 —a)(1+a)e'/?, (41)

where we have used a = R;/R, again.
Using the above expressions, we can now rewrite the averages occurring in Eq. (28), up to the
leading order in € again, as follows

Gincoh N2(1+%) 83/2/1d¢x m\/m
V2 0

U incon)u = G~ ™ Jear D+ va—aae) 42)
() )~ 2(1\;;»11) a2 /01 P (2+1+a) “

[\/w(1+;)+\/(1o¢)(1+a)]3.

Remarkably, both quantities decays as €3/2 but their ratio, occurring in Eq. (27) for the Fano factor,
remains constant (for a given a). The integrals in Eqs. (42) and (43) can be calculated analytically,
leading to

Fincoh(B—Bea—) =1 — {4\/5 +39a — 584%/% — 234> — 234°/% — 58a® + 3947/? + 4a*

+ (69112 —184° — 1811) VvV1+4a artanh( va )

Vv1i4a
2_ a — LZ3 aarta ;
+ (694> — 182 — 182°) VI + tnh<m>}
/{(1+a)3(1+x/ﬁ)(13ﬁ+a)+3a(1+a)5/2artanh % VJ};L“ } (44)

Numerical values of Fy,con(B — 0) and Fycon(B — Bep—) for selected a = R;/R, are given in
Table 1. For F,con(B— B.2—), we see that the poissonian value of Fy,,, = 1, which one could expect
due to the vanishing conductance, is reconstructed only for a — 0 (i.e., for R, > R;). For finite radii
ratios, nontrivial values of 0 < F,con < 1 occurs. Remarkable, for moderate disk proportions (a > 0.5),
Fincoh (B— B.2—) shows very weak dependence on a, decaying by less then 2% (from Fy,co, &~ 0.56 at
a = 0.5 to Fineon ~ 0.55 for a — 1, with a — 1 representing the narrow-disk limit of R, ~ R;).

For this reason, in the following numerical analysis, we fixed the disk radii ratio at a = 0.5 (i.e.,
Ro = 2R;). We also stress that the derivation presented above, holds true for the parameter ¢ — 0+,
quantifying the ratio of cyclotron diameter 2r, to radii difference R, — R;, see Eq. (37). Therefore, it
is irrelevant whether one increases the magnetic field at a fixed chemical potential, or reduces the
chemical potential at a fixed B > 0 (as long as the system stays in a multimode range, kR; > 1).

d0i:10.20944/preprints202404.1507.v1
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Table 1. Selected numerical values of Fy,.on (B — 0), see Eq. (36), and Fyneon (B — Beo—), see Eq. (44).
Box marks the values for a = 0.5 (i.e., R, = 2R;) to be compared with the results following from
numerical simulations of quantum transport presented Sec. 4.

a=Ri/Ro Fincoh(B — 0) Fincoh(B — BC,Z_)

0 0.106528 1
0.1 0.106705 0.630994
02 0.107239 0.591829
03 0.108136 0.573885
04 0.109409 0.563905

[ 0.5 0.111074 0.557898 |
0.6 0.113151 0.554178
0.7 0.115663 0.551894
0.8 0.118619 0.550565
0.9 0.121963 0.549899
1.0 0.125000 0.549708

4. Results and Discussion

Main doubt arising when we consider the applicability of Eq. (44) for real quantum systems
concerns the possible role of evanescent waves, totally neglected in our derivation. Obviously, they
should not play an important role when the system is highly conducting (such as in the zero-field case
[36]); however, since the Fano factor is determined by the ratio of two cumulants, both vanishing for
sufficiently high field, it is not fully clear which contribution (from propagating or from evanescent
modes) would govern the value of F for B — B.»? On the other hand, resonances with Landau levels
are not expect to play a significant role, as they form very narrow transmission peaks, contributions of
which get immediately smeared out beyond the linear-response regime.

In the remaining parts of the paper, compare the results of computer simulation of quantum
transport through the disk in graphene, with the predictions for incoherent scattering presented in
Sec. 3, in attempt to propose an experimental procedure allowing one to extract the nontrivial value of
F 2 0.55 from the data plagued with other contributions.

