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Abstract:  Premalignant  lesions  in  the  bronchial  epithelium  represent  early  stages  of  squamous  cell  lung 

carcinoma, challenging  to detect with conventional methods. While previous studies have  focused on gene 

expression, here we examine transcriptomic alterations associated with lesion development with the emphasis 

on protein‐coding transcripts. We reanalyzed publicly available RNAseq dataset on airway epithelial cells from 

82 smokers with and without premalignant lesions. Transcript abundances were quantified using kallisto, and 

differential  expression  and  transcript usage  analysis was  conducted using  the  sleuth  and RATs packages. 

Functional  characterization  included  overrepresentation  analysis  (clusterProfiler), weighted  co‐expression 

network analysis (WGCNA), and network analysis (Enrichr‐KG). We detected 5,906 differentially expressed 

transcripts, with significant enrichment in pathways related to oxidative phosphorylation and mitochondrial 

function.  Transcript‐level WGCNA  identified  single module  correlated with  dysplasia  status,  enriched  in 

cilium‐related  biological  processes. Analysis  of  hubs within  this module  highlighted  key  genes  including 

RABL2B, DNAH1, EFHC1 and VWA3A, and  revealed  transcription  factors  such as FOXJ1 and ZNF474 as 

potential regulators. Our findings underscore the value of transcript‐level analysis in uncovering novel insights 

into  premalignant  lesion  biology.  By  examining  transcripts  rather  than  genes,  we  identified  potential 

biomarkers associated with early lung carcinogenesis. 
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1. Introduction 

Premalignant lesions (PMLs) are early precursors of squamous cell lung carcinoma originating 

in  the  bronchial  epithelium,  characterized  by  histological  changes  in  the  large  airways,  and  are 

challenging  to visualize with conventional bronchoscopy  [1]. Autofluorescence bronchoscopy has 

been tailored for preinvasive lesion detection and has enhanced sensitivity in identifying such lesions 

[2]. However, this method is a costly and intricate technique with limited applicability in extensive 

screening  programs. Hence,  there  is  a  crucial  need  for more  cost‐effective,  simple,  and  scalable 

methods of PML detection to prevent the development of squamous cell lung carcinoma [3]. 

Scientific  interest  in  the biology of preinvasive stages has  sparked  the publication of several 

articles focusing on characterizing molecular alterations accompanying PMLs. The study published 

by Beane and colleagues [4]  identified 280 genes  in the airway field associated with premalignant 

lung  lesions,  revealing  that  several  biological  processes  including  oxidative  phosphorylation, 

electron transport chain, and mitochondrial protein  transport are notably upregulated. They have 

also shown  that bronchial brushes  from normal‐appearing areas of  the mainstem bronchus could 

predict the presence of PMLs. A subsequent publication used gene expression to suggest that PML 

may be divided  into four molecular subtypes  (proliferative,  inflammatory, secretory, and normal‐

like). Merrick et al  [5]  investigated differences  in gene expression profiles between persistent and 

regressive  bronchial  dysplasia,  revealing  395  differentially  expressed  genes  and  31  significantly 
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altered  pathways  associated  with  cell‐cycle  control,  proliferation,  inflammation,  and  epithelial 

differentiation.  Teixeira  et  al  [6]  comprehensively  profiled  the  genomic,  transcriptomic,  and 

epigenomic characteristics of carcinoma  in  situ  lesions  revealing progression‐specific methylation 

changes alongside a strong chromosomal instability signature.   

While aforementioned studies have primarily relied on gene expression analysis, an increasing 

volume of literature underscores the biomedical significance of protein isoforms, as these variants, 

originating from the same gene, can exhibit diverse biological functions and contribute differently to 

cellular  processes  [7–10],  including  oncogenesis  [11,12].  In  this  study,  we  conducted  a  higher‐

resolution analysis of the transcriptomic profiles of both normal and PML samples, with a specific 

focus on protein‐coding transcripts rather than genes. We show that transcript‐level analysis allows 

to detect new biological processes  and potential biomarkers of  the  earliest  stages of  lung  cancer 

development, including possible targets for squamous cell carcinoma chemoprevention. 

