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Article 

Bidirectional Optical Neural Networks Based on 

Free‐Space Optics Using Lens Arrays and Spatial 

Light Modulator 

Young‐Gu Ju 

Department of Physics Education, Kyungpook National University, 80 Daehak‐ro, Buk‐gu, Daegu 41566, 

Republic of Korea; ygju@knu.ac.kr; Tel.: +82‐(53)‐9505894 

Abstract:  This  paper  introduces  a  novel  architecture—bidirectional  optical  neural  network 

(BONN)—for providing backward connections alongside forward connections  in artificial neural 

networks (ANNs). BONN incorporates laser diodes and photodiodes and exploits the properties of 

Köhler illumination to establish optical channels for backward directions. Thus, it has bidirectional 

functionality  that  is  crucial  for algorithms  such as  the backpropagation algorithm. BONN has a 

scaling limit of 96 × 96 for input and output arrays, and a throughput of 8.5 × 1015 MAC/s. While 

BONN’s throughput may rise with additional layers for continuous input, limitations emerge in the 

backpropagation algorithm as  its  throughput doesn’t  scale with  layer  count. Successful BONN‐

based implementation of the backpropagation algorithm requires the development of fast spatial 

light modulator  to  accommodate  frequent data  flow  changes. A  two‐mirror‐like BONN  and  its 

cascaded extension are alternatives for multilayer emulation, and they help save hardware space 

and  increase  the parallel  throughput  for  inference. An  investigation  into  the  application  of  the 

clustering technique to BONN revealed its potential to help overcome scaling limits and to provide 

full  interconnections  for backward directions between doubled  input and output ports. BONN’s 

bidirectional  nature  holds promise  for  enhancing  supervised  learning  in ANNs  and  increasing 

hardware compactness. 

Keywords: optical neural network; optical computer; backpropagation; neural network; lens array; 

free‐space optics 

 

1. Introduction 

In recent decades, significant effort has been invested in developing optical computers for real‐

time data processing, owing  to  their potential advantages  in  terms of speed and parallelism over 

electronic computers [1–3]. However, optical computing has not surpassed digital computing due to 

the faster progress and greater power, ease of use, and flexibility of its competitor [4]. While digital 

optics lacks proper components to compete, combining optics and electronics could be fruitful, with 

optics being used for tasks where it excels. Free‐space optics [3] and smart pixels [5] are promising 

options  for overcoming  the  limitations of  electronic processors, with  the  former being  especially 

beneficial for artificial neural networks [6]. Unlike electrical interconnections, light paths in free‐space 

optics can cross freely, simplifying interconnections and reducing their fabrication costs. Although 

optical neural networks  (ONNs) have been  studied  extensively, because of  their  complexity  and 

bulkiness, they have not achieved commercial success comparable to that of digital electronics [1,2,7–

10]. 

A previous report [11] introduced a simple and scalable optical computer, referred to as linear 

combination optical engine (LCOE), to partition a neural network into linear optical and nonlinear 

electronic sections. Optics was used for linear calculations while electronics was employed to handle 

the nonlinear part, thereby maximizing the advantage of optical interconnections while maintaining 

parallelism. This system, based on Köhler illumination, exploits the parallelism of free‐space optics 
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and  the electronics such as smart pixels. A hardware demonstration  involving a  lens array and a 

spatial  light modulator  (SLM)  showed  the LCOE’s potential,  and  the  scalability  and  throughput 

limitations were ascertained through a theoretical analysis. Furthermore, a clustering technique was 

proposed to overcome scalability limitations. Although the architecture’s simplicity and scalability 

could  enhance  optical  parallelism,  making  it  attractive  for  neural  network  applications  with 

numerous  synaptic  connections,  its  use may  be  restricted  to  inference  algorithms  owing  to  the 

absence of a path for backward propagation of light. 

Here, we propose a bidirectional optical neural network  (BONN) capable of providing  light 

paths in both forward and backward directions. This bidirectional feature renders it suitable for use 

in  algorithms  such  as  the  backpropagation  algorithm, which  is  used  for  supervised  learning  in 

artificial neural networks. After  explaining  the BONN architecture, we present  an  analysis of  its 

performance and limitations. 

