Pre prints.org

Article Not peer-reviewed version

Universal Local Attractors on Graphs

. . * . . .
Emmanouil Krasanakis , Symeon Papadopoulos, loannis Kompatsiaris

Posted Date: 19 April 2024
doi: 10.20944/preprints202404.1340v1

Keywords: Graph Neural Networks; Universal Approximation; Local Attractors; Diffusion; Attributed Graphs

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3510410
https://sciprofiles.com/profile/858759
https://sciprofiles.com/profile/191006

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Universal Local Attractors on Graphs

Emmanouil Krasanakis *, Symeon Papadopoulos and Ioannis Kompatsiaris

Information Technologies Institute @ CERTH, 6th km Charilaou-Thermi, Thessaloniki, Greece, 57001
* Correspondence: maniospas@iti.gr (E.K.)

Abstract: Being able to express broad families of equivariant or invariant attributed graph functions is a popular
measuring stick of whether graph neural networks should be employed in practical applications. However, it
is equally important to find deep local minima of losses (i.e., produce outputs with much smaller loss values
compared to other minima), even when architectures cannot express global minima. In this work we introduce the
architectural property of attracting optimization trajectories to local minima as a means of achieving smaller loss
values. We take first steps in satisfying this property for losses defined over attributed undirected unweighted
graphs with an architecture called Universal Local Attractor (ULA). This refines each dimension of end-to-end
trained node feature embeddings based on graph structure to track the optimization trajectories of losses satisfying
some mild conditions. The refined dimensions are then linearly pooled to create predictions. We experiment on 11
tasks, from node classification to clique detection, on which ULA is comparable with or outperforms popular

alternatives of similar or greater theoretical expressive power.

Keywords: graph neural networks; universal approximation; local attractors; diffusion; attributed graphs

1. Introduction

Graph Neural Networks (GNNs) are a machine learning paradigm that processes graph structured
data by exchanging representations between linked nodes. Despite this paradigm’s empirical success
in tasks like node or graph classification, there are emerging concerns on its general applicability.
Research has so far focused on the expressive power of GNNs, namely their ability to tightly approxi-
mate attributed graph functions (AGFs). These take as input graphs whose nodes contain attribute
vectors, such as features, embeddings, or positional encodings and create node or graph predictions
(Subsection 2.3). Practically useful architectures, i.e., with a computationally tractable number of
parameters that process finite graphs, have been shown to express certain families of AGFs, such as
those that model WL-k tests (Subsection 2.3). In set theory terminology (Appendix A), architectures
are dense in the corresponding families.

Although satisfying WL-k or other tests is often taken as a golden standard of expressive power,
it does not ensure that losses corresponding to training objectives are straightforward to minimize
[1], or that expressive power is enough to replicate arbitrary objectives. Therefore, applied GNNs
should also easily find deep loss minima, in addition to any expressive power guarantees. In this work,
the concept of deep minima refers to empirically achieving small loss values compared to other local
minima. Although these values may not necessarily be close to the globally best minimum (e.g., zero),
they can still be considered better training outcomes compared to alternatives. We refer to minima
that are not deep as shallow. These characterizations are informal, and demonstrated in Figure 1 for a
real-valued loss function. Non-global minima in the figure are “bad local valleys” [2,3] in that they
may trap optimization to suboptimal solutions. However the premise of this work is that deep minima
are acceptable given that they exhibit small enough loss values.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202404.1340.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

20f 34

0
-3 -2 -1 0 1 2 3 4 r

Figure 1. Different types of minima for a loss £(r) of one-dimensional prediction r of one data sample.

In detail, we argue that the main challenge in deeply minimizing GNNs lies with the high-
dimensional nature of loss landscapes defined over graphs, which exhibit many shallow valleys.!
That is, there are many local minima with large loss values, corresponding to “bad” predictive ability,
and optimization runs the risk of arriving near those and get trapped there. To understand this
claim, Figure 2 presents the landscape of a loss defined on one triangle graph (i.e., three nodes linked
pairwise). The third node makes optimization harder by creating many local minima of various depths
when it obtains suboptimal values, for example imposed by GNN architectures. We seek strategies
that let deep minima attract optimization trajectories (as observed in the space of node predictions)
while confining local minima attraction to small areas, for example that initialization is unlikely to start
from, or that the momentum terms of machine learning optimizers can escape from [4]. Theoretical
justification of this hypothesis is left for future work, as here we probe whether architectures exhibiting

local attraction properties can exist in the first place.

