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Abstract: Premalignant lesions in the bronchial epithelium represent early stages of squamous cell lung
carcinoma, challenging to detect with conventional methods. While previous studies have focused on gene
expression, here we examine transcriptomic alterations associated with lesion development with the emphasis
on protein-coding transcripts. We reanalyzed publicly available RN Aseq dataset on airway epithelial cells from
82 smokers with and without premalignant lesions. Transcript abundances were quantified using kallisto, and
differential expression and transcript usage analysis was conducted using the sleuth and RATs packages.
Functional characterization included overrepresentation analysis (clusterProfiler), weighted co-expression
network analysis (WGCNA), and network analysis (Enrichr-KG). We detected 5,906 differentially expressed
transcripts, with significant enrichment in pathways related to oxidative phosphorylation and mitochondrial
function. Transcript-level WGCNA identified single module correlated with dysplasia status, enriched in
cilium-related biological processes. Analysis of hubs within this module highlighted key genes including
RABL2B, DNAH1, EFHC1 and VWABS3A, and revealed transcription factors such as FOXJ1 and ZNF474 as
potential regulators. Our findings underscore the value of transcript-level analysis in uncovering novel insights
into premalignant lesion biology. By examining transcripts rather than genes, we identified potential
biomarkers associated with early lung carcinogenesis.
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1. Introduction

Premalignant lesions (PMLs) are early precursors of squamous cell lung carcinoma originating
in the bronchial epithelium, characterized by histological changes in the large airways, and are
challenging to visualize with conventional bronchoscopy [1]. Autofluorescence bronchoscopy has
been tailored for preinvasive lesion detection and has enhanced sensitivity in identifying such lesions
[2]. However, this method is a costly and intricate technique with limited applicability in extensive
screening programs. Hence, there is a crucial need for more cost-effective, simple, and scalable
methods of PML detection to prevent the development of squamous cell lung carcinoma [3].

Scientific interest in the biology of preinvasive stages has sparked the publication of several
articles focusing on characterizing molecular alterations accompanying PMLs. The study published
by Beane and colleagues [4] identified 280 genes in the airway field associated with premalignant
lung lesions, revealing that several biological processes including oxidative phosphorylation,
electron transport chain, and mitochondrial protein transport are notably upregulated. They have
also shown that bronchial brushes from normal-appearing areas of the mainstem bronchus could
predict the presence of PMLs. A subsequent publication used gene expression to suggest that PML
may be divided into four molecular subtypes (proliferative, inflammatory, secretory, and normal-
like). Merrick et al [5] investigated differences in gene expression profiles between persistent and
regressive bronchial dysplasia, revealing 395 differentially expressed genes and 31 significantly
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altered pathways associated with cell-cycle control, proliferation, inflammation, and epithelial
differentiation. Teixeira et al [6] comprehensively profiled the genomic, transcriptomic, and
epigenomic characteristics of carcinoma in situ lesions revealing progression-specific methylation
changes alongside a strong chromosomal instability signature.

While aforementioned studies have primarily relied on gene expression analysis, an increasing
volume of literature underscores the biomedical significance of protein isoforms, as these variants,
originating from the same gene, can exhibit diverse biological functions and contribute differently to
cellular processes [7-10], including oncogenesis [11,12]. In this study, we conducted a higher-
resolution analysis of the transcriptomic profiles of both normal and PML samples, with a specific
focus on protein-coding transcripts rather than genes. We show that transcript-level analysis allows
to detect new biological processes and potential biomarkers of the earliest stages of lung cancer
development, including possible targets for squamous cell carcinoma chemoprevention.

2. Results

2.1. Functional Enrichment of Differentially Expressed Transcripts

Transcriptomics data (GSE79209) obtained by Beane et al. [4] were downloaded from the GEO
database. The initial dataset consisted of 82 samples and showed no significant differences in clinical
traits in the dataset, such as COPD and reported smoking history between the subjects. Similar to
Beane et al. [4], brushes with the worst histology of metaplasia (n=7) were excluded. Reads were
pseudoaligned to the human transcriptome using the kallisto software. This resulted in a total of
227,665 transcripts quantifications for each of the 75 samples.