2. Materials and Methods 

To  comprehend  BONN’s  architecture,  one  should  possess  a  good  understanding  of  the 

backpropagation  algorithm  [12,13], which  is used  in neural networks. Figure  1 presents  a visual 

representation  of  this  fundamental  algorithm.  It depicts  a neural network  comprising  two  input 

nodes  and  four  output  nodes  interconnected  by  synapses,  along  with  the  mathematical 

representations of both types of nodes. The weighted input  𝑧௜
ሺ௟ሻ
  is introduced since it will be used 

for  theoretically  explaining  the backpropagation  algorithm,  and  ∇_𝑧௜
ሺ௟ሻ
,  referred  to  as  sensitivity, 

represents the gradient of the cost function with respect to the weighted input. The sensitivity of a 

layer is linked to the sensitivities of subsequent layers through the weights connecting them. Hence, 

the sensitivities of the last layer propagate backward until they reach the first layer. The computed 

sensitivities with respect to the weighted input are used to compute the sensitivities with respect to 

the weight and bias. The sensitivities are then used to adjust the current values of weights and biases 

in order to minimize the errors between the final output values and the target values. 

 

Figure  1. Example  of  a  simple  backpropagation  algorithm used  in  a neural network,  along with 

mathematical  formulae;  𝑎௜
ሺ௟ሻ
  is  the  ith  input  or  output  node  in  the  lth  layer,  𝑤௜௝   is  the weight 

connecting the jth input node and the ith output node,  𝑏௜  is the ith bias,  𝑧௜
ሺ௟ሻ
  is the weighted input to 

the neurons in the lth layer, E is the cost function,  𝑡௜
ሺ௟ሻ
  is the target value;  ∇_  (referred to as sensitivity) 

represents the gradient of the cost function with respect to the following variable, and σ is a sigmoid 

function. 

Figure 2(a) shows the concept of the proposed BONN. The neural network depicted in Figure 1 

has been  transformed  into a hardware  schematic,  incorporating components such as  laser diodes 
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(LDs), lenses, an SLM, detectors, and electronics. However, the order of the output nodes has been 

reversed, and the number of output nodes has been reduced to two. BONN shares similarities with 

the LCOE, and the main distinction lies in the inclusion of additional LDs adjacent to the photodiodes 

(PDs)  on  the  second  substrate,  and  extra  PDs  adjacent  to  the  LDs  on  the  first  substrate.  These 

supplementary LDs and PDs  facilitate  the  creation of backward  light paths  that are  required  for 

implementing the backpropagation algorithm. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 2. Bidirectional optical neural network (BONN) based on Köhler illumination and free‐space 

optics.  It consists of  lens arrays and a spatial  light modulator.  (a) A schematic of BONN, and  the 

related mathematical formulae.  𝐿𝐷௜
ሺ௟ሻ
,  𝑃𝐷௜

ሺ௟ሻ
, and 𝑅௝௞  denote the ith laser diode, photodiode, and ray 

in the lth layer for the forward direction, respectively, and  𝐿𝐷′௜
ሺ௟ሻ
,  𝑃𝐷′௜

ሺ௟ሻ
, and  𝑅′௝௞  represent the ith 

laser diode, photodiode, and ray in the lth layer for the backward direction, respectively.  𝐿ଵ௣,  𝐿ଶ௣, 

and  𝐿ଷ଴  represent lens array 1, lens array 2, and lens 3, respectively.  𝐸𝑃௜
ሺ௟ሻ
  and  𝑆𝐿𝑀௜

ሺ௟ሻ
  represent the 

ith electronic processor and the spatial light modulator (SLM) in the lth layer, respectively. The red 

dashed oval indicates a synaptic node. (b) A schematic of the laser diode (𝐿𝐷′௜
ሺଵሻሻ  for the backward 

direction; the abbreviation LD represents “laser diode.” (c) A cascadable multilayer BONN. (d) Three‐

dimensional view of a BONN system with a 2 × 2 input and a 3 × 3 output. 