2. Results 

2.1. Functional Enrichment of Differentially Expressed Transcripts 

Transcriptomics data (GSE79209) obtained by Beane et al. [4] were downloaded from the GEO 

database. The initial dataset consisted of 82 samples and showed no significant differences in clinical 

traits in the dataset, such as COPD and reported smoking history between the subjects. Similar to 

Beane et al.  [4], brushes with  the worst histology of metaplasia  (n=7) were excluded. Reads were 

pseudoaligned  to  the human  transcriptome using  the  kallisto  software. This  resulted  in a  total of 

227,665 transcripts quantifications for each of the 75 samples. 

We conducted differential expression analysis, comparing 25 samples with no evidence of PMLs 

(samples with no abnormal  fluorescing areas or biopsies having normal or hyperplasia histology) 

against 50 samples with evidence of PMLs  (biopsies having mild, moderate, or severe dysplasia). 

Differentially expressed transcripts (DETs) were identified using the sleuth package [13]. Total 84,625 

transcripts passed the default initial filtering used by the sleuth (at least 5 mapped reads to a transcript 

in at least 47% of the samples). According to the Wald test, there were 5,906 DETs encoding for 4,122 

genes between normal and PML classes (q‐value less than 0.05). Among the 5,906 DETs discovered 

~40% of transcripts belonged to the ʺprotein_coding class according to the Ensembl annotation, 37% 

transcripts were classified as ʺretained_intronʺ, and 10% transcripts were classified as ʺlncRNAʺ. 

We then turned to the functional enrichment analysis of the identified DETs to gain insights into 

the biological pathways and processes associated with  the differentially expressed transcripts, see 

Figure  1. We  report  that pathways  identified  via DET‐based  enrichment  analysis  (1,910 protein‐

coding  genes)  are  consistent with  the  previous  findings  provided  by  Beane  et  al.  [4].  There  is 

significant  enrichment  of  pathways  related  to  Cytoplasmic  ribosomal  proteins  (FDR  =  5.9E‐55), 

Electron transport chain OXPHOS system in mitochondria (FDR = 1.2E‐38), Nonalcoholic fatty liver 

disease  (FDR  =  1.8E‐19)  and Oxidative phosphorylation  (FDR  =  2.7E‐18). Full  results of  the DET 

functional enrichment analysis are available in Supplementary Table S1.   
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Figure 1. Functional enrichment analysis of transcripts differentially expressed between normal and 

PML samples. Genesets obtained from the WikiPathways resource, top‐15 pathways are visualized. 

Using the transcript abundances quantified by kallisto, the gene‐level test implemented in RATs 

package identified two events of differential transcript usage between normal and dysplasia classes: 

MRPS25  (mitochondrial  ribosomal  protein  S25,  FDR=3.6E‐5)  and  COLCA1  (colorectal  cancer 

associated 1, 3.8E‐22). 

2.2. Weighted Coexpression Network Analysis 

To gain more insights into PML‐related processes we utilized a Weighted Gene Co‐expression 

Network Analysis (WGCNA) [14]. Log‐transformed TPM values from top‐10% of the most variable 

protein coding  transcripts were used  to derive  the co‐expression network  (total 8,343  transcripts). 

The soft‐threshold parameter was selected equal to 4 (Supplementary Figure S1). 

A total of nine co‐expression modules covering 6,466 transcripts were identified by the WGCNA 

analysis (Supplementary Table S2). There were 1,877 transcripts classified by WGCNA as being not 

co‐expressed and therefore assigned to the ʺgreyʺ module. Each of the nine modules was correlated 

with available sample metadata to reveal a subset of co‐expressed transcripts associated with clinical 

traits. Results of the correlation analysis are presented in Figure 2.   
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Figure  2.  Correlation  between  co‐expressed  module  eigengenes  and  clinical  traits.  Number  of 

transcripts for each module is given in parentheses. Each cell contains the value of Pearson correlation 

and the p‐value for the null hypothesis that the corresponding correlation coefficient is equal to zero. 