4.1. The Rectangular Barrier of an Infinite Height

As a first numerical example, we took the limit of Vj — oo and m — oo in Eq. (2), for which
close-form expressions for transmission probabilities were presented in Sec. 2.

In Figure 3, we compare the linear-response conductance G (Ut — 0), see Eq. (18), with G(Ueg)
calculated from Eq. (16) for a small but nonzero value of Ueg = 0.01V, both displayed as functions
of the chemical potential. Also in Figure 3, same comparison is presented for the Fano factor F(U.g)
[see Egs. (19) and (17)]. It easy to see that prominent, aperiodic oscillations visible for both charge-
transfer cumulants in the Ui — 0 limit are significantly reduced even for small Uyg > 0. In fact, for
U = 0.01V and B > 0, the values of F,.o, calculated from Eq. (27) [black lines] are closely followed
by F(U,) obtained from the numerical mode-matching, as long as the former can be defined, i.e., for
B < B at a given pi. We further notice that the value of y for which B ~ B, and F(Ug) ~ 0.56
corresponds to G(Ueg) ~ go (up to the order of magnitude). For smaller y, such that B > B, and
Fincoh is undefined, F(U,g) saturates near the value ~ 0.75, apparently below the poissonian limit of

F=1
To better understand the nature of the results we now, in Figure 4, go further beyond the linear-
response regime, calculating G(Uegr) and F(Uegs) for 4 = —ellygr/2 (notice that for an infinite rectangu-

lar barrier we have the particle-hole symmetry, and both cumulants are even upon y <+ — p 4 ele)
and displaying them as functions of U.g.
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Figure 3. (ab) Conductance and (c,d) the Fano factor for the Corbino disk in graphene with the
radii R, = 2R; = 1000nm and the rectangular potential barrier (i.e., Vj — o0 and m — oo in Eq.
(2)) displayed as functions of the chemical potential. The values of magnetic field are B = 0 (red
solid lines in all plots), B = 0.2T (green solid lines), and B = 0.4 T (blue solid lines). Inset in (a) is
a zoom-in, with black dashed lines depicting the incoherent conductance, see Eq. (25). (a) and (c) show
the linear-response results, see Egs. (18) and (19); the datasets in (b) and (d) are obtained from Egs.
(16) and (17) with Ueg = 0.01 V. Remaining lines in (c,d) [black solid, black dotted, and black dashed]
mark the incoherent Fano factor, see Eq. (27); the values of magnetic field are specified for lines in (c),
and are the same in (d). (For B = 0, horizontal lines mark F;,.on(B — 0) = 0.111074 corresponding to
Ry = 2R;, see Table 1.)

We further introduce the activation voltage Uon = Uon (B), meaning of which can be understood
as follows. The cyclotron diameter, see Eq. (29), naturally defines the range of energies for which
2r¢(E) < Ro — Rj and the system shows G ~ 0 (up to the evanescent modes). On the other hand, as
we have set y = —ellyg/2, the effective voltage defines the energy range of |E| < ell¢/2, being the
integration interval in Egs. (16) and (17). In turn, G(Ueg) > 0 is expected for Ueg > Uon, a value of
which can be approximated as

Uon,incoh = UFB(RO - Ri)/ (45)

where we have simply rewrite equality 2r.(eUon) = Ro — Rj neglecting the evanescent modes.
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Figure 4. (a,b) Minimal conductivity and maximal Fano factor, see Egs. (16) and (17), corresponding
to the chemical potential fixed at u = —ell/2, versus the effective voltage. The magnetic field is
specified for each line. (c) The activation voltage, defined via Gmin(ll((,}l) ) = go [blue open circles],
Gmin(ll((,?) = 2gp [red solid squares], or obtained from scaling according to Eq. (46) [green crosses],
displayed versus the magnetic field. (d) The Fano factor corresponding to U = Uon shown in
(c). Horizontal dashed lines in (b,d) mark the value of Fy,op (B — Bgp—) = 0.557898 for R, = 2R;
(see Table 1). Dashed line in (c) depicts the approximation given in Eq. (45). The remaining system

parameters are same as in Figure 3.