We conducted differential expression analysis, comparing 25 samples with no evidence of PMLs
(samples with no abnormal fluorescing areas or biopsies having normal or hyperplasia histology)
against 50 samples with evidence of PMLs (biopsies having mild, moderate, or severe dysplasia).
Differentially expressed transcripts (DETs) were identified using the sleuth package [13]. Total 84,625
transcripts passed the default initial filtering used by the sleuth (at least 5 mapped reads to a transcript
in at least 47% of the samples). According to the Wald test, there were 5,906 DETs encoding for 4,122
genes between normal and PML classes (g-value less than 0.05). Among the 5,906 DETs discovered
~40% of transcripts belonged to the "protein_coding class according to the Ensembl annotation, 37%
transcripts were classified as "retained_intron", and 10% transcripts were classified as "IncRNA".

We then turned to the functional enrichment analysis of the identified DETs to gain insights into
the biological pathways and processes associated with the differentially expressed transcripts, see
Figure 1. We report that pathways identified via DET-based enrichment analysis (1,910 protein-
coding genes) are consistent with the previous findings provided by Beane et al. [4]. There is
significant enrichment of pathways related to Cytoplasmic ribosomal proteins (FDR = 5.9E-55),
Electron transport chain OXPHOS system in mitochondria (FDR = 1.2E-38), Nonalcoholic fatty liver
disease (FDR = 1.8E-19) and Oxidative phosphorylation (FDR = 2.7E-18). Full results of the DET
functional enrichment analysis are available in Supplementary Table S1.
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Figure 1. Functional enrichment analysis of transcripts differentially expressed between normal and
PML samples. Genesets obtained from the WikiPathways resource, top-15 pathways are visualized.

Using the transcript abundances quantified by kallisto, the gene-level test implemented in RATs
package identified two events of differential transcript usage between normal and dysplasia classes:
MRPS25 (mitochondrial ribosomal protein S25, FDR=3.6E-5) and COLCA1 (colorectal cancer
associated 1, 3.8E-22).

2.2. Weighted Coexpression Network Analysis

To gain more insights into PML-related processes we utilized a Weighted Gene Co-expression
Network Analysis (WGCNA) [14]. Log-transformed TPM values from top-10% of the most variable
protein coding transcripts were used to derive the co-expression network (total 8,343 transcripts).
The soft-threshold parameter was selected equal to 4 (Supplementary Figure S1).

A total of nine co-expression modules covering 6,466 transcripts were identified by the WGCNA
analysis (Supplementary Table S2). There were 1,877 transcripts classified by WGCNA as being not
co-expressed and therefore assigned to the "grey" module. Each of the nine modules was correlated
with available sample metadata to reveal a subset of co-expressed transcripts associated with clinical
traits. Results of the correlation analysis are presented in Figure 2.
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Figure 2. Correlation between co-expressed module eigengenes and clinical traits. Number of
transcripts for each module is given in parentheses. Each cell contains the value of Pearson correlation
and the p-value for the null hypothesis that the corresponding correlation coefficient is equal to zero.

There was a single module ("yellow") consisting of 687 transcripts that had a statistically
significant correlation with dysplasia status (R=0.26, p=0.02), while the second best-correlated module
("brown", 727 transcripts) had a non-significant correlation (R=-0.10 and p=0.4). No modules were
significantly associated with sex and COPD status. We found no modules that were significantly
correlated with the worst histology. Several modules were found to be associated with smoking. The
highest correlation (R=0.31, p=0.006) was observed for the "yellow" module, while the "green" module
showed the second-best absolute correlation (R=-0.29, p=0.01), followed by the "black" module
(R=0.26, p=0.03). Overall, these results suggest that the "yellow" module contains co-expressed
transcripts associated with the development of the precancerous disease state.

2.3. Enrichment Analysis

We then turned to the biological interpretation of the "yellow" module, since it was found as the
only module significantly correlated with dysplasia status. The transcripts of the "yellow" module
were mapped to genes and subjected to enrichment analysis against biological processes and cellular
components described in Gene Ontology, see Figure 3.
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Figure 3. Functional enrichment analysis of transcripts belonging to the "yellow" module. Treeplots
for significantly enriched Gene Ontology terms for biological processes (A) and cellular components
(B). The circle size is proportional to the number of genes annotated as belonging to the term, the
circle color encodes the adjusted p-value of enrichment significance. Gene-concept networks for top-
5 significantly enriched Gene Ontology terms for biological processes (C) and cellular components
(D).