There was  a  single module  (ʺyellowʺ)  consisting  of  687  transcripts  that  had  a  statistically 

significant correlation with dysplasia status (R=0.26, p=0.02), while the second best‐correlated module 

(ʺbrownʺ, 727  transcripts) had a non‐significant correlation (R=‐0.10 and p=0.4). No modules were 

significantly associated with sex and COPD status. We  found no modules  that were significantly 

correlated with the worst histology. Several modules were found to be associated with smoking. The 

highest correlation (R=0.31, p=0.006) was observed for the ̋ yellowʺ module, while the ̋ greenʺ module 

showed  the  second‐best  absolute  correlation  (R=‐0.29,  p=0.01),  followed  by  the  ʺblackʺ module 

(R=0.26,  p=0.03).  Overall,  these  results  suggest  that  the  ʺyellowʺ module  contains  co‐expressed 

transcripts associated with the development of the precancerous disease state. 

2.3. Enrichment Analysis 

We then turned to the biological interpretation of the ʺyellowʺ module, since it was found as the 

only module significantly correlated with dysplasia status. The transcripts of the ʺyellowʺ module 

were mapped to genes and subjected to enrichment analysis against biological processes and cellular 

components described in Gene Ontology, see Figure 3. 
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Figure 3. Functional enrichment analysis of transcripts belonging to the ʺyellowʺ module. Treeplots 

for significantly enriched Gene Ontology terms for biological processes (A) and cellular components 

(B). The circle size  is proportional to the number of genes annotated as belonging to the term, the 

circle color encodes the adjusted p‐value of enrichment significance. Gene‐concept networks for top‐

5 significantly enriched Gene Ontology terms for biological processes (C) and cellular components 

(D). 

We found that the ʺyellowʺ module is significantly enriched in biological processes associated 

with cilium organization (GO:0044782, FDR = 4.2E‐14), cilium assembly (GO:0060271, FDR = 9.0E‐15), 

and cilium movement  (GO:0003341, FDR = 1.5E‐13). Another cluster of enriched GO terms  is also 

related to cilium activity and generally represents cilium−dependent cell motility (GO:0060285, FDR= 

1.8E‐8). Finally, there is a cluster of significantly enriched terms not related to cilium and it is formed 

by  biological  processes  related  to mRNA  splicing  (GO:0000398,  FDR=1.3E‐4)  and  its  regulation 

(GO:0050684, FDR=5.0E‐3). Expectedly, the analysis results for cellular components also demonstrate 

enrichment of the ʺyellowʺ cluster with cilium‐related terms including axoneme (GO:0005930, FDR = 

8.0E‐13), motile cilium (GO:0031514, FDR=9.0E‐13), dynein complex (GO:0030286, FDR=5.4E‐5) and 

others. 

Gene‐level analysis found several genes that are involved in multiple cilium‐related biological 

processes and cellular components like DNAH5 (dynein axonemal heavy chain 5), CFAP221 (cilia 

and flagella associated protein 221), ODAD1 (outer dynein arm docking complex subunit 1), TTLL3 

(Tubulin Tyrosine Ligase Like 3), HYDIN (axonemal central pair apparatus protein). 
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2.4. Network Analysis 

We proceeded  to  identify  the most  significant  transcripts  that play a pivotal  role within  the 

“yellow” module. We defined hubs as  transcripts  that  should  satisfy  two  requirements. The  first 

requirement was  the  high  Pearson  correlation  of  transcript  expression with  the module  ʺmain 

directionʺ (first principal component),  the  threshold was selected as 0.93. The second requirement 

was the significant differential expression between normal and dysplasia samples. There were a total 

of 16 transcripts that satisfied both requirements, enlisted in Supplementary Table S3.   