When looking on the conductance spectra illustrated in Figure 4(a) we see, for B > 0, a wide range
of lower U for which G = 0, attached (via a cusp region) to the range of (approximately linearly)
increasing G. In order to determine the value of Uon (B) directly from the conductance spectra G(Ue),

we find numerically the value of U((,;) such that G(U((,;)) = go, and U((,ﬁ) such that G(U((,ﬁ)) = 290, see
the datapoints in Figure 4(a). Then, the linear extrapolation is performed to obtain

) culy)
GUR) — G(US)
=2ull) —u, (46)

B (e

such that G(U(()?\)) ~ 0. The resulting values of LI((,Q, depicted in Figure 4(c) [datapoints], stay close to

Uon incoh Obtained from Eq. (45) [dashed line].

Remarkably, the values of the Fano factor corresponding to Uyg = U(()Q, i = 1,2, see Figure 4(b),
are close to Fy,con(B — Bcp—) ~ 0.56. Similar observation applies for all studied values of B < 0.5T,
see Figure 4(d); a typical deviation does not exceed 5%.
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4.2. Smooth Potential Barriers

In this subsection, we extend our numerical analysis onto smooth potential barriers, defined by
choosing 2 < m < o in Eq. (2). Moreover, the barrier height is now finite, i.e., Vo = tg/2 = 1.35¢€V,
being not far from the results of some first-principles calculations for graphene-metal structures
[64,65]. According to our best knowledge such a model, first proposed in Ref. [35], seems to be the
simplest providing qualitatively correct description of the conductance-spectrum asymmetry observed
in existing experiments [46,50,53], in which the conductance for ¢ < 0 is noticeably suppressed,
comparing to the 4 > 0 range, due to the presence of two circular p-n junctions in the former case.
(Such a feature is also correctly reproduced by a simpler model assuming the trapezoidal potential
barrier [66], allowing a fully analytic treatment, but this approach produces an artificial conductance
maximum near y# = 0.)

The conductance spectra for five selected values of m are displayed in Figure 5, both for the
linear-response regime [see Figures 5(a,c)] and beyond [Figures 5(b,d)]. This time, we have limited out
presentation a single value of magnetic field, i.e.,, B = 0.2 T. It must be notice that finite value of V}
results in small, but visible spectrum asymmetry also for m = co.
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Figure 5. (a) Linear-response conductance as a function of the chemical potential and (b) finite-voltage
conductance, for y = —elg/2, as a function of the voltage. The magnetic field is B = 0.2T for all
plots. The disk radii are the same as in Figure 3, but the barrier height, see Eq. (2)), is now fixed at
Vo = tg/2 = 1.35eV; the parameter m is specified for each line. (c,d) Zoom-in, for low energies, with
same datasets as in (a,b). Datapoints in (b,d) mark the values of G(Ué’r?) =igo, i = 1,2, defining the

activation voltages Uefs = uéQ

The finite-voltage results, G(Ueg) at p = —eleg/2, allows as to determine the activation voltage,
Uon(B), in a similar manner as for an infinite-barrier case (see previous subsection). When attempting
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to apply the incoherent-scattering approximation to smooth potentials, some modification is required
for Eq. (45), which now can be rewritten as

Uon,incoh = VFBLgig (). (47)

In the above, we have introduced the m-dependent effective sample length given by [35,36]
1/m
) 49)

Laige(m) = [Ro — Ri (|R0—R|Vo
1

which reduces to Lqi(o0) = R, — R; for a rectangular barrier, and gives Lg(m = 2) < R, — R; for
the parabolic case. In brief, Eq. (48) can be derived by imposing V(+Lg;i¢r/2) = —Egisr, Where Egig
denotes the value of Fermi energy, above which Sharvin conductance overrules the pseudodiffusive
conductance, namely,

Egift = TP 1 mev for Ro — Ri = 500nm. (49)

