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Abstract: The growing demand in industrial and biotechnological settings for more efficient enzymes with 

enhanced biochemical features, particularly thermostability and thermotolerance, necessitates a timely 

response. Renowned for their versatility, thermostable enzymes, offer significant promise across a range of 

applications, including agricultural, medicinal, and biotechnological domains. This comprehensive review 

summarizes the structural attributes, catalytic mechanisms, and the relationships between structure and 

function  of two major classes of thermostable enzymes: α-amylases and laccases. These enzymes serve as 

valuable models for understanding the structural basis of protein thermostability. Commercial significance of 

these enzymes and researchers' interest in further optimization and innovation, this article can greatly 

contribute to ongoing research on thermostable enzymes and aiding industries in optimizing production 

processes. It also give insights to the exploration of suitable strategies and factors for enhancing thermostability, 

resulting in heightened multipronged stability and notable enhancements in the enzymes’ industrial 

applicability. 
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Introduction 

The enduring significance of thermostable enzymes stems from their diverse applications across 

industries, including food, pharmaceuticals, and biotechnology. In the realm of industrial 

biocatalysis, enzymes face stringent demands, necessitating robust and thermostable biocatalysts to 

meet high industrial standards. Enzymes characterized as thermostable possess intrinsic stability, 

enabling them to endure elevated temperatures well beyond 50 oC, reaching as high as 80 oC, 90 oC 

or even more [1,2]. These enzymes maintain their structural integrity and distinctive features under 

such extreme conditions. This inherent stability provides significant biotechnological advantages 

compared to mesophilic enzymes (active optimally at 25 to 50 oC) or psychrophilic enzymes (active 

optimally at 5 to 25 oC). Thermostable enzymes are more easily purified through heat treatment (as 

one of the initial step), exhibit increased resilience and resistance to chemical denaturants, allow for 

higher substrate concentrations, contribute to lower viscosity, pose fewer risks of microbial 

contamination, and often lead to higher reaction rates [1]. This heightened stability allows them to 

thrive in harsh environments, including applications like enzymatic bioremediation of xenobiotics 

and innovative green processes [3].  The demand for industrially relevant thermostable enzymes has 

created a pressing need to identify easily accessible, cost-effective, and process-friendly sources. This 

review is motivated by the rapid strides in discovering novel thermostable enzymes from 

unconventional sources. Among these enzymes, α-amylases and laccases stand out as crucial players 

in industries such as pulp and paper, starch processing, textiles, detergents, fuels, alcohols, and 

pharmaceuticals, constituting the major consumers of these thermostable enzymes. Alpha-amylase 

patents distributed across different categories: in biofuels, beverages, pharmaceuticals, detergents, 

food, animal feed, and textiles, were found deposited in intellectual property databases [4]. Besides 

being widespread in plants, animals, fungi, unicellular eukaryotes like eubacteria and archaea, 
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‘Dictyo-type’ -amylase is also found to be widespread and may be ancestral in the Unikonts, a clade 

comprising animals, fungi (Opisthokonts) and amoebozoa [5]. The activity of -amylase has been 

observed to be associated with the neurodegenerative diseases such as Alzheimer’s disease. Studies 

also show that -amylase synthesis is linked with mTOR (Mechanical Target of Rapamycin) signaling 

pathways [6]. mTOR serves as a key regulator of celluar growth by controlling the both anabolic and 

catabolic processes [7,8].  

Another dimension of the profound interest in thermostable enzymes lies in the exploration of 

the thermodynamic stability of proteins. Investigating the interplay between stability, flexibility, or 

plasticity and catalytic efficiency adds a layer of understanding to these enzymes' properties. The 

heightened interest in thermostable enzymes has catalyzed a focus on developing enzymes with 

enhanced thermostability or thermotolerance through genetic engineering or site-directed 

mutagenesis, revolutionizing the attainment of desired enzyme properties. The preference for 

enzymatic processes, particularly thermostable ones, over conventional methods in various 

industries is attributed to their rapid and specific action, along with advantages in energy, time, raw 

material, and chemical savings. Crucially, their environmentally friendly nature further underscores 

their appeal. Moreover, conducting processes at elevated temperatures using thermostable enzymes 

not only diminishes the threat of microbial contamination, a notable advantage, but also serves to 

lower substrate viscosity, enhance transfer rates, and augment solubility in the course of reaction 

procedures [2].  

Thermostable enzymes, beyond their inherent thermostability, exhibit favorable characteristics 

such as a wide pH tolerance and resistance to organic solvents, positioning them as superior to other 

enzyme groups. This underscores the need for continued efforts in screening and isolating novel 

sources, developing innovative purification approaches to enhance yield and purity, and ultimately 

harnessing thermostable enzymes for diverse industrial applications. The present review article is an 

effort to address thermostable α-amylases and laccases indicating their varied sources of origin, 

structural characteristics and catalytic mechanism, structure-function relationships as well as factors 

attributing and various strategies resulting thermostability. Besides, the prevailing challenges that 

exist in order to cope up with aiming for further research  and advances in the field of thermostable 

enzymes providing insights into future direction in the field of thermostable enzymes, have been 

focused on. 

Thermostable -Amylases 

Thermostable α-amylases, constituting the largest share of industrial enzyme sales at 

approximately 25%, play a pivotal role across diverse sectors such as fermentation, textile, food, 

detergent, brewing, biorefinery, paper, and pharmaceutical industries [9,10], as illustrated in Figure 

1 and also listed in Table 1. Particularly crucial in starch liquefaction processes, these enzymes serve 

as valuable models for studying thermal adaptation in proteins [11,12]. Widely distributed in nature, 

α-amylases originate from various sources, including microbes, animals, and plants, with a notable 

presence in germinating seeds where they contribute significantly to carbohydrate metabolism 

[13,14].  
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Figure 1. Schematic representations of -amylases industrial applications, structural relation with 

thermostablilty and mechanism of catalytic functions. A. An illustration model of the -amylases uses 

in the diverse commercial applications. B. Structural depiction of the crystal structure of -amylase 

from Anoxybacillus species (TASKA, PDB 5A2A [134]) showing a single polypeptide chain folding 

with the relative positions of the three structural domains: a) Domain A, the catalytic domain, b) 

A

B

C

Figure 1
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Domain B, that constitutes a significant portion of the substrate binding cleft, responsible for notable 

variations in size, structure, and substrate specificity among different α-amylases, and c) Domain C, 

forming the C-terminal segment of the sequence.  Domains A, B and C are shown in green, orange, 

and blue, respectively and the calcium ions in magenta. C. Illustration depicting the chemical 

structure of starch (comprising amylose and amylopectin) and the enzymatic conversion into sugar 

units [135]. The catalytic mechanism of α-amylases involves the cleavage of the internal α-glycosidic 

bonds in polysaccharides like starch, glycogen, and others, leading to the hydrolysis of these bonds 

and the production of α-anomeric mono- or oligosaccharides. 