For the forward direction, the light paths and functions of components are similar to those of the 

LCOE  architecture proposed  in Ref.  [11]. An LD  replaces  the  input node,  and  it  emits  two  rays 

directed at lens array 1. The rays are collimated by the lens array, and the collimated rays reach the 

SLM. Each SLM pixel transmits a ray with a preset weight that passes through lens array 2. This lens 

array focuses the incident rays, with the angle of each ray depending on the position of the pixel that 

emitted the ray. Lens 3 sorts incoming rays into spots according to the equal‐inclination rule. If the 

distance between the SLM and lens array 2 equals the focal length of lens 2 and the detector plane is 

at the focus of lens 3, the SLM and detector planes are conjugate. In this case, ray illumination areas 

can be clearly defined and channel crosstalk is reduced. Detectors collect rays with equal angles from 

different LDs or  inputs with preset weights,  forming an output of a  linear  combination of  input 

signals. This optical system, known as the LCOE, performs parallel, one‐step calculations at the speed 

of light for inputs with preset weights. In the neural network community, this forward computation 

is termed “inference.” While the SLM‐based LCOE is reconfigurable, it is better suited for inference 

tasks when its switching speed is lower. 

For the backward direction, light is emitted by the LDs located on the second substrate, which 

also contains the PDs for the forward light propagation. To differentiate the LDs and PDs used for 

the backward direction  from  those used  for  the  forward direction, we denote  them by  𝐿𝐷′௜
ሺଵሻ
and 

𝑃𝐷′௜
ሺଵሻ
  in  Figure  2(a).  The  rays  for  the  backward  direction  are  depicted  by  thicker  dashed  lines 

(magenta and green). The LDs receive information such as  ∇_𝑧௜
ሺ௟ሻ
  from the nearby output node or, 

more specifically, the electronic processor. The ray emitted by the LDs passes through lens 3, lens 2, 

and  the SLM pixel  in  the case of backward directions. The SLM pixels for backward direction are 

denoted  by  a  primed weight  parameter,  and  they  are  positioned  next  to  those  for  the  forward 

direction with the same transmission values or weight factors. It should be noted that the backward 

rays  pass  through  the  SLM  pixels  at  an  angle,  while  the  forward  rays  are  horizontal.  This 

characteristic can be explained by considering the properties of Köhler illumination, since BONN can 

be  considered  as  a modified version of LCOE, which  is based on Köhler  illumination  [14,15].  In 

BONN, lenses 2 and 3 form a projection system where the SLM and the second substrate are conjugate. 

Since the images of SLM pixels are  𝑃𝐷௜
ሺଵሻ
  and  𝐿𝐷′௜

ሺଵሻ
, the distance between SLM pixels is magnified 

into the distance between the LDs and PDs on the second substrate. Suppose that two rays  𝑅′଴଴  and 
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𝑅′଴଴௔  start from  𝐿𝐷′଴
ሺଵሻ
  and that they cross at the pixel labeled as  𝑤′଴଴

ሺଵሻ
. An auxiliary or fictitious ray 

𝑅′଴଴௔  is introduced to explain the actual light path from  𝐿𝐷′଴
ሺଵሻ
. Since  𝑅′଴଴௔  follows a path similar to 

that of forward rays, it is horizontal at the SLM pixel. The angle between the two rays at the SLM 

plane and the second substrate is related to the magnification of the projection system. Therefore, if 

𝑅′଴଴  has a certain angle from  𝑅′଴଴௔  on the second substrate, it will have a certain fixed slope at the 

SLM plane,  resulting  in a  fixed position of  𝑃𝐷′଴
ሺ଴ሻ
  on  the  first  substrate  and maintaining  a  fixed 

distance from the corresponding  𝐿𝐷଴
ሺ଴ሻ
. In this manner, backward rays from different  𝐿𝐷′௜

ሺଵሻ
  can be 

collected  by  𝑃𝐷′௜
ሺ଴ሻ
  on  the  first  substrate.  Through  the  backward  light  paths,  the  sensitivity 

information  can be  transferred  to  the  electronic processors  in  the previous  layer. This backward 

information transfer renders BONN suitable for use in the backpropagation algorithm. 