Ro — Ri
In Figure 6 we show the Fano factor, for same five values of m as previously used for the
conductance (see Figure 5), and B = 0.2 T, as a function y in the linear-response limit (Ue¢s — 0), as well
as a function Uegs for u = —Uegr/2 (see left or right side of Figure 6, respectively). Again, the aperiodic
oscillations almost vanish when entering the nonlinear response regime; in fact, the shape of Fnax (ueff)
appears to be much less sensitive to the value of m than the linear-response F(). Datapoints on the

right side of Figure 6, identifying the values of F (U((frz ),i=1,2, such that G(U((,Q) = igo (see Figure 5),
are available starting from m = 8 (although the deviation from Fy,o, (B — Bc2—) = 0.56 is significant
in such a case), whereas strong asymmetry of F () is visible up to m = 32.
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Figure 6. Left: Linear-response Fano factor as a function of the chemical potential. Right: Finite-voltage
Fano factor, for y = —elly¢/2, as a function of the voltage. The magnetic field is B = 0.2 T for all plots,
the value of exponent m is specified at each plot, and remaining parameters are same as in Figure 5.
Horizontal line at each plot marks the value of Fy,con (B — B.2—) = 0.557898, see Table 1. Datapoints
(right) mark the values of F (UC(,Q ), i =1,2, corresponding to activation voltages Ueg = U((,Q, for which

G(U((frz) = igo (see also Figure 5).
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The values of U((,Q and the corresponding F (U((,Q), for the magnetic fields up to B < 0.57T, are

displayed in Figure 7. It can be noticed that the voltages USQ, see datapoints in Figures 7(a—d), show
relatively good agreement with the approximation given by Eq. (47) [purple solid lines]; in fact,
significant deviation from Eq. (45) relevant for the rectangular barrier [black dashed lines] can be
noticed for m = 8 only. On the contrary, corresponding Fano factors F (U((frz ), see datapoints in Figures
7(e-h), stay close to the value of Fycop (B — Be2—) =~ 0.56 only for m = co and m = 128, showing that
the incoherent treatment of the shot-noise power, which we put forward in Sec. 3, is applicable only if

the potential profiles is close to (but not necessarily perfectly matching) the rectangular shape.
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Figure 7. (a—d) The activation voltage (for the definition, see Figure 4) and (e-h) the corresponding
Fano factor for y = —el,g/2, displayed as functions of the magnetic field [datapoints]. The value
of exponent m is specified at each plot; remaining parameters are same as in Figure 5. Lines in (a—d)
depict the approximation given by Eq. (47) [purple solid] and Eq. (45) [black dashed] coinciding in the
m — oo limit. Horizontal lines in (e~h) mark the value of Fycon(B — Beo—) = 0.557898, see Table 1.

5. Conclusions

We have put forward an analytic description of the shot-noise power in graphene-based disks in
high magnetic field and doping. Assuming the incoherent scattering of Dirac fermions between two
potential steps of an infinite height, both characterized by a priori nonzero transmission probability
due to the Klein tunneling, we find that vanishing conductance should be accompanied by the Fano
factor F ~ 0.56, weakly-dependent on the disk proportions.

Next, the results of analytic considerations are confronted with the outcome of computer sim-
ulations, including both rectangular and smooth shapes of the electrostatic potential barrier in the
disk area. Calculating both linear-response and finite-voltage transport cumulants, within the zero-
temperature Landauer-Biuttiker formalism, we point out that the role of evanescent waves (earlier
ignored in the analytic approach) is significant in the linear-response regime, however, one should
able to detect the quasi-universal F ~ 0.56 noise in a properly designed experiment going beyond
the linear response regime. To achieve this goal, the following procedure is proposed: First, the
activation voltage (for a fixed magnetic field) needs to be determined, by finding a cusp position
on the conductance-versus-voltage plot, above which the conductance grows fast with the voltage
(the average chemical potential is controlled by the gate such that the conductance is minimal for
a given voltage). Having the activation voltage determined, one measures the noise for such a voltage,
expecting the Fano factor to be close to F ~ 0.56.