Table 1. Commercially available α-amylases and their industrial applications. 

Microbial source    

of α amylases 

Commercial Name of  

            α- amylase 
Manufacturer Industrial applications 

Aspergillus oryzae Fructamyl®  FHT 

Erbslöh  

Geisenheim 

AG 

Beverage industry 

Bacillus licheniformis Liquozyme®  SC DC    Novozymes 
Liquefaction for ethanol 

production 

Bacillus amyloliquefaciens BAN®  Novozymes Oat starch liquefaction 

Bacillus licheniformis Termamyl®  Novozymes Adjunct liquefaction 

Aspergillus oryzae Fungamyl Novozymes Baking 

Bacillus subtilis Validase BAA 
IMCD 

Germany 
Food and Feed 

Bacillus subtilis ZylozymeTM AA 
Kemin 

Industries 
Biofuel 

Bacillus licheniformis Bioconvert ALKA Noor Enzymes Biofuel 

Genetically modified 

microorganism 

Stainzyme®  Plus Evity®  

48 T 
Novozymes Detergent 

Genetically modified 

microorganism 
Aquazym®  Novozymes Textile 

Listed are commercial α-amylases, each derived from specific microbial sources, offering various industrial 

purposes. Sources: https://erbsloeh.com/; 

https://www.novozymes.com/en/products/ethanol/liquefaction/liquozyme; 

https://www.novozymes.com/en/products/baking/freshness/ban?utm_source; 

https://www.novozymes.com/en/products/plant-based-foods/plant-based-dairy/termamyl; 

https://www.novozymes.com/en/products/baking/flour-correction/fungamyl?utm_source; 

https://www.imcd.de/en/trade-names/food-and-nutrition-BG3/validase-a5u690000000fr0AAA/; 

https://www.kemin.com/na/en-us/markets/biofuels/products/zylozyme-aa; http://www.enzyme-

india.com/amylase-enzymes-biofuel.html; https://www.novozymes.com/en/products/laundry/starch-

stains/stainzyme-plus-evity-48-t; https://www.novozymes.com/en/products/pulp-paper/aquazym-480-l. 

Established in 1998, the CAZy Carbohydrate-Active Enzymes (CAZymes) offers users online 

access [15] (http://www.cazy.org) that is regularly updated to a sequence-based family classification 

linking sequences with the specificities and three-dimensional structures of enzymes that are 

involved in the assembly alteration, and degradation of oligo-and polysaccharides [16]. The enzymes 

that are currently covered in the CAZy database that catalyze the breakdown, biosynthesis or 

modification of carbohydrates and glycoconjugates are: 

a) Glycosyl Hydrolases (GHs): hydrolysis and/or rearrangement of glycosidic bonds. 

b) Glycosyl Transferases (GTs): formation of glycosidic bonds. 

c) Polysaccharide Lyases (PLs): non-hydrolytic cleavage of glycosidic bonds. 

d) Carbohydrate Esterases (CEs): hydrolysis of carbohydrate esters. 

e) Auxiliary Activities (AAs): redox enzymes that act in conjunction with CAZymes. 
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In recent years, there has been significant growth in the CAZy classification system, including 

the introduction of new families and the establishment of subfamilies within existing ones [17]. 

Currently, of the 189 class glycoside hydrolases (GH) families in total, four are considered -amylase 

families: i) GH13⎯ proven to be the most abundant and largest -amylase family composed of a 

(/)8 barrel structure; (ii) GH57⎯ the second and smaller -amylase family composed of a (/)7 

barrel structure; (iii) GH119⎯ a very small family related to GH57; (IV) GH126⎯ composed of (/)6 

barrel structure [18]. Families GH13, GH57 and GH119 employ the -retaining mechanism of -

amylase involving two catalytic residues in the active site; a glutamic acid/base catalyst and an 

aspartate as the nucleophile and the anomeric carbon remains in the same position as it is mediated 

by the double-displacement mechanism. In contrast, GH126 employ the inverting reaction 

mechanism in which an anomeric carbon position is shifted from  to   through a single-

displacement mechanism [19]. The -amylase family GH13 has already been divided into 47 

subfamilies, with additional subfamilies still emerging. Nature doesn’t always provide enzymes with 

the desired properties; hence protein engineering has been proposed as an alternative method to 

enhance the physicochemical traits of enzymes [20]. Leveraging solved crystal structures, a structure-

guided consensus approach is recognized as an effective and dependable method for refining enzyme 

properties [21]. Employing this approach to enhance the thermostability of -amylase without 

additional Ca2+ would benefit process efficiency and reduce the cost of the starch liquefaction process 

[22,23]  This on other hand, requires both a starting enzyme with which to work and adequate 

structural information to guide the modifications. In the related efforts, Li and coworkers [21] showed 

from their experimental observations that malto-hexaose-forming -amylsae from Bacillus 

stearothermophilus (AmyMH) is an adequate starting point from which to design a more thermostable 

-amylase without added Ca2+. Previously, attention was directed towards a loop situated in domain 

B across various bacterial -amylases as a means to enhance their thermostability. Suzuki and 

coworkers [24]  suggested that eliminating the equivalent loop formed by R176-G177 (according to 

BAA numbering) could significantly boost the thermostability of Bacillus amyloliquefaciens -amylase 

(BAA). This depiction has been replicated in several other bacterial -amylases from different species, 

yielding similar improvements in thermostability [25,26]. Furthermore, the enhanced thermostability 

of Bacillus licheniformis -amylase (BLA) was achieved by removing amide-containing side chains 

through the mutation of N190F (according to BLA numbering [27]. 

Despite the escalating demand for thermostable enzymes in multiple industries, the production 

and properties of α-amylases have been restricted by their susceptibility to extremes of pH, 

temperature, external conditions, and catalytic efficiency [28,29]. In this context, thermostable 

enzymes play a critical role in withstanding the high temperatures inherent in industrial processes 

[10]. Microbial sources, especially fungi and bacteria, particularly those belonging to the Bacillus 

genus (e.g., B. subtilis, B. stearothermophilus, B. licheniformis, B. amyloliquefaciens), are often favored for 

industrial production due to their cost-effectiveness, consistency, efficient use of time and space, and 

ease of process modification and optimization [11]. 