0.70
0.65
0.60
0.55
0.50
0.45

0.40

1.0
0.8
0o 0.2 040'6
“ 04 sy
0.6 02
% 0.8
10 00

Figure 2. Landscape of a loss for values x, y, z of pairwise linked nodes produced for x,y € [0,1] and
ideal selection of z (left), and landscape of the same loss produced by a GNN architecture [x,y,z]T =
¢(M([61,0,,0]T) (right), where 61,6, are trainable parameters and [-]” are column vectors.

Universally upholding local attraction is similar to universal approximation barring two key
differences: First, attraction is weaker in that it attempts to find local loss minima instead of tightly
approximating functions (it approximates zero loss gradients instead of zero loss). Second, the
proposition is broader than many universal approximation results for practical architectures in that
it is “universal” on more objectives (it is not restricted to tests like WL-k, even when the expressive
power exhibits such restrictions). Here, we achieve local attraction with a novel GNN architecture,
called Universal Local Minimizer (ULA). The mild conditions under which this architecture is universal

1 If we replaced GNNs with independent optimization for each node when only one graph is analysed, we would not
be able to impose structural properties that let the predictive performance generalize to validation and test data; this is
demonstrated by experiment results for the MLP architecture in Section 5.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

3o0f 34

can be found in Subsection 6.3. The process we follow to build it consists of three steps, which start
from simple and progressively move to more complex settings:

Step 1. We analyse positive definite graph filters, which are graph signal processing constructs that
diffuse node representations, like embeddings of node features, through links. Graph filters are
already responsible for the homophilous propagation of predictions in predict-then-propagate
GNNss (Subsection 2.2) and we examine their ability to track optimization trajectories of their
posterior outputs when appropriate modifications are made to inputs. In this case, both inputs
and outputs are one-dimensional.

Step 2. By injecting the prior modification process mentioned above in graph filtering pipelines, we
end up creating a GNN architecture that can minimally edit input node representations to locally
minimize loss functions given some mild conditions.

Step 3. We generalize our analysis to multidimensional node representations/features by folding the
latter to one-dimensional counterparts while keeping track of which elements correspond to
which dimension indexes, and transform inputs and outputs through linear relations to account
for a different dimensions between them.

In experiments across 11 tasks, we explore the ability of ULA to learn deep minima by comparing
it to several well-known GNNs of similar predictive power on example synthetic and real-world
predictive tasks. In these, it remains consistently similar or better than the best-performing alternatives
in terms of predictive performance, and always the best in terms of minimizing losses. Our contribution
is threefold:

a. We introduce the concept of local attraction as a means of producing architectures whose training
can reach deep local minima of many loss functions.

b. We develop ULA as a first example of an architecture that satisfies local attraction given the mild
conditions summarized in Subsection 6.3.

c. We experimentally corroborate the ability of ULA to find deep minima on training losses, as
indicated by improvements compared to performant GNNs in new tasks.

This work is structured as follows. After this introductory section, Section 2 presents background
on graph filters, graph neural networks, and related universal approximation terminology and results.
Section 3 formalizes the local attraction property, and presents extensive theoretical analysis that
incrementally constructs a first version of the ULA architecture that parses one-dimensional node
features; we call this ULA1D. Section 4 generalizes ULA1D to multi-dimensional node features and
outputs to obtain ULA, and describes the latter’s theoretical properties and implementation needs.
Section 5 presents experimental validation of our architecture’s—and by extend the local attraction
property’s—practical usefulness by showing that it finds similar or much deeper local minima than
competitive alternatives across a collection of six synthetic and real-world settings. Section 6 discusses
how ULA should be applied in practice, as well as threats to this work’s validity. Finally, Section 7
summarizes our findings and presents prospective research directions.