We expect that the effect we describe should be observable in ultraclean samples and sub-kelvin
temperatures (such as in Ref. [48]); for higher temperatures, hydrodynamic effects may noticeably
alter the measurable quantities [53]. Since the noise-related characteristics seem to be generally more
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sensitive to the potential shape then the conductance (or the thermoelectric properties earlier discussed
in Ref. [54]), the experimental study following the scenario presented here may be a suitable way to
check whether the flat-potential area of a mesoscopic size is present or not in a given graphene-based
structure.

Author Contributions: A.R. designed the algorithm, A.R. and P.W. developed the code and performed preliminary
computations, K.R. organized the computations on the PL-Grid supercomputing infrastructure; all authors were
involved in data analysis and manuscript preparation.

Acknowledgments: The main part of the work was supported by the National Science Centre of Poland (NCN) via
Grant No. 2014/14/E/ST3/00256 (SONATA BIS). Computations were performed using the PL-Grid infrastructure.

Appendix A. Numerical Mode Matching for Smooth Potentials

Here we summarize the numerical approach earlier presented in Ref. [54].

In a typical situation, system of ordinary differential equations for spinor components (x4, Xp),
see Egs. (4) and (5), needs to be integrated numerically for all j-s. In order to reduce round-off errors
that may occur in finite-precision arithmetics due to exponentially growing (or decaying) solutions,
one can divide the full interval, R; < ¥ < R,, into M parts, bounded by

RY — R, + Ro—Ri RUHD,
M
with /=0,1,... M—1 (A50)
(In particular, R,(:O) = R; and R{(:M) =R,.)
The wave function in the disk area X](dISk) is now given by a series of functions { 7(](-1) } for M

consecutive intervals given by Eq. (A50). For the [-th interval,

l N ()1 D ()

A = a0 By, (A51)
where )(](l)’l, X](.Z)’H are two linearly independent solutions obtained by integrating Eqs. (4), (5) with two
different initial conditions, X](l)’l 0= (1,0)T and )(](l)’H R0 = (0,17, A](l) and B](l) are complex

r=R; r=R;

coefficients (to be determined later).

In particular, for R, = 2R; = 1000nm and B < 0.5T considered in this paper, it is sufficient to
set M = 20 and employ a standard fourth-order Runge-Kutta (RK4) algorithm with a spatial step
of 0.5 pm. (For such a choice, the output numerical uncertainties of transmission probabilities T; are
smaller then 107.)

The matching conditions for the M + 1 interfaces atr = R;, r = REU, o, = R((;
can now be written as

M_l), and r = R,,

X](inner)(Ri) _ X](O)(Ri)r (A52)
A RED) = (DRI, f=0,..., M2, (459
1MV (Ro) = 1™ (Ro), (A9

0 O

and are equivalent to the Cramer’s system of 2(M + 1) linear equations for the unknowns A i B,
A(M-1) p(M-1)

4y + B; ,T’j,al‘ldi’]‘.
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Writing down the spinor components appearing in Eqs. (A52), (A53), and (A54) explicitly, we

arrive to
xR xgn (RE) g (R '
xR AR xRS
0 RE) gRY)
o aM®RY) KPURY)
K MR PR o
T TN
XARED) BDTRIY) - —in (Ro)
i SR A PRM) i (R,)
i r{ ]
0) ,
oA X (Ri)
B] X}I,};(Rl)
X : = 0 1, (A55)
A](_Mfl) :
gM-1) 0
j
L5
where we have defined M = M — 1,
2 (1)
in H;™ /5 (Kr) H;™) ), (Kr)
Xj = .H](z)/ w1 X7t = 'H](l)/ K (A56)
iH;\5 /5 (Kr) iHj 5 /5 (Kr)

For heavily-doped leads (V) — o) the wave functions given by Eq. (A56) simplify to

iKr —iKr
(in) € 1 (out) € 1
X _\ﬁ<1>’ Xj _\ﬁ(—1>’ (A57)

with K = |E + V0|/(hvp) — 00,

As the linear systems for different values of j-s are decoupled, standard software packages can
be used to find their solutions. We have chosen the double precision LAPACK routine zgesv, see Ref.
[67].
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