The ongoing quest for novel thermostable α-amylases has extended to plant sources, seeking 

alternatives that meet the standards set by microbial sources. Plant-derived sources such as barley  

[30], mung bean [31], potato  [32,33], soybean [12], radish [34], red pitaya peel [35], wheat [36], broad 

bean [14], and sword bean [37] have been explored. Reports of thermostable α-amylases have 

emerged from plant sources cultivated in local areas, including Vicia faba (65 °C), red pitaya 

(Hylocereus polyrhizus) peel (70 °C), wheat (Triticum aestivum) seeds (68 °C), soybean (Glycine max) 

seeds (70 °C), mung bean (Vigna radiata) seeds (65 °C), and sword bean (Canavalia gladiate) seeds (70 

°C). Some sources of thermostable α-amylases and their respective industrial applications is listed in 

Table 2. 
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Table 2. Microbial Sources of thermostable α-amylases. 

Source of α-amylases 
Optimum 

Temperature 
Industrial applications References 

Actinomadura keratinilytica sp. Cpt29 70 °C Laundry detergent additive [138] 

Aeribacillus pallidus BTPS-2 70 °C Starch liquefcation [139] 

Anoxybacillus vranjensis ST4 60–80 °C Starch hydrolysis [140] 

Bacillus amyloliquefaciens BH072 60 °C Food processing [141] 

Bacillus cereus SP-CH11 65 °C Food processing [142] 

Bacillus licheniformis AT70 60 °C Starch degradation [143] 

Bacillus licheniformis NH1 strain 70 °C Laundry detergent additive [144] 

Bacillus licheniformis So-B3 70 °C Hydrolyzing raw starch [145] 

Bacillus sp. isolate A3-15 100 °C Textile industry [146] 

Bacillus tequilensis TB5 60 °C Textile de-sizer [147] 

Chromohalobacter sp. TVSP 101 65 °C Starch hydrolysis [148] 

Geobacillus thermoleovorans 80 °C 
Improvement of washing 

efficiency of detergents 
[149] 

Germinated wheat seeds  

(Triticum aestivum) 
68 °C Starch processing [36] 

Haloterrigena turkmenica 55 °C 
Agricultural residues 

treatment 
[150] 

Paecilomyces variotii 60 °C Starch degradation [151] 

Rhizomucor miehei 75 °C Food processing [152] 

Rhizopus oligosporus 60 °C Laundry detergent additive [153] 

Soybean (Glycine max) seeds 75 °C Starch liquefaction [12]  

Tepidimonas fonticaldi strain HB23 80 °C Laundry detergent additive [154] 

Thermomyces dupontii 60 °C Maltose syrup production [155]  

Listed are sources of α-amylases from different microbes with their optimum temperature which can be useful 

in the industrial purposes. 

Structural Characteristics and Catalytic Mechanism of -Amylases 

The architecture of α-amylases consists of a single polypeptide chain that folds into three 

distinctive domains (Figure 1): a) Domain A, the catalytic domain characterized by an N-terminal 

(β/α)8 barrel (also known as TIM barrel) structure, featuring eight parallel β-strands forming a barrel 

shape surrounded by eight α-helices; b) Domain B, an irregular β-rich structure that constitutes a 

significant portion of the substrate binding cleft, responsible for notable variations in size, structure, 

and substrate specificity among different α-amylases; and c) Domain C, forming the C-terminal 

segment of the sequence [38–40]. Some maltogenic amylases exhibit an additional D-domain after the 

C-domain, the function of which remains currently unknown [41]. 

The catalytic mechanism of α-amylases (α-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1) classifies 

them as endozymes within the glycosyl hydrolase (GH13 family), targeting internal α-glycosidic 

bonds in polysaccharides like starch, glycogen, and others, leading to the hydrolysis of these bonds 

and the production of α-anomeric mono- or oligosaccharides [42], as depicted in Figure 1. In plants, 

α-amylases play a crucial role in the degradation of stored starch in germinating seeds, releasing 

sugars essential for proper plant growth [43]. Unlike many other amylases exclusive to hydrolyzing 

α-D-(1,4)-glycosidic bonds, maltogenic amylases exhibit remarkable catalytic versatility, hydrolyzing 

both α-D-(1,4)- and α-D-(1,6)-glycosidic bonds and participating in transglycosylation reactions, 

transferring glycosyl units to the C3, C4, or C6 hydroxyl groups of diverse acceptor mono- or 

disaccharides [44]. 

With only a few exceptions, nearly all identified -amylases exhibit structural stability attributed 

to the presence of a calcium ion located at the interface between domains A and B. This stability is 

disrupted upon the removal of the calcium ion, leading to a noticeable decline in catalytic activity. A 
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prominent illustration of this phenomenon is the -amylase from Bacillus licheniformis (BLA), a 

hyperthermostable enzyme extensively utilized in biotechnology for starch and complex 

carbohydrate breakdown at temperatures reaching 110 oC, and also serving as a crucial component 

in detergents and baking additives [45]. The elucidation of BLA’s structure in the metal-containing 

state, coupled with cmalliomparisons to the apo-enzyme (calcium-depleted form), has provided 

insights into how metal ions regulate enzyme activity. Studies have revealed that the addition of 

calcium chelators significantly reduces the stability of BLA [46,47], resulting in a heightened 

susceptibility to proteolysis [48]. This serves as compelling evidence of the indispensable stabilizing 

role played by the calcium ion. Consequently, α-amylases are proposed as a novel category of 

metallo-enzymes distinguished by a prosthetic group—an alkaline-earth metal instead of a transition 

element. This group primarily serves a structural role, akin to disulfide bridges [49]. Calcium ions are 

believed to contribute structurally, positioned too distantly from the active site to directly participate 

in catalysis [50–52]. The heightened thermostability of the enzyme, attributed to calcium ions, is 

explained by their salting-out effect on hydrophobic residues within the protein, inducing a more 

compact structural conformation [53]. In certain α-amylases, the presence of a chloride ion in the 

active site enhances catalytic efficiency by inducing conformational changes around the active site, 

potentially by elevating the pKa (acid dissociation constant) of a hydrogen-donating residue in the 

active site.  

Factors Contributing to Stability in Thermostable -Amylases 

Thermostable enzymes serve as valuable models for comprehending the physico-chemical 

factors governing protein thermostability. Identifying the structural characteristics implicated in 

thermal stability facilitates the engineering and design of more robust enzymes for diverse industrial 

applications. Over the past two decades, α-amylase has emerged as a crucial model system for 

investigating the thermal adaptation of enzymes [40]. 