We found that the "yellow" module is significantly enriched in biological processes associated
with cilium organization (GO:0044782, FDR = 4.2E-14), cilium assembly (GO:0060271, FDR = 9.0E-15),
and cilium movement (GO:0003341, FDR = 1.5E-13). Another cluster of enriched GO terms is also
related to cilium activity and generally represents cilium-dependent cell motility (GO:0060285, FDR=
1.8E-8). Finally, there is a cluster of significantly enriched terms not related to cilium and it is formed
by biological processes related to mRNA splicing (GO:0000398, FDR=1.3E-4) and its regulation
(GO:0050684, FDR=5.0E-3). Expectedly, the analysis results for cellular components also demonstrate
enrichment of the "yellow" cluster with cilium-related terms including axoneme (GO:0005930, FDR =
8.0E-13), motile cilium (GO:0031514, FDR=9.0E-13), dynein complex (GO:0030286, FDR=5.4E-5) and
others.

Gene-level analysis found several genes that are involved in multiple cilium-related biological
processes and cellular components like DNAHS5 (dynein axonemal heavy chain 5), CFAP221 (cilia
and flagella associated protein 221), ODADI1 (outer dynein arm docking complex subunit 1), TTLL3
(Tubulin Tyrosine Ligase Like 3), HYDIN (axonemal central pair apparatus protein).
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2.4. Network Analysis

We proceeded to identify the most significant transcripts that play a pivotal role within the
“yellow” module. We defined hubs as transcripts that should satisfy two requirements. The first
requirement was the high Pearson correlation of transcript expression with the module "main
direction” (first principal component), the threshold was selected as 0.93. The second requirement
was the significant differential expression between normal and dysplasia samples. There were a total
of 16 transcripts that satisfied both requirements, enlisted in Supplementary Table S3.

We performed an in-depth analysis of identified hubs via Enrichr-KG resource [15]. This web
service combines geneset enrichment analysis with a knowledge graph data representation and
returns a network containing the top enriched terms from multiple libraries connected to the
overlapping genes, see Figure 4. The network consisted of 33 nodes connected with 63 edges. Nodes
included transcript hubs, transcription factors from ARCHS4 coexpression [16], biological processes
from Gene Ontology [17], cell types and tissues from Descartes [18], pathways from WikiPathways
[19] and diseases from DisGeNet [20].
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Figure 4. Network produced by Enrichr-KG, which links the top enriched terms with the hubs from
the "yellow" module. Transcripts and genes having at least two connections to the neighboring nodes

are visualized.

Consistent with the analysis of the whole "yellow" module described in the previous section, the
network built for only hubs also indicated the involvement of various cilium-related bioprocesses
(cillium organization, GO:0044872; cilium assembly, GO:0060271) and pathways (Ciliopathies,
WP4803). The most connected cell type was "Ciliated epithelial cells in Lung" (7 connections),
followed by "Ciliated epithelial cells in Stomach" (4 connections).

The most connected gene was RABL2B (ENST00000395590, 10 connections). This gene encodes
for GTPase required for ciliation. Kanie et al. demonstrated that the RABL2B GTPase complex,
recruited by CEP19, plays a pivotal role in releasing pre-docked IFT-B complexes at the ciliary base,
thereby initiating the entry of intraflagellar transport complexes into the cilium [21]. Three other hub
transcripts each having 9 connections were: DNAH1(ENST00000420323, Dynein Axonemal Heavy
Chain 1), EFHC1(ENST00000635996, EF-hand domain containing 1), VWA3A (ENST00000563389,
von Willebrand factor A domain containing 3A). Of note, VWAB3A has a total of five protein-coding
transcripts and three of them (ENST00000389398, ENST00000563389, ENST00000563755) passed the
top-10% variability filter and were attributed to the "yellow" module.