Since the values of  𝑎௝
ሺ௟ିଵሻ

  and  ∇_𝑧௜
ሺ௟ሻ
  are required for the calculation of  ∇_𝑤௜௝

ሺ௟ሻ
, the detectors and 

electronic processor are better located near  𝑤௜௝
ሺ௟ሻ
  or  𝑤′௜௝

ሺ௟ሻ
  pixels on the SLM substrate. The portion of 

light transmitted through these two pixels can be used to obtain the values of  𝑎௝
ሺ௟ିଵሻ

  and  ∇_𝑧௜
ሺ௟ሻ
. The 

values obtained by the detectors are provided to the electronic processor for the calculation of  ∇_𝑤௜௝
ሺ௟ሻ
. 

More detailed features of the LD for the backward direction are shown in Figure 2(b). The use 

of a grating and a prism facilitate the emission of multiple rays and the control of their directions. 

These controls of the light source can also be achieved by using diffractive optical elements (DOEs) 

[16], which allow  for  the generation of an arbitrary number of beams  in arbitrary directions. For 

controlling the beam divergence, we can insert a lens between the LD and the grating. The function 

of a lens can also be incorporated into a DOE. 

The proposed BONN system can be extended to implement multilayer neural networks in the 

direction of beam propagation since multiple BONN systems can be cascaded. For both forward and 

backward directions, the signal from the output node is directly provided to the corresponding input 

of  the  LD.  Thus,  two  LDs  for  the  two  directions,  two  PDs  for  the  two  directions,  and  the 

corresponding electronic processor can  form a synaptic node. The  red dashed oval  in Figure 2(a) 

shows a synaptic node. An example of a multilayer BONN is depicted in Figure 2(c). If the system 

has M inputs, N outputs, and L layers, M × N × L calculations can be performed in parallel in a single 

step. For forward calculations, this significantly increases the throughput, which is beneficial for real‐

time inference applications with continuous input flow. The increase in throughput resulting from 

the  introduction of additional  layers also applies  to backward calculations, provided  the  input  is 

continuous. 

In Figure 2(d), a 3D view of a sample system with a 2 × 2 input and a 3 × 3 output is presented 

for easy comprehension of the BONN setup by the reader. 

Notably,  incorporating  incoherent  light  in  BONN  does  not  allow  for  the  representation  of 

negative weights, which are necessary for inhibitory connections in neural networks. While the use 

of  coherent  light and  interference effects  can  enable  the  system  to  represent  subtraction between 

inputs, such use may render the system complex and increase noise. To address this challenge, we 

employed  two optical channels  for one output, and we separated  inputs associated with positive 

weights from those linked to negative weights, as depicted  in Figure 3. This method for handling 

negative weights has been previously used in forward direction optical computers such as the LCOE 

[11] and lenslet array processors [17]. Each channel optically sums the products of input values and 

their weights, which is followed by electronic subtraction between the two channels. It is noteworthy 

that when the positive weight is used, the corresponding weight in the negative channel is set to zero, 

and when the negative weight is used, the corresponding weight in the positive channel is set to zero. 

This subtraction approach streamlines the structure at the cost of an additional channel. The use of 

separate channels for positive and negative weights is termed “difference mode,” while the use of a 

single channel (seen in Figure 2(a)) is termed “nondifference mode.” Since two channels are used for 

the forward direction and two more channels are used for backward directions, four channels or four 

SLM pixels are required to implement a single bidirectional channel, as shown in Figure 3. 
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Figure 3. Schematic of difference mode BONN. Symbols such as  𝑋௬௣  with a subscript ending with 

“p”  pertain  to  the  positive  channel, while  those  such  as  𝑋௬௡   with  a  subscript  ending with  “n” 

represent the negative channel. Otherwise, the notation is identical to that used in Figure 2(a). The 

black dashed oval shows a synaptic node. 

3. Results 

The scalability and throughput limitations of BONN were assessed using a method similar to 

that employed for the LCOE in Reference [11]. Since BONN shares similarities with the LCOE,  its 

scalability  limitations primarily stem from geometrical aberration rather than diffraction effects or 

geometric image magnification. 