2. Background

2.1. Graph Filters

Graph signal processing [5] extends traditional signal processing to graph-structured data by
defining graph signals h € RY! that assign real values /[v] to nodes 1 € V (nodes and their integer
identifiers are used interchangeably). They make use node adjacency matrices M whose elements
Mu][v] hold either edge weights (1 for unweighted graphs) or zeros if the corresponding edges u — v
do not exist. Adjacency matrices are normalized as:

M=MD YorM=D12MmMD1/2

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

40f 34

where D is the diagonal matrix of node degrees. Iterative matrix-vector multiplications M"h express
the propagation n = 0,1,2,... hops away of h. Throughout this work we adopt symmetrically
normalized adjacency matrices of the second kind, as they are also employed by Graph Convolutional
Networks (GCNs of Subsection 2.2). A weighted aggregation of hops defines graph filters F(M) and
their posteriors r per:
r=F(M)h F(M)=)Y_ fuM"
n=0

for weights {f, € R|n =0,1,2,...} indicating the importance placed on propagating graph signals
n hops away. In this work, we focus on graph filters that are positive definite matrices, i.e., whose
eigenvalues are all positive. We also assume a normalization)", f» < 1 for all filters, for which the
maximum eigenvalue of the filter becomes:

[e9)

max = max F() = max Y fod" <). fu <

for A € [—1,1] the range of eigenvalues for symmetrically normalized adjacency matrices M. Two
well-known filters of this kind are personalized PageRank [6] and Heat Kernels [7]. These respectively
arise from power degradation of hop weights f, = (1 — a)a" and the exponential kernel f,, = e~ 't" /n!
for parametersa € [0,1] and f € {1,2,3,... }.

2.2. Graph Neural Networks

Graph neural networks apply diffusion principles to multidimensional node features, for exam-
ple by defining layers that propagate nodes features to neighbors one hop away, aggregating (e.g.,
averaging) them there, and transforming the result through linear neural layers with non-polynomial
activation. To avoid oversmoothing that limits architectures to a couple of layers that do not to account
for nodes many hops away, recursive schemes have been proposed to partially maintain early repre-
sentations. Of these, our approach reuses the computational scheme of the predict-then-propagate
architecture, known as APPNP [8], which decouples the neural and graph diffusion components by
first enlisting multilayer perceptrons to end-to-end train representations H(l) = MLP(H) of node
features H by stacking linear layers ¢ endowed with relu(x) = {xif x > 0,0 otherwise} activation
[9], and then applying the personalized PageRank filter ppr(M) on each representation dimension to
arrive at final node predictions:

HO = rela(HEYIWO 4Oy ¢=1,2,...,L

. N 1)
Y = softmax(ppr(M)H'™)

A popular family of architectures that are often encountered as a concept throughout this work
are Message-Passing GNNs (MPNNSs) [10]. These aggregate representations from node neighborhoods,
combine them with each node’s own representation, and propagate them anew. Layers of this family
can be written as:

H = ¢ (combine™ (H~V), aggregatel”) (M, H!=1)))

where the activation ¢(*)(-) is the relu function in intermediate layers and, for classification tasks,
becomes a softmax at the top representation layer. The combine(’) (-, -) mechanism is typically a row-
wise concatenation followed by a linear layer transformation. It may also include element-by-element
multiplication to be able to express the full class of WL-1 test, as GNNMLI1 does [11]. The aggregation
step often accounts for some notion of neighborhood around each node and can be as simple as an
average across neighbors per aggregate(!) (M, H!=1) = MH!~1) after adding self-loops to the graph
[12] (adding self-loops is a common practice that is also employed by APPNP), or involve edge-wise

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

5o0f 34

attention based on the linked nodes [13]. For completeness, we present the mathematical formula of
the Graph Convolutional Network (GCN) architecture’s layers:

HY =) (MH DWW 4 p(0))
where W) and b(*) correspond to trainable weight matrices and broadcasted biases.