We performed an in‐depth analysis of identified hubs via Enrichr‐KG resource [15]. This web 

service  combines  geneset  enrichment  analysis with  a  knowledge  graph  data  representation  and 

returns  a  network  containing  the  top  enriched  terms  from multiple  libraries  connected  to  the 

overlapping genes, see Figure 4. The network consisted of 33 nodes connected with 63 edges. Nodes 

included transcript hubs, transcription factors from ARCHS4 coexpression [16], biological processes 

from Gene Ontology [17], cell types and tissues from Descartes [18], pathways from WikiPathways 

[19] and diseases from DisGeNet [20]. 

 

Figure 4. Network produced by Enrichr‐KG, which links the top enriched terms with the hubs from 

the ʺyellowʺ module. Transcripts and genes having at least two connections to the neighboring nodes 

are visualized. 

Consistent with the analysis of the whole ʺyellowʺ module described in the previous section, the 

network built  for only hubs also indicated the involvement of various cilium‐related bioprocesses 

(cillium  organization,  GO:0044872;  cilium  assembly,  GO:0060271)  and  pathways  (Ciliopathies, 

WP4803).  The most  connected  cell  type was  ʺCiliated  epithelial  cells  in  Lungʺ  (7  connections), 

followed by ʺCiliated epithelial cells in Stomachʺ (4 connections).   

The most connected gene was RABL2B (ENST00000395590, 10 connections). This gene encodes 

for GTPase  required  for  ciliation. Kanie  et  al.  demonstrated  that  the RABL2B GTPase  complex, 

recruited by CEP19, plays a pivotal role in releasing pre‐docked IFT‐B complexes at the ciliary base, 

thereby initiating the entry of intraflagellar transport complexes into the cilium [21]. Three other hub 

transcripts each having 9 connections were: DNAH1(ENST00000420323, Dynein Axonemal Heavy 

Chain  1), EFHC1(ENST00000635996, EF‐hand domain  containing  1), VWA3A  (ENST00000563389, 

von Willebrand factor A domain containing 3A). Of note, VWA3A has a total of five protein‐coding 

transcripts and three of them (ENST00000389398, ENST00000563389, ENST00000563755) passed the 

top‐10% variability filter and were attributed to the ʺyellowʺ module. 

Enrichment analysis identified several transcription factors that co‐regulate selected hubs. Two 

of them (FOXJ1 and ZNF474) regulated five hubs. While FOXJ1 is known to be the master regulator 

of  motile  ciliogenesis  [22],  the  molecular  function  of  ZNF474,  a  zinc  finger  protein,  is  rarely 

reported. Other transcription factors include DZIP1L, RFX2, and TP73. Transcription factor DZIP1L 
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is located in the ciliary basal body and is known to be involved in cilium assembly and at the same 

time  regulates  Hedgehog  signaling  by  interacting  with  GLI3  [23].  Transcription  factor  RFX2 

coordinates multiple gene expression programs in the multi‐ciliated epithelial cells, regulating cell 

movement, ciliogenesis, and cilia function [24]. Research is investigating the connection between RFX 

transcription  factors and  tumor  formation and prognosis  [25].  It was  found  that both protein and 

mRNA  levels  of  ciliogenesis‐associated markers  FOXJ1  and  P73 were  significantly  increased  in 

patients with nasal polyps and associated with abnormal cilia architecture [26]. Autosomal‐recessive 

deleterious variants in TP73 cause a mucociliary clearance disorder due to a defect in multiciliated 

cell differentiation [27]. 

3. Discussion 

In  the  present  study,  we  reanalyzed  the  dataset  from  Beane  et  al.[4]  from  two  distinct 

perspectives. The first one is the focus on the differentially expressed transcripts, rather than genes, 

thus providing a more detailed understanding of gene regulation and isoform‐specific effects. The 

other aspect involves the application of Weighted Gene Co‐expression Network Analysis, a technique 

for the exploration of co‐expressed transcripts modules and capable of capturing subtle changes in 

expression patterns, which may not be detected by traditional DEG‐based analysis. 