If a worst‐case angular aberration of 1 mrad and f/# of 2 are assumed, the maximum input and 

output array  sizes are  restricted  to 192 × 192. Each bidirectional  channel  for  the difference mode 

comprises four subchannels or four SLM pixels, resulting in a maximum input or output array of 96 

×  96  under  the  same  optical  constraints  as  those  used  in  Reference  [11]. With  these  scalability 

considerations,  the number of connections, equivalent  to  the number of multiply and accumulate 

(MAC) operations in one instruction cycle, was estimated to be approximately (96 × 96)2, resulting in 

about 8.5 × 107 MAC operations. Assuming electronic processing delays of 10 ns, we estimated the 

optical  computer’s  throughput  to  reach  8.5  ×  1015 MAC/s.  This  throughput  can  potentially  be 

increased by  incorporating multiple  layers. While multiple  layers may  introduce data processing 

delays, they operate simultaneously, akin to pipelining in a digital computer. Since modern neural 

networks often involve hundreds of layers, the total throughput can be augmented accordingly. For 

instance, with 100 layers, the throughput can surge to 8.5 × 1017 MAC/s, surpassing the throughput 

of a tensor processing unit, which is 3.93 × 1014 floating‐point operations per second [18]. 

However, the above parallel throughput estimation is for the assumption that the input flow is 

continuous, which  is  typical  for  forward  direction  data  flow  in  inference  applications.  For  the 

backpropagation algorithm,  the data  flow  is not continuous but occurs  in a single pass, which  is 

sequential.  Therefore,  the  parallel  throughput  does  not  increase with  the  number  of  layers.  In 

practice, the maximum throughput for backward data flow is only 8.5 × 1015 MAC/s. 

There is another major problem in realizing BONN in hardware. Training the neural network 

requires that the data flow forward and backward in turn numerous times. Consequently, the pixel 

values of the SLM should be updated whenever the direction of data flow changes. The time span 

between the updating processes is approximately the product of the delay time of the electronics in 

a single layer and the number of layers. For instance, if the system comprises 100 layers, the refresh 

time would be about 1 μs. 
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Nevertheless, the majority of currently available SLMs exhibit sluggish performance, leading to 

significant latency [19,20], and the low refresh rate of SLMs significantly affects the throughput of 

BONN. Despite advances in micro‐electro‐mechanical systems (MEMS) technology, most SLMs still 

operate within  a  range  of  tens  of  kilohertz,  significantly  slower  than  electronic  switches, which 

introduces substantial latency in BONN operations. 

An  alternative  approach  to  realizing BONN  involves  the development  of  high‐speed  SLMs 

based  on  absorption  modulation  [21].  However,  developing  a  novel  SLM  device  is  extremely 

challenging, requiring considerable time and effort. Since this BONN architecture demonstrates the 

feasibility of a high‐throughput ONN in theory, it may serve as an example of applications that could 

require the future development of high‐speed SLMs. 

4. Discussion 

Besides  its  use  in  implementing  the  backpropagation  algorithm,  BONN  can  be  used  to 

implement a compact ONN for inference applications. The simplest example of a compact ONN can 

be realized using a two‐layer or two‐mirror‐like BONN (TMLBONN), where the data flows back and 

forth between two  layers, emulating LT  layer LCOE, updating the weights read from the memory 

inside electronic processors connected  to  the SLM pixels. Although  the parallel throughput of the 

TMLBONN for inference is reduced by a factor of LT compared with the LT layer LCOE that works 

simultaneously for continuous input, the volume of the ONN hardware is also reduced by a factor of 

LT. 

Since the TMLBONN is cascadable for an odd LT, it can be extended into multiple TMLBONN 

structures to increase the parallel throughput for continuous input data. For example, if a TMLBONN 

can emulate a five‐layer BONN by bouncing data back and forth between two layers, 20 cascaded 

TMLBONNs  can  replace  a  100‐layer  BONN.  Since  the  input  and  output  layers  of  a  cascaded 

TMLBONN  can  be  installed  on  a  single  substrate,  the  actual  number  of  layers  in  20  cascaded 

TMLBONNs is 20, excluding the zeroth layer. The use of the TMLBONN reduces the volume of the 

system by about five times compared with a 100‐layer BONN. In terms of parallel throughput, 20 

cascaded TMLBONNs show higher performance than a single TMLBONN by a factor of 20, as all 20 

TMLBONNs operate simultaneously. Since the time delay of a TMLBONN increases five times, its 

performance gain is four times that of a single‐layer BONN. Therefore, if a BONN has a throughput 

of 8.5 × 1015 MAC/s, 20 cascaded TMLBONNs with five foldings have a throughput of 3.4 × 1016 MAC/s 

and  hardware  that  is  five  times more  compact  than  100  layer LCOE.  This  compact  structure  is 

recommended for form‐factor critical applications and in the early stage of the construction of BONN, 

since a two‐layer system is cheaper and easier to assemble than a multilayer system. 