Studies based on amino acid sequence prediction, including the distribution of amino acids and 

dipeptide composition, help discern factors contributing to thermostability, distinguishing 

thermophilic and mesophilic proteins. Despite sequence identity and structural similarity, 

thermophilic proteins exhibit higher frequencies of charged, hydrophobic, and aromatic amino acids 

compared to mesophilic counterparts [54]. The presence of fewer cysteines in thermophilic proteins 

is associated with their oxidation at higher temperatures. Sequence analysis proves valuable in 

predicting protein thermostability when structural information is lacking. Comparing dynamic 

features of mesophilic proteins and their thermophilic homologs with increased sequence identity 

and structural similarity but distinct thermostability offers insights into the physical basis of protein 

stability [55]. Calcium ions play crucial roles in determining the structure, function, and stability of 

thermophilic α-amylases, providing resistance or tolerance to thermal inactivation by maintaining 

correct protein conformation [56–59]. The removal of calcium ions irreversibly inactivates barley α-

amylase, while calcium ion addition restores activity in certain bacterial α-amylases [60]. Mostly, all 

-amylases are Ca2+-dependent with some exceptions of Ca2+-independent -amylases [61–64]; and 

also, some -amylases that are inhibited by Ca2+ [65,66]. The role of -amylases is mainly structural 

because their catalytic sites are far away from the calcium-binding sites [52,53]. Several studies have 

been made on the effect of calcium ions on the activity and stability of -amylases from thermophiles 

which may help in determining the mechanism of Ca2+-binding proteins in the presence of extreme 

thermal environment as was investigated by Liao and coworkers in which they studied the influence 

of calcium ions on the structure and thermal characterization of α-amylase (AGXA) from 

thermophilic Anoxybacillus sp.GXS-BL [67].  

Multiple factors contribute to thermostability, such as increased hydrogen bonds, ionic and 

electrostatic interactions, hydrophobic interactions, disulfide bonds, metal binding, salt bridges, ion 

pairs, aromatic clusters, sidechain-sidechain interactions, shorter surface loops, GC-rich codons, 

charged amino acid ratios, amino acid preferences, post-translational modifications, and solute 

accumulation [11]. Thermophilic proteins are characterized by more rigid and compact packing 

density, lower thermal motion, decreased flexibility, shorter surface loops, stabilization by heat-stable 
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chaperones, reduced water-accessible hydrophobic surface, decreased entropy difference between 

folded and unfolded states, increased proline frequency, and decreased thermolabile residue 

occurrence compared to mesophilic counterparts [11,12]. 

In terms of industrial applications, enzyme stability is crucial, with a focus on thermodynamic 

and long-term stability. Various strategies for stability enhancement, including immobilization, 

addition of stabilizing agents, chemical modification, protein engineering, and genetic engineering 

through cloning and expression of thermostable α-amylase genes, have been explored. Site-directed 

mutagenesis and the revolutionary approach of directed evolution have emerged as promising 

strategies for thermostabilization [68,69]. Economic considerations in starch processing industries 

drive the need for α-amylases active at higher temperatures, and ongoing research has shifted the 

focus from stability engineering to pH activity profile and substrate specificity engineering, resulting 

in the development of α-amylases with novel and improved properties. 

Thermostable Laccases 

Laccases are recognized as environmentally friendly proteins and green biocatalysts, setting 

them apart from other oxidases. Unlike certain oxidases, laccases do not depend on toxic H2O2 or any 

mediator for the reduction reaction, and they exclusively generate water as the end product by 

reducing molecular oxygen. These glycoproteins exist in monomeric, dimeric, and tetrameric forms, 

displaying the ability to oxidize a wide range of inorganic substrates, aromatic compounds, and 

organic compounds. Primarily employed for the breakdown of chemical contaminants, laccase's low 

substrate specificity and monoelectronic oxidation of substrates in various complexes make it 

versatile [70]. Although laccase effectively degrades emerging contaminants, its application on a large 

scale necessitates features like reusability, thermostability, and operational stability. Achieving these 

characteristics often involves techniques such as immobilization and the production or isolation of 

robust laccase variants with desired attributes. 

Laccase, also identified as benzenediol:oxygen oxidoreductase (EC 1.10.3.2), stands as a crucial 

enzyme with a central role in diverse biological processes. This copper-containing enzyme serves as 

a catalyst for oxidizing a wide array of organic and inorganic compounds, facilitating the reduction 

of oxygen molecules to produce water as a byproduct. Its versatility in mediating oxidative reactions 

has sparked considerable interest in scientific research and industrial applications across various 

fields, including biotechnology, environmental science, and agriculture (Figure 2). In this context, 

there is a pressing need to delve deeper into the properties, functions, and applications of laccase, 

exploring its significance in different domains.  
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Figure 2. Schematic representations of laccases industrial applications, structural relation with 

thermostablilty and mechanism of catalytic functions. A. A comprehensive model of laccases uses in 

the diverse industrial applications. B. Structural representation of the crystal structure of the laccase 

from Bacillus subtilis (PDB 1GSK, [136]) showing the polypeptide chain with relative postioning of 

the three homologous cupredoxin domains, domain 1, 2, and 3 arranged, sequentially. Domain 2 joins 

A

B

C

Figure 2

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 April 2024                   doi:10.20944/preprints202404.1488.v1

https://doi.org/10.20944/preprints202404.1488.v1


 10 

 

and positions domains 1 and 3. Domain 1, 2, and 3 are depicted in red, blue, and green. C. Illustration 

representing the catalytic mechanism of laccases: the substrate-induced reduction of the T1 copper, 

followed by the transfer of electrons to the TNC and subsequent reduction of O2 (adapted from 

[94,137]. The first step is the oxidation of the substrate by mononuclear copper T1, which serves as an 

electron acceptor, converting Cu2+ to Cu+ oxidation state. After removing an electron from the 

substrate, an unstable cationic radical is formed which is oxidized by a second enzymatic reaction or 

undergo non-enzymatic reactions, such as hydration or polymerization. The electrons removed from 

the substrate at the T1 site are transferred to the T2/T3 center for conversion of O2 to H2O.  Complete 

reduction of molecular oxygen to water requires four molecules of reducing substrate. Thus, the 

stoichiometry of the enzymatic reaction of the catalytic mechanism of laccases is represented by the 

equation: 4RH + O2 → 4R + 2H2O, where RH signifies the substrate. 

Laccase exhibits a broad distribution in nature, being present in bacteria, fungi, plants, and 

insects. This widespread occurrence underscores the fundamental importance of laccase in nature 

and its relevance in various biological and ecological contexts. The diverse functions of laccases are 

contingent upon their source organism, contributing to processes such as lignin degradation, 

pigmentation, fruiting body formation, fungal morphogenesis, detoxification, sporulation, and 

pathogenesis in fungi; melanin formation, and endospore coat protein synthesis in bacteria; and 

lignification, wound healing, and iron oxidation in plants [71–76]. Thermostable laccases are 

advantageous for the eco-friendly remediation of hazardous synthetic dyes, particularly in the 

treatment of high-temperature dyeing wastewater. Table 3 lists some commercially available laccases 

with their industrial applications. 

Table 3. Commercially available Laccases and their industrial applications. 