While taking a different approach to the analysis, we were able to reproduce the main findings 

from  Beane  et  al.  [4],  such  as  the  identification  of  activated  pathways  related  to  oxidative 

phosphorylation  and  the  electron  transport  chain.  Of  note,  this  connection  between  the  PML‐

associated  field  of  injury  and  processes  linked  to  oxidative  phosphorylation  and  the  electron 

transport  chain  was  experimentally  validated  through  immunohistochemistry  (IHC)  and 

bioenergetics studies. 

Furthermore, transcript‐level analysis coupled with WGCNA enabled us to discover additional 

biological processes related to PML development. The main finding is the association between the 

development of premalignant bronchial  lesions and dysregulation of cilium‐related cell processes. 

Increasing evidence suggests the critical role of the primary cilium in modulating various aspects of 

oncogenic signaling pathways, immunological responses, and inflammation [28]. It was found that 

primary  cilia  coordinate multiple  signaling pathways,  such as Hedgehog, TGFβ/BMP, G‐protein‐

coupled  receptors, WNT,  receptor  tyrosine  kinase  to  regulate  developmental  processes,  tissue 

plasticity,  and  organ  function  [29]. Given  the  role  of  primary  cilia  in  cell  cycle  regulation,  their 

involvement in tumorigenesis is plausible, supported by the dysregulated expression of cilia‐related 

genes  across  various  tumor  types  [30]. While  limited  data  exist  on  airway  cilia  in  lung  cancer, 

histologic  changes  from normal  to dysplastic  to  cancerous  tissues  involve  cilia  loss,  and marked 

downregulation of ciliated cell genes correlates with a more aggressive clinical phenotype in a subset 

of lung adenocarcinoma [31].   

Our analysis predicted some cilia‐related genes and  transcripts associated with premalignant 

lesion development. Some of  them are known  to be associated with cancerogenesis. For example, 

tubulin glycine ligase TTLL3 knockdown decreased primary cilia and increased colon epithelial cell 

proliferation, promoting CRC development  in mice and correlating with human CRC progression 

[32]. For other genes such as VWA3A or EFHC1 we were unable to find significant confirmations in 

the literature. However, we speculate that identified genes and transcription factors could serve as 

potential drug targets or biomarkers of PML development. The discovery of a link between anticancer 

drug resistance and primary ciliary dynamics highlights the significance of primary cilia as a crucial 

target organelle  for combatting drug  resistance  in cancer  treatment,  thus emphasizing  the urgent 

need for research in this area to develop novel strategies [33] 

Overall  presented  transcript‐level  analysis  provides  insight  into  the molecular mechanisms 

underlying  PML  development,  emphasizing  the  dysregulation  of  cilium‐related  processes.  By 

exploring isoforms that may influence cancer development and investigating potential differences in 

isoform functions resulting from carcinogen exposure, we aim to contribute to the understanding of 

PML progression. Identified transcripts and transcription factors may serve as potential biomarkers 

or drug targets for prevention of squamous cell lung carcinoma. However further research into the 
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role  of  cilia‐related  processes  in  lung  tumorigenesis  is warranted  to  develop  novel  therapeutic 

strategies. 

4. Materials and Methods 

4.1. Transcript Quantification and Differential Expression Analyses 

A total of 75 files in the SRA format were downloaded from the NCBI GEO resource, dataset 

identifier GSE79209  [4] and converted  to  the FASTQ  format via  the  fastq‐dump utility  (NCBI SRA 

toolkit). Quality  trimming and adapter clipping were performed with fastp   [34] using  the default 

settings  with  subsequent  quality  control  performed  with  fastQC 

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc/]. Transcript abundances in TPM units 

were quantified via kallisto [35] with default settings except for a change in the number of bootstraps, 

which  was  set  to  200.  The  index  file  for  kallisto  constructed  from the  Ensembl  reference 

transcriptomes (version 108) was acquired from the website [https://github.com/pachterlab/kallisto‐

transcriptome‐indices]. Differential transcript expression was identified via the sleuth package [13], 

which leverages the bootstrap estimates from kallisto output. We used the Wald test implemented in 

sleuth with default settings; a cutoff q‐value set as 0.05. Differential transcript usage was calculated 

using RATs software [36] based on the transcript abundance quantitation and bootstrap analysis from 

kallisto output. The following parameters were used: dprop_thresh = 0.1, use_sums=TRUE. 