2.3. Universal Approximation of AGFs

Typically, GNNs are required to be equivariant or invariant under node permutations. These
concepts correspond to outputs following the node permutations or being independent of them
respectively. An AGF A(M, H) satisfies these properties if, for all attributed graphs (M, H) with
adjacency matrices M and node features H:

A(cM,cH) =cA(M,H) (equivariance)
A(cM,cH) = A(M,H) (invariance)

where ¢ is a matrix that permutes node order. We treat permutation as an operator. In this work we
tackle only equivariance, given that reduction mechanisms across nodes (e.g., an average of all feature
values across nodes) turn equivariance into invariance. These properties are not inherently covered by
the universal approximation theorems of traditional neural networks, which GNNs aim to generalize.
It is, then, of interest to understand the expressive power of architectures given that they satisfy one of
the properties. This way, one may get a sense of what to expect from their predictive ability.
Theoretical research has procured various universal approximation theorems for certain architec-
tures that show either a general ability to approximate any AGF or the ability to differentiate graphs
up to the Weisfeiler-Lehman isomorphism test of order k (WL-k), which is a weaker version of graph
isomorphism. For example, WL-2 architectures can learn to at most recognize triangles but can not
necessarily differentiate between more complex structures, as shown in Figure 3. The folkore WL-k
(FWL-Kk) test [14] has also been used as a non-overlapping alternative [15] (there is no clear distinction
between the strengths of the two tests). Universal approximation is stronger than both in that it can

perfectly detect isomorphism.
I
|
&& l ®
I
I
|
I

Figure 3. Two non-isomorphic graphs that can be distinguished by FWL-2 but not by WL-1 or WL-2.

Simple architectures, like GNNML1 [11], GCN [12], and APPNP [8], are at most as powerful as
the WL-1 test in distinguishing between graphs of different structures, but remain popular for parsing
large graphs thanks to their tractable implementations that take advantage of adjacency matrix sparsity
to compute forward passes in times O(|€| L) where |£| is the number of graph edges and L the number
of layers (usually 2,5,10, or 64 depending on the architecture and how well it tackles the oversmoothing
problem) are known to be at most as powerful as WL-1. On the other hand, architectures like 1-2-3GNN
[16] and PPGN [15] satisfy the WL-3 test but come at the cost of high computational demands (e.g.,
millions of hidden dimensions) by considering all tuples or triples node pairs, in the last case exhibiting
computational complexity @(|V|?) where |V| is the number of graph nodes. For a summary on the
expressive power of several architectures, refer to the work of Balcilar et al. [11], who also introduce
the and GNNML3 architecture to overcome these limits with appropriate injection of spectral node
features.

In addition to WL-k or other types of limited expressiveness, some works tackle universal approx-
imation over all AGFs. Historically, deep set learning [17] introduced universal approximation results

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

6 of 34

for equivariant and invariant functions over sets that were quickly generalized to graph structures.
However, so powerful architectures also suffer from computational intractability, like unbounded
tensor order for internal representations [18], and the tensor order of internal representations needing
to be at least half the number of input feature dimensions rounded down [19]. Increasing tensor order
dimensions is so computationally intensive that respective works experiment with graphs of few
nodes.

An alternate research direction is to create MPNNs that, even though limited to WL-1 expressive
power by themselves [16,20], can be strengthened with additional components. To this end, the
generic message passing scheme has been shown to be universal over Turing computable functions
[1], although this does not cover the case of non-computable functions or density over certain sets of
non-computable functions. More recent breakthroughs have shown that the expressive power is not
necessarily a property of architectures alone, because enriching the node feature space with positional
encodings [21,21,22], like random node representations, can make MPNNs more powerful [23]. A
result that we use in later experiments is that MPNNss enriched with non-trainable node representations
can express any non-attributed graph functions while retaining equivariance in probability [24].

For a comprehensive framework for working with node encodings, see the work of Keriven et
al. [22]. In the latter, the authors criticize random node representations as non-perfectly equivariant,
but in this work we adopt that methodology’s motivating viewpoint that, in practice, equivariance
in probability by creating random values with the same process for each node is nearly as good as
hard-coded equivariance. At the very least, architectures endowed with random node representations
can serve as comparisons between ULA and strengthened expressive power.