Source of Laccases 
Commercial Name of 

Laccase 
Manufacturer 

Industrial 

applications 

Myceliophthora thermophila 

laccase expressed in 

Aspergillus oryzae 

Denilite™ I 

Denilite™ II 

Novozymes [156] 

Novozymes 
 

 Zylite Zytex Biotech Private Limited [156] Textile 

 Ecostone LC10 AB Enzymes GmbH  

 IndiStar Genencor International Inc.  

 Novoprime Base 268 Novozymes [157]  

 
Primagreen Ecofade 

LT100 
Genencor International Inc. [158]  

 Novozym®  51,003 
Novozymes [159] 

 
 

White-rot fungi 

(Phanerochaete 

chrysosporium, Trametes 

versicolor) 

Lignozym®  Process 

Laccase Y120 

Novozym®  51,003 

IBB Netzwerk GmbH [160] 

Amano Enzyme [161] 

Novozymes [159] 

 

Paper 

Food 

processing 

Filamentous fungi and 

yeasts 
Suberase®  Novozymes [162] Brewing 

Genetically engineered 

bacterial laccase 
MetZyme®  LIGNO™ MetZen [163] Bio-refinery 

Listed are commercial α-Laccases with their specific microbial sources, serving different industrial purposes. 

Sources: https://www.novozymes.com/en; https://www.zytex.com/; https://www.abenzymes.com/en/your-

industry/textiles/; https://www.textileweb.com/doc/genencor-launches-the-indistar-coloradjust-sy-0001. 

Examples of laccase sources reported from bacteria include Azospirrullum lipoferum [77], 

Anabaena azollae [78], Bacillus subtilis [79], Streptomyces cyaneus [80], S. lavendulae [81], and Marinomonas 

mediterranea [82]. In fungi, laccases are widely distributed in ascomycetes, basidiomycetes, and 

deuteromycetes, encompassing various species such as Trametes (Coriolus) versicolor, T. hirsute, T. 
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ochracea, T. villosa, T. gallica, Cerrena maxima, Phlebia radiata, Coriolopsis polyzona, Lentinus tigrinus, 

Pleurotus eryngii, Myceliophthora thermophila, Aspergillus, Curvularia, Penicillium, Chaetomium 

thermophile, Mycelia sterlia, Cantharellus cibarius, Lactarius piperatus, Russula delica, Thelephora terestris, 

Agaricus, Marasmius, Tricholoma, and Volvariella [83]. 

In contrast to fungal laccases, bacterial laccases exhibit higher activity and greater stability at 

elevated temperatures, high pH, and high concentrations of chloride and copper ions [84–86]. 

Laccases have also been reported in various plants, including Japanese lacquer tree (Rhus vernicifera), 

lacquer, mango, mung bean, peach, pine, prune, sycamore, Pinus taeda, Populus trichocarpa, Acer 

pseudoplatanus, Liriodendron tulipifera, Zinnia elegans, tobacco (Nicotiana tabacum), Zea mays, Lolium 

perenne, Leucaena leucocephala, and Carica papaya. Plant laccases generally exhibit a higher molecular 

mass compared to fungal laccases, attributed to the increased glycosylation in plant laccases (22-45%) 

compared to fungal counterparts (10-25%) [87]. Glycosylation significantly influences various aspects 

of laccase functionality, including copper retention, thermal stability, and enzymatic activity. Some 

sources of thermostable laccases with industrial applications is listed in Table 4. 

Table 4. Microbial Sources of thermostable Laccases. 

Source of Laccases 
Optimum 

Temperature 
Industrial applications References 

Agaricus bisporus CU13 55 °C Decolorization of synthetic dyes [164] 

Alcaligenes faecalis XF1 80 °C Decolorization of synthetic dyes [165] 

Azospirillum lipoferum 70 °C 
Ecological role in the process of root 

colonization 
[166] 

Bacillus altitudinis SL7 55 °C 

Bioremediation of lignin contaminated 

wastewater from pulp and paper 

industries 

[167] 

Bacillus sp. MSK-01 75 °C 
Proposed as an anti-proliferative 

agent to cancer cells 
[168] 

Bacillus sp. PC-3 60 °C 
Functionalization of chitosan film for 

antimicrobial activity 
[169,170]  

Bacillus subtilis 60 °C Biodegradation of the fungicide [171] 

Bacillus subtilis strain R5 55 °C Degradation of synthetic dyes [172] 

Caldalkalibacillus thermarum 

TA2.A1 
70 °C Lignin degradation [123] 

Coprinopsis cinerea 70 °C Wastewater treatment [173] 

Enterobacter sp. AI1 60 °C 
Degradation and detoxification of 

synthetic dyes 
[153] 

Galerina sp. HC1 60 °C Demethylation of lignin [174] 

Ganoderma lucidum KMK2 60 °C Decolorization of reactive dyes [175] 

Ganoderma multipileum 70 °C Biodegradation of chromium [176] 

Geobacillus stearothermophilus 

MB600 
90 ℃ Biodegradation of pollutants [70] 

Geobacillus yumthangensis 60 °C Degradation of organic pollutants [169] 

Klebsiella pneumoniae 70 ℃ Decolorization of synthetic dyes [177] 

Lactobacillus plantarum J16 CECT 

8944 
60 °C 

Eliminating toxic compounds present 

in fermented food and beverages 
[178] 

Litopenaeus vannamei >90 °C Marine bioremediation [179] 

Lysinibacillus fusiformis 80 °C 
Removal of sulfonamides and 

tetracyclines residues 
[180] 

Setosphearia turcica 60 °C Decolorization of malachite green [181] 

Staphylococcus haemolyticus 60 °C Textile finishing [182] 
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Streptomyces ipomoeae CECT 

3341 
60 ± 6 °C 

Decolorization and detoxification of 

textile dyes 
[183] 

Thermobaculum terrenum 80 °C Protein engineering studies [184] 

Thermus sp. 2.9 70 °C Delignification of Eucalyptus biomass [185] 

Trametes maxima IIPLC-32 50–70 °C 
Detoxification of phenolic inhibitors in 

lignocellulosic biomass 
[186] 

Trametes orientalis 80 °C 
Decolorization and bioremediation of 

synthetic dyes 
[187] 

Trametes trogii 70 °C Modification of kraft lignin [188] 

Leucaena leucocephala 80 °C Decolorization of synthetic dyes [98,189] 

Carica papaya 70 °C Dye decolorization [98,189] 

Listed are sources of laccases from diverse microbes with specific optimal temperatures which are proven to be 

useful in industrial applications. 

Laccase has gained attention for its versatile applications in biotechnological fields, including 

dye decolorization, biopulping, biobleaching, xenobiotic degradation, food processing, biopolymer 

modification, ethanol production, biosensor development, drug and organic synthesis, among others 

[83]. However, a common challenge with many isolated laccases is their relatively low enzyme 

activity yield and sensitivity to extreme conditions like temperature, pH, and metal ions. These 

limitations can impede their widespread use in large-scale commercial and industrial applications. 