Enrichment analysis identified several transcription factors that co-regulate selected hubs. Two
of them (FOX]J1 and ZNF474) regulated five hubs. While FOX]1 is known to be the master regulator
of motile ciliogenesis [22], the molecular function of ZNF474, a zinc finger protein, is rarely
reported. Other transcription factors include DZIP1L, RFX2, and TP73. Transcription factor DZIP1L
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is located in the ciliary basal body and is known to be involved in cilium assembly and at the same
time regulates Hedgehog signaling by interacting with GLI3 [23]. Transcription factor RFX2
coordinates multiple gene expression programs in the multi-ciliated epithelial cells, regulating cell
movement, ciliogenesis, and cilia function [24]. Research is investigating the connection between REX
transcription factors and tumor formation and prognosis [25]. It was found that both protein and
mRNA levels of ciliogenesis-associated markers FOX]J1 and P73 were significantly increased in
patients with nasal polyps and associated with abnormal cilia architecture [26]. Autosomal-recessive
deleterious variants in TP73 cause a mucociliary clearance disorder due to a defect in multiciliated
cell differentiation [27].

3. Discussion

In the present study, we reanalyzed the dataset from Beane et al.[4] from two distinct
perspectives. The first one is the focus on the differentially expressed transcripts, rather than genes,
thus providing a more detailed understanding of gene regulation and isoform-specific effects. The
other aspect involves the application of Weighted Gene Co-expression Network Analysis, a technique
for the exploration of co-expressed transcripts modules and capable of capturing subtle changes in
expression patterns, which may not be detected by traditional DEG-based analysis.

While taking a different approach to the analysis, we were able to reproduce the main findings
from Beane et al. [4], such as the identification of activated pathways related to oxidative
phosphorylation and the electron transport chain. Of note, this connection between the PML-
associated field of injury and processes linked to oxidative phosphorylation and the electron
transport chain was experimentally validated through immunohistochemistry (IHC) and
bioenergetics studies.

Furthermore, transcript-level analysis coupled with WGCNA enabled us to discover additional
biological processes related to PML development. The main finding is the association between the
development of premalignant bronchial lesions and dysregulation of cilium-related cell processes.
Increasing evidence suggests the critical role of the primary cilium in modulating various aspects of
oncogenic signaling pathways, immunological responses, and inflammation [28]. It was found that
primary cilia coordinate multiple signaling pathways, such as Hedgehog, TGFf/BMP, G-protein-
coupled receptors, WNT, receptor tyrosine kinase to regulate developmental processes, tissue
plasticity, and organ function [29]. Given the role of primary cilia in cell cycle regulation, their
involvement in tumorigenesis is plausible, supported by the dysregulated expression of cilia-related
genes across various tumor types [30]. While limited data exist on airway cilia in lung cancer,
histologic changes from normal to dysplastic to cancerous tissues involve cilia loss, and marked
downregulation of ciliated cell genes correlates with a more aggressive clinical phenotype in a subset
of lung adenocarcinoma [31].

Our analysis predicted some cilia-related genes and transcripts associated with premalignant
lesion development. Some of them are known to be associated with cancerogenesis. For example,
tubulin glycine ligase TTLL3 knockdown decreased primary cilia and increased colon epithelial cell
proliferation, promoting CRC development in mice and correlating with human CRC progression
[32]. For other genes such as VWA3A or EFHC1 we were unable to find significant confirmations in
the literature. However, we speculate that identified genes and transcription factors could serve as
potential drug targets or biomarkers of PML development. The discovery of a link between anticancer
drug resistance and primary ciliary dynamics highlights the significance of primary cilia as a crucial
target organelle for combatting drug resistance in cancer treatment, thus emphasizing the urgent
need for research in this area to develop novel strategies [33]

Overall presented transcript-level analysis provides insight into the molecular mechanisms
underlying PML development, emphasizing the dysregulation of cilium-related processes. By
exploring isoforms that may influence cancer development and investigating potential differences in
isoform functions resulting from carcinogen exposure, we aim to contribute to the understanding of
PML progression. Identified transcripts and transcription factors may serve as potential biomarkers
or drug targets for prevention of squamous cell lung carcinoma. However further research into the


https://doi.org/10.20944/preprints202404.1357.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1357.v1

8

role of cilia-related processes in lung tumorigenesis is warranted to develop novel therapeutic
strategies.