In a previous report  [11],  the use of  the clustering  technique was suggested  to overcome  the 

scaling limit of LCOE. It is worth investigating the possibility of using the clustering technique in the 

BONN architecture, since the technique may provide scalability and a corresponding increase in the 

parallel throughput as the scaling proceeds, at least theoretically. 

The clustering  technique creates a new optical module with doubled  input and output array 

sizes by assembling basic optical modules. Similar to mathematical induction, clustering can continue 

and increase the number of connections and throughput by four times at each step. The simplest basic 

optical module has two input and two output ports, similar to the optical module shown in Figure 

2(a). Since BONN is bidirectional, an output port can be used as an input port with reverse data flow. 

If reverse data flow occurs in a clustering structure as observed in Reference [11], data flow starts 

from the new input (old output) ports of the clustering structure, passes through splitting, cross, and 

straight‐through connections, and full interconnection modules. The final data appears at the new 

output (old input) ports with the weighted sum of all input ports, resulting in full connection between 

the  doubled  input  and  output  ports  under  reverse  data  flow.  Thus,  the  clustering  technique  is 

applicable to BONN and can be used to overcome the scaling limit of BONN. 
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5. Conclusions 

We propose BONN  to provide backward connections  in addition  to  the  forward connections 

available  in  the  LCOE  architecture.  The  use  of  the  properties  of Köhler  illumination  in  BONN 

facilitates the addition of LDs and PDs to provide optical channels for backward directions. BONN’s 

bidirectional nature can support algorithms such as the backpropagation algorithm in artificial neural 

networks. 

The scaling limit of BONN is about (96 x 96) for input and output arrays under the same optical 

constraints used for the analysis of the LCOE in Reference [11]. If electronic processing delays of 10 

ns are assumed, the throughput of BONN can reach 8.5 × 1015 MAC/s. While the BONN throughput 

can increase with the number of layers for continuous input, since the backpropagation algorithm’s 

data flow occurs in a single pass, the increase in the parallel throughput with the number of layers is 

limited. The maximum throughput for backward data flow is capped at 8.5 × 1015 MAC/s. 

The successful implementation of the backpropagation algorithm by using BONN depends on 

the development of fast SLM devices, since neural network training requires frequent changes in data 

flow between forward and backward directions. Such frequent changes require the SLM pixel value 

to  be  updated. A  100‐layer  system  requires  a  refresh  time  on  the  order  of microseconds, while 

currently available SLMs with LCD and MEMS technology have longer switching times. Developing 

SLMs based on absorption modulation could be a solution, but it would require significant time and 

effort. 

We considered another application of BONN: in inference to realize small form factor hardware. 

TMLBONN can emulate a multilayer BONN through data transmission back and forth between two 

layers albeit with a  longer time delay. More bounces or  foldings between the two  layers can save 

hardware space by the same factor as the number of foldings. Multiple TMLBONNs can be cascaded 

to  increase  the  parallel  throughput.  The  use  of multiple  TMLBONN  structures  can  reduce  the 

hardware volume and provide reasonable performance gain. 

Finally,  we  investigated  the  possibility  of  applying  the  clustering  technique  to  BONN  to 

overcome the scaling limit. BONN’s bidirectionality caused the basic optical module of the cluster to 

operate backward. The reverse data flow provided full interconnections for the backward direction 

between the doubled new input and output ports. We expect that owing to its bidirectionality, BONN 

will  be  widely  used  in  algorithms  such  as  the  backpropagation  algorithm,  which  is  used  for 

supervised  learning  in artificial neural networks. Furthermore,  the TMLBONN structure can help 

increase the compactness of inference hardware. 
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