Addressing these challenges, thermostability emerges as a crucial attribute. Thermostable laccases 

not only facilitate enzyme reactions at elevated temperatures with enhanced rates but also mitigate 

the risk of microbial contamination. They are particularly valuable in applications such as 

biobleaching of pulp and the treatment of colored industrial effluents. Thermostable laccases have 

been predominantly reported from thermophilic bacteria and fungi. Numerous approaches are 

currently under investigation to enhance laccase activity and mitigate thermal enzyme inactivation. 

While common strategies involve chemical modifications and enzyme immobilization on solid 

supports, these methods often pose challenges in terms of synthetic complexity and sustainability, 

leading to high costs. Recent studies explore the use of co-solvents like polyethylene glycol and ionic 

liquids, showing promise in improving reaction kinetics for enzymes like alcohol dehydrogenase and 

α-chymotrypsin. Additionally, deep eutectic solvents (DESs) have emerged as environmentally 

friendly alternatives for biotechnological applications, owing to their compatibility with enzymes 

[88]. DESs typically consist of a hydrogen bond acceptor (HBA), such as a salt, and a hydrogen bond 

donor (HBD), like polyols and sugars. The interaction between HBA and HBD forms hydrogen 

bonds, resulting in DESs with a significantly lower melting temperature compared to their individual 

components. Noteworthy properties associated with DESs include low flammability, low vapor 

pressure, high solvability, low volatility, thermal and chemical stability, and broad polarity. A 

specific category within DESs, referred to as natural deep eutectic solvents (NADESs), is exclusively 

prepared using raw materials derived from natural sources, such as sugars and amino acids [89]. This 

natural origin makes NADESs suitable for various food-related applications, including applications 

in food packaging. Multiple patents have been filed predominately from fungi between 2008 and 

2019, which are related to various applications and obtained from multiple sources.  

Structural Characteristics and Catalytic Mechanism of Laccases 

The three-dimensional structure of most of the laccases from bacteria, fungi, and plants reveals 

a polypeptide chain organized into three cupredoxin-like domains, domain 1, 2 and 3 arranged 

sequentially, as depicted in Figure 2 [83]. The function of domain 2 is to join and position domains 1 

and 3, and a trinuclear cluster (TNC) is formed at the interface between domains 1 and 3. Laccases, 

being copper-containing glycoproteins, exist in either dimeric or tetrameric forms, with each 

monomer housing four copper atoms. These copper sites in laccases fall into three distinct groups: 

Type-1 (blue copper center), Type-2 (normal copper), and Type-3 (coupled binuclear copper centers) 

[90,91], each exhibiting characteristic electronic paramagnetic resonance (EPR) signals. 
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Type-1 copper centers coordinate with two histidines, one cysteine, and one methionine as 

ligands, imparting the deep blue color to laccases with an intense electronic absorption band near 600 

nm (ε = 5000 M−1 cm−1). However, certain laccases, like the "white laccase" in Pleurotus ostreatus or 

'yellow laccases,' exhibit variations in absorption due to altered oxidation states or the presence of 

additional elements [92,93]. Type-2 copper, coordinated by two histidines and a water molecule, lacks 

visible spectrum absorption and is typically positioned near Type-3 copper. Type-3 copper, 

coordinated by three histidines and a hydroxyl bridge, displays electron absorption around 330 nm. 

The structure and properties of these copper centers classify laccases into low-redox potential 

(bacteria and plants) and high-redox potential (basidiomycetes, especially white-rot fungi) categories, 

influencing their suitability for diverse applications. 

The catalytic mechanism of laccase relies on the distributed copper atoms across three distinct 

centers (Figure 2). Three key steps characterize laccase-mediated catalysis: 

1. Type-1 Copper Reduction by Reducing Substrate: Laccase initiates the reaction by accepting 

electrons from the substrate, reducing the Type-1 copper center. 

2. Internal Electron Transfer: Electron transfer occurs from Type-1 to Type-2 and Type-3 copper 

centers, forming a trinuclear cluster. 

3. Reduction of Oxygen to Water: The trinuclear copper cluster reduces molecular oxygen to 

water, concluding the catalytic cycle. 

The overall reaction for laccase catalysis can be summarized as: 4RH + O2 → 4R• + 2H2O 

(Equation 1) Here, RH represents the substrate molecules, and laccase oxidizes these substrates 

(4RH), generating free radicals (4R•) and reducing molecular oxygen (O2) to water (2H2O). This 

underscores laccases' pivotal role in generating free radicals for diverse reactions, including 

polymerization. The oxidative capabilities of laccases can be enhanced in the presence of specific low-

molecular-weight compounds functioning as redox mediators, for example ABTS, 1-

hydroxybenzotriazole (HBT), violuric acid, 2,2,6,6,-tetramethyl-1-piperidinyloxy free radical 

(TEMPO), etc. The combination of laccases with these compounds in ‘laccase-mediator systems’ has 

proven to significantly broaden the substrate range of the enzymes and enhance their efficiency in 

oxidizing resistant molecules or complex polymers [94].  

Structure-Function Relationship among Laccases 

Laccases, renowned for their capacity to catalyze the oxidation of various compounds, 

demonstrate versatility in function and industrial applications. Among their diverse functions, 

lignification/delignification stands out as particularly significant due to its involvement in various 

industrial processes such as pulp and paper manufacturing, biobleaching, bioenergy production, 

biomass conversion, biofuel production, and environmental pollutant removal. Laccases also play 

roles in polymerization/depolymerization of lignin, fungal pathogenesis, wound healing, 

sclerotization, morphogenesis, sporulation, pigmentation, fruiting body formation, melanin 

formation, and endospore coat protein synthesis  [83,95–99].  

In the plant lignification process, monolignols undergo polymerization through 

dehydrogenation, facilitated by enzymes including laccases found in the cell wall. Experimental 

studies reveal that laccases from various plant species efficiently oxidize monolignols, contributing 

to dehydrogenative polymer formation [100–102]. Laccase expression, mainly in the secondary 

xylem, has been reported in trees like Populus trichocarpa and Pinus taeda, suggesting involvement in 

plant lignin biosynthesis. Plant transformation studies using laccase gene constructs further support 

this involvement [103–105]. In fungi, laccases mediate lignin biodegradation, breaking down lignin 

polymer through oxidative processes, releasing phenolic compounds [106]. As discussed before, 

directed evolution stands as a potent protein engineering strategy, employing iterative cycles of 

random mutagenesis and selection under specific selective pressures. This approach aims to fine-

tune the inherent characteristics of native enzymes, adapting them to the rigorous conditions of 

industrial operations or instilling them with new properties. Thus, by employing a combination of 
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enzyme-directed evolution and rational design, successfully engineered fungal laccases, produced in 

yeast, has been investigated to function effectively under alkaline pH and high temperatures. These 

optimized conditions align with the requirements commonly found in the kraft process and the 

manufacture of fiberboard. 