4.2. Functional Enrichment Analysis of Differentially Expressed Transcripts 

All  protein‐coding  transcripts  with  significant  differential  expression  (q‐value<0.05)  were 

mapped  to  the  corresponding  genes  and  subjected  to  enrichment  analysis  using  the  enrichWP 

function  from  the R package  ʹclusterProfilerʹ  [37], with maxGSSize parameter set  to 200. Pathway 

content was downloaded  from  the WikiPathways  resource  [38]. Significantly  enriched pathways 

(FDR less than 0.05) were visualized using the dotplot function. 

4.3. Weighted Coexpression Network Analysis 

All  the protein‐coding  transcripts were ranked by variance  from  large  to small, and  the  log‐

transformed  TPM  values  from  the  top‐10%  transcripts were  selected  as  input  for  the weighted 

correlation network analysis using the R package WGCNA [14]. The pickSoftThreshold() function was 

used to screen the soft‐threshold parameter, which ranged from 1 to 20. A soft threshold was selected 

to maximize  the  scale  free  topology model  fit. The  automatic network  construction  and module 

detection  was  performed  using  blockwiseModules()  function  with  the  following  parameters: 

pamRespectsDendro  = TRUE, minModuleSize  =  20, maxBlockSize  =  4000,  reassignThreshold  =  0, 

mergeCutHeight = 0.25. The correlation between each geneʹs expression values and the first principal 

component of each module (eigengene) provided a measure of the proximity between a gene and a 

specific module,  so‐called kME values. Module eigengenes were subjected  to Pearson correlation 

analysis with clinical traits to identify modules that showed significant associations with the clinical 

characteristics (COPD status, dysplasia status, maximum histology grade, packs per year, sex and 

smoking status). 

4.4. The Module of Interest Enrichment 

Similar to the enrichment of differentially expressed transcripts, all protein‐coding transcripts 

from the module of interest were mapped to genes and subjected to enrichment analysis against Gene 

Ontology terms (biological processes and cellular components) using the enrichGO function from the 

ʹclusterProfilerʹ [37]. Significantly enriched terms (FDR less than 0.05) were visualized using functions 

treeplot and cnetplot. 
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4.5. Analysis of Hub Genes 

Module hubs were defined as transcripts that satisfied two criteria: 1) were detected by sleuth as 

significantly differentially expressed between normal and dysplasia classes (Wald test q‐value less 

than  0.05)  2)  had  absolute  Pearson  correlation  between  expression  and  eigengene  of  the  yellow 

module greater  than  0.93.   Network visualization  and  enrichment  analysis of  the  identified hub 

transcripts were performed using Enrichr‐KG web‐server application  [15]. All settings were set to 

default  except  for  ʺMinimum  links  per  geneʺ  =  2.  The  following  geneset  libraries  were  used: 

Descartes_Cell_Types_and_Tissue_2021,  WikiPathway_2021_Human,  Gene  Ontology  (biological 

process), DisGeNet, ARCHS4_TFs_Coexp. 

Supplementary Materials: The following supporting  information can be downloaded at the website of this 

paper  posted  on  Preprints.org.  Figure  S1:  WGCNA  diagnostics  plot;  Table  S1:  Enrichment  analysis  of 

differentially expressed transcripts; Table S2: Description and WGCNA module assignment for top‐10% most 

varying transcripts; Table S3: Hub transcripts of the “yellow” module. 
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