4. Materials and Methods

4.1. Transcript Quantification and Differential Expression Analyses

A total of 75 files in the SRA format were downloaded from the NCBI GEO resource, dataset
identifier GSE79209 [4] and converted to the FASTQ format via the fastq-dump utility (NCBI SRA
toolkit). Quality trimming and adapter clipping were performed with fastp [34] using the default
settings with subsequent quality control performed with fastQC
[https://www .bioinformatics.babraham.ac.uk/projects/fastqc/]. Transcript abundances in TPM units
were quantified via kallisto [35] with default settings except for a change in the number of bootstraps,
which was set to 200. The index file for kallisto constructed from the Ensembl reference
transcriptomes (version 108) was acquired from the website [https://github.com/pachterlab/kallisto-
transcriptome-indices]. Differential transcript expression was identified via the sleuth package [13],
which leverages the bootstrap estimates from kallisto output. We used the Wald test implemented in
sleuth with default settings; a cutoff g-value set as 0.05. Differential transcript usage was calculated
using RATSs software [36] based on the transcript abundance quantitation and bootstrap analysis from
kallisto output. The following parameters were used: dprop_thresh = 0.1, use_sums=TRUE.

4.2. Functional Enrichment Analysis of Differentially Expressed Transcripts

All protein-coding transcripts with significant differential expression (q-value<0.05) were
mapped to the corresponding genes and subjected to enrichment analysis using the enrichWP
function from the R package 'clusterProfiler' [37], with maxGSSize parameter set to 200. Pathway
content was downloaded from the WikiPathways resource [38]. Significantly enriched pathways
(FDR less than 0.05) were visualized using the dotplot function.

4.3. Weighted Coexpression Network Analysis

All the protein-coding transcripts were ranked by variance from large to small, and the log-
transformed TPM values from the top-10% transcripts were selected as input for the weighted
correlation network analysis using the R package WGCNA [14]. The pickSoftThreshold() function was
used to screen the soft-threshold parameter, which ranged from 1 to 20. A soft threshold was selected
to maximize the scale free topology model fit. The automatic network construction and module
detection was performed using blockwiseModules() function with the following parameters:
pamRespectsDendro = TRUE, minModuleSize = 20, maxBlockSize = 4000, reassignThreshold = 0,
mergeCutHeight = 0.25. The correlation between each gene's expression values and the first principal
component of each module (eigengene) provided a measure of the proximity between a gene and a
specific module, so-called kME values. Module eigengenes were subjected to Pearson correlation
analysis with clinical traits to identify modules that showed significant associations with the clinical
characteristics (COPD status, dysplasia status, maximum histology grade, packs per year, sex and
smoking status).

4.4. The Module of Interest Enrichment

Similar to the enrichment of differentially expressed transcripts, all protein-coding transcripts
from the module of interest were mapped to genes and subjected to enrichment analysis against Gene
Ontology terms (biological processes and cellular components) using the enrichGO function from the
'clusterProfiler' [37]. Significantly enriched terms (FDR less than 0.05) were visualized using functions
treeplot and cnetplot.


https://doi.org/10.20944/preprints202404.1357.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1357.v1

4.5. Analysis of Hub Genes

Module hubs were defined as transcripts that satisfied two criteria: 1) were detected by sleuth as
significantly differentially expressed between normal and dysplasia classes (Wald test g-value less
than 0.05) 2) had absolute Pearson correlation between expression and eigengene of the yellow
module greater than 0.93. Network visualization and enrichment analysis of the identified hub
transcripts were performed using Enrichr-KG web-server application [15]. All settings were set to
default except for "Minimum links per gene" = 2. The following geneset libraries were used:
Descartes_Cell_Types_and_Tissue_2021, WikiPathway_2021_Human, Gene Ontology (biological
process), DisGeNet, ARCHS4_TFs_Coexp.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: WGCNA diagnostics plot; Table S1: Enrichment analysis of
differentially expressed transcripts; Table S2: Description and WGCNA module assignment for top-10% most
varying transcripts; Table S3: Hub transcripts of the “yellow” module.
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