Despite sharing similar molecular architecture, plant and fungal laccases exhibit wide 

phylogenetic, physicochemical, and functional diversity [83,107,108].  Plant laccases participate in 

lignin biosynthesis, while fungal laccases are involved in lignin degradation or depolymerization. 

The redox potential of laccase is crucial, with fungal laccases (higher redox potential) capable of 

acting on both phenolic and non-phenolic subunits, contributing to lignin degradation. Plant laccases, 

with a lower redox potential, polymerize lignin by facilitating the coupling of phenoxy radicals [109]. 

pH dependence of fungal and plant laccases is proposed as a factor influencing their dual role 

in lignin degradation or synthesis [110,111].  Fungal laccases typically have low pH optima, adapted 

to acidic growth conditions, while plant laccases, being intracellular, have pH optima closer to the 

physiological range. Differences in pH optima may be linked to the dual function of laccases. 

Hakulinen and coworkers [112] have reported that the architectural differences at the C-terminal end 

of M. albomyces and T. versicolor laccases might be responsible for their role in lignification and 

delignification, respectively. 

The three-dimensional structure of laccases, leading to an altered microenvironment at the 

enzyme's active site, is suggested as the basis for their dual action in lignin biosynthesis and 

degradation. Structural distinctions in the C-terminal region have been reported, contributing to the 

role of laccases in lignification and delignification. Computational studies using bioinformatic tools 

have provided insights into the molecular basis of lignin synthesis and degradation, offering valuable 

information for future strategies aiming to modify laccase structure in plants and fungi to improve 

lignin biosynthesis and biodegradability [113]. 

Major Strategies to Enhance Thermostability 

α-Amylase serves as a crucial industrial biocatalyst in the process of starch liquefaction and also 

stands as a significant model enzyme for exploring thermal adaptation in proteins. Presently, there's 

a surge in demand for enzymes, particularly those adaptable to industrial applications, prompting 

researchers to delve into diverse sources like metagenomes [114]. Despite this, bacterial sources 

continue to dominate the industrial landscape due to their diversity and requisite properties, notably 

stability and functionality at high temperatures commonly encountered in industrial processes [115]. 

Enhancing the thermostability of an enzyme primarily involves three strategies. The first entails 

sourcing extremophiles in hopes of enzyme behavior mirroring that of its host. The second strategy 

involves shielding the enzyme structure through immobilization on suitable matrices like cloisites or 

via the addition of certain cations, crowding agents, and deep eutectic solvents [116–118]. However, 

both strategies have inherent limitations, such as the rarity of finding natural sources with desired 

industrial-grade properties and the inability of many enzymes to be stabilized using additives. Thus, 

consideration of a third strategy involving protein structure design or protein engineering to meet 

thermal stability demands arises [119]. This involves modifying key features of protein structure 

critical for thermal adaptation, including enhancing rigidity, reducing loop length, optimizing core 

packing, intensifying surface hydration, and designing stabilizing interactions like salt bridges and 

hydrophobic interactions.  

Numerous studies have explored the enhancement of enzyme thermostability through protein 

engineering. Protein engineering on hotspot residues is recognized as a highly effective strategy for 

enhancing both the stability and activity of enzymes. Computer modeling was employed to delve 

deeper into the structural underpinnings of the variance in thermostability between the wild-type 

enzyme and its variants. Thus, suggesting that augmenting the number of salt bridges and 

hydrophobic interactions surrounding Lys209 serves as the primary mechanism driving the 

enhanced compactness of the enzyme's protein structure [120]. Yuan’s group [121] studies on 

improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. 

Rational protein design, a top-down approach, aids in identifying necessary modifications for 
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achieving thermal stability but is hindered by the extensive information required for reliable 

predictions for each protein. An alternative approach to circumvent these limitations involves 

random alteration of protein structure, such as random mutagenesis, recombination, and targeted 

mutagenesis combined with computational biology, termed Computer-Aided Directed Evolution of 

Enzymes (CADEE). For instance, Suzuki’s group [24] utilized site-directed mutagenesis of the BAA 

gene, deleting Arg176 and Gly177 while substituting Ala for Lys269, to engineer a thermostable 

mutation.  

Wang’s group [122] endeavored to enhance the thermostability of α-amylase through 

combinatorial coevolving-site saturation mutagenesis, a pivotal strategy in directed protein 

evolution. Similarly, a directed evolution approach using a combination of random and site-directed 

mutagenesis was adopted to enhance the laccase activity of Caldalkalibacillus thermarum strain TA2.A1 

for its application in lignin degradation [123]. Li’s group [21] employed structure-based rational 

design to enhance the thermostability of AmyMH, the maltohexaose-forming α-amylase from 

Bacillus stearothermophilus, in the absence of added Ca2+. Thermostability of α-amylase is enhanced 

upon mutatiting S187D/N188T, A269K/S187D, and A269K/S187D/N188T via site-directed 

mutagenesis in B. licheniformis [124]. Through a systematic approach to enzyme engineering, which 

combined enzyme-directed evolution and rational design, Rodríguez-Escribano and coworkers [125] 

successfully altered the optimal pH of the laccase for lignin phenol oxidation from acidic to basic with 

an objective to cultivate laccases capable of operating under extreme conditions of high temperature 

and pH, characteristic of industrial wood conversion processes into kraft pulp and fiberboard. From 

a structural perspective, integrative strategies like enhancing substrate affinity, introducing 

electrostatic interactions, alleviating steric hindrance, increasing flexibility of the active site, N- and 

C-terminal engineering, and augmenting intramolecular and intermolecular hydrophobic 

interactions are well-established for improving both activity and thermostability [126].  

Current Challenges, Research Aims and Recent Advances in the Field of Thermostable α-

Amylases and Laccases  

Among the various commercially available enzymes, α-amylases seem to be the most versatile 

enzymes in the industrial enzyme sector no doubt due to the abundance of starch, with the 

applications ranging from the conversion of starch to sugar syrups, and the production 

of cyclodextrins for the pharmaceutical industry. With increase in their application spectrum, the 

research is focused on developing new α-amylases with more thermophilic, thermotolerant and pH 

tolerant characteristics to improve starch gelatinization, decrease media viscosity, accelerate catalytic 

reactions and decrease the risks of bacterial contamination. The most thermostable α-amylase 

currently used in industrial processes is from Bacillus licheniformis [127]. It remains active for several 

hours at 90 °C. One extracellular enzyme from Pyrococcus woesei was isolated that is active between 

40 °C and 130 °C with an optimum at 100 °C and pH 5.5 [128]. In spite of this, retaining high α-

amylase activity at pH around 4.0 is still desired for industrial starch processing. But there seemed to 

be no great progress in essence, and it needs some huge technological advances. Nevertheless, the 

structural and dynamic features of amylase may give some inspiration to understand or improve 

other enzymes’ thermostability, as the heat resistance is always a subject of unfailing interest [27]. In 

spite of the great significance of α-amylase in biotechnology, the greatest challenge of ensuring its 

stability for economic viability has to be taken into account. To address this challenge, recent attention 

has been directed towards enhancing both the functionality and stability of α-amylase. Various 

emerging technologies, including irradiation, pulsed electric field, high pressure, and sonication, 

have been employed to improve its secondary structure, thermal stability, and overall performance 

thereby resulting in economic benefits. These latest technologies stated in a recent review article, offer 

potential avenues for enhancing the stability and efficiency of α-amylase, thereby contributing to its 

utility in various industrial processes [129]. By optimizing these techniques, researchers aim to 

overcome the limitations associated with α-amylase stability and unlock its full potential for 

applications in biotechnology and related fields. Similarly, the current utilization of laccases in 

industry appears to be restricted in comparison to their potential. Efforts in research should prioritize 
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reducing production costs and enhancing the tools for precise control of reactions on specific 

polyphenols and other substrates targeted by these enzymes. Primary challenges related to the 

industrial deployment of laccases involve production expenses and the broad range of substrates 

they can act upon. While the extensive substrate diversity of laccases offers advantages for 

biodegradation purposes, it also presents hurdles in their commercial utilization within biocatalysis 

due to by-product formation resulting from free radical chemistry. Recent developments have 

introduced new areas of application such as plastic degradation, diagnostic tool development, among 

others. Therefore, it is reasonable to anticipate a rise in the number of patented innovations in the 

foreseeable future. Consequently, laccases are poised to penetrate a broader range of industrial 

sectors, potentially supplanting conventional methods with more environmentally sustainable 

production routes. 

Certainly, addressing the significant expenses associated with laccase manufacturing and 

purification stands as a paramount challenge that needs resolution to facilitate the enzyme's 

widespread utilization [130]. Various strategies have been investigated to mitigate enzyme 

production costs, such as on-site manufacturing, utilizing economical raw materials for enzyme 

synthesis, exploring novel enzymes with improved activity rates and versatile characteristics, 

employing cost-effective purification methods, and immobilizing enzymes. In order to fully envision 

the utilization of laccase on an industrial scale, its activity must be accurately quantifiable on complex 

substrates and within intricate matrices. Therefore, it becomes imperative to reliably quantify laccase 

activity on such substrates. Industrial applications often involve substrates much more intricate than 

those typically assessed using spectrophotometry (by monitoring the appearance of a coloured 

oxidation product), such as lignin, effluents, and textile dyes. Moreover, the complexity of matrices 

and mixtures necessitates the development of alternative analytical methods. A recent study [131] 

outlined several methods, including FTIR, fluorimetry, calorimetry, electrochemistry, and electron 

paramagnetic resonance, which could address this challenge. However, substantial optimization 

efforts are essential in the upcoming years before these methods can be considered routine analyses. 

Future Directions in the Field of Thermostable Enzymes 

In order to utilize thermostable enzymes for industrial purposes, it’s crucial to produce the 

enzyme on a large scale at a low cost. However, the traditional approach to enzyme production and 

purification is time-consuming and inefficient. Therefore, employing cloning, purification, and over-

expression techniques for such enzymes using a suitable expression system can effectively address 

this issue. It’s evident that further research is necessary in upcoming studies on thermostable 

enzymes to fully harness its industrial potential. There is significant potential for enhancing the 

thermal stability of enzymes. Studies that delve into assessing the thermostability of the mutant 

enzymes by examining disparities in model structures between the wild-type and mutant ones. Such 

analysis offers theoretical benchmarks for refining and developing thermostable enzymes. 

Additionally, introducing tailor-made approaches through systemic enzyme engineering, combining 

enzyme-directed evolution and rational design is an adapted endeavor nowadays aiming to furnish 

extremophilic biocatalysts capable of industrial applications. The generic techniques of protein 

purification and recovery that includes filtration followed by membrane ultrafiltration, precipitation 

followed by dialysis, freeze and thaw followed by centrifugation and chromatographic techniques 

demands several steps which are expensive and demand considerable time and energy [132]. Thus, 

there is an ample opportunity for enhancement in this connection. Nonetheless, encountering 

challenges persists in discovering a new enzyme with verified activity, largely due to the fact that 

many proteins are forecasted solely on sequence similarity, leaving their functions hypothetical. It is 

imperative to experimentally characterize predicted proteins to ascertain sequence-to-function 

correlations. 

Given the biotechnological significance of α-amylase, its substantial stability represents a 

paramount challenge for ensuring its economic feasibility. Hence, there has been a surge in interest 

in enhancing both its functionality and stability. In pursuit of this objective, a recent review has 
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outlined the utilization of a blend of emerging technologies alongside traditional approaches on α-

amylases from diverse sources. 

Environmental and health concerns in chemical hair dyeing, such as, laccases have attracted 

considerable interest due to their capability for cross-coupling polymerization of phenolic monomers 

and their high oxidation potential. For instance, a thermostable bacterial laccase derived from 

Brevibacillus agri (LacT) has demonstrated significant potential for widespread utilization in the hair 

dyeing industry as a substitute for conventional chemical hair dyes [133]. 

With the emerging advances in thermostable laccase and its current application in lignin-first, 

in future research should focus more on the interaction between thermostable laccases and lignin 

substrates. At present, the utilization of thermostable laccases exhibiting exceptional characteristics 

in various environments, their applications have mainly been confined to textile industry, paper 

industry and the oxidation of small molecular substrates. To date, only a handful of thermostable 

laccases have been employed in reactions involving macromolecular lignin, with thorough 

investigations into their mechanisms still lacking, thus demanding more extensive research on this. 

Moreover, for the specialized discovery of laccases, there is a necessity for further exploration and 

enhancement of methods in involving metagenomic DNA extraction or enrichment from thermal 

environments. 

Concluding Remarks 

Thermostable enzymes not only provide valuable insights into the thermodynamic stability of 

proteins from a fundamental standpoint but also contribute to understanding the intricate 

relationship between stability, flexibility, and catalytic efficiency. α-Amylases and laccases, 

considered as exemplary representatives of thermostable enzymes, hold immense significance in 

biotechnological and industrial applications. The heightened interest in these enzymes has sparked 

intensified research endeavors aiming to discover new and improved variants of α-amylases and 

laccases. Consequently, the current scenario emphasizes the need to explore additional sources of 

thermostable enzymes or enhance the thermotolerance of existing enzymes through genetic 

modifications or site-directed mutagenesis, with the goal of achieving specific and desired properties 

in these enzymes. 
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