2.4. Symbols

Here, we summarize symbols that we will be using throughout this work. In general, we use
calligraphic letters to denote sets and parameterized functions, capital letters to denote matrices, and
lower case symbols to denote vectors or numeric values:

Table 1

Symbol Interpretation
A The set of all AGFs.
Ay A GNN architecture function with parameters 6.
(M,H©) An attributed graph with adjacency M and features H®).
Ag(M, H) The node feature matrix predicted by .4y on attributed graph (M, H).
M A graph adjacency matrix.
M A finite or infinite set of attributed graphs.
VL (expr) Gradients of a loss computed at r = expr

M A normalized version of a graph adjacency matrix.
F(M) A graph filter of a normalized graph adjacency matrix. It is also a matrix.
X A node feature matrix.
Y A node prediction matrix of a GNN.
R A node output matrix of ULA1D.
H A node representation matrix, often procured as a transformation of node features.

L(A) A loss function £ : A — [0, 0) defined over AGFs A.
L(M, X,Y) A loss function defined over attributed graphs (M, H)for node prediction matrix Y.

HO Node representation matrix at layer ¢ of some architecture. Nodes are rows.
w0 Learnable dense transformation weights at layer ¢ of a neural architecture.
b0 Learnable biases at layer £ of a neural architecture.

o0 Activation function at layer ¢ of a neural architecture.

cols(HY)) The number of columns of matrix H 0,
ceil(x) The integer ceiling of real number x.
[The number of set elements.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

7 of 34

Table 1. Cont.

Symbol Interpretation

1% The set of a graph’s nodes.
£ The set of a graph’s edges.
R A domain in which some optimization takes place.
oo Parameters leading to local optimum.
Og,, A connected neighborhood of 8o..
ho A graph signal prior from which optimization starts.
Too A locally optimal posterior graph signal of some loss.
-l The L2 norm.
|-l The maximum element.
AlB Horizontal matrix concatenation.
A; B Vertical matrix concatenation.

MLPy Multiplayer perceptron with trainable parameters 6.

3. One-Dimensional Local Attraction

In Subsection 3.1 we start by stating the generic form of the local attraction property. We then aim
to satisfy that property with GNN architectures that employ positive definite graph filters as methods
to diffuse information through edges. To this end, we conduct one-dimensional analysis with graph
signals 1 = H that are column vectors of dimension |V| x 1. These pass though positive definite graph
filters to create posteriors r = F(M)h. In Subsection 3.2 we further constrain ourselves to optimization
in one graph to create first local attraction properties for posteriors r. A first generalization of results
that processes graphs with an upper bounded number of nodes is created in Subsection 3.3. These
results easily generalize to multiple input and output dimensions in the next section.

The universal attractor that parses one-dimensional node representations H of any graph along-
side other graph signals Dim required to minimize a loss is called ULA1D. An overview of its feed-
forward pipeline is described in Figure 5. Broadly speaking, our goal is to learn new priors given
all starting information—including original posteriors—that lead us to locally optimal posteriors
r = R = F(M)H). This architecture can be trained end-to-end already to let R locally minimize
losses. As an intermediate component it uses a Multilayer Perceptron (MLP) to generate updated node
representations to be diffused by graph filters. We generalize the architecture to multidimensional
graph features with the methodology of Section 4, where multidimensional information is unwrapped
to vector form; jump forward to that section’s introduction to get an overview of the final ULA and
where ULA1D fits in its forward pipeline.

3.1. Problem Statement

Proposition 1 uses set theory terminology (Appendix A) to express our local attraction property,
where || - || refers to the L2 norm. Our hypothesis is that this property is requisite for deeply optimizable
GNNs. Intuitively, we seek architectures that, for any local minimum, admit a transformation of
parameters that turns a connected neighborhood around the minimum into a loss plateau, i.e., an
area with approximately near-zero gradient. We define loss plateaus with respect to gradients V, of
architecture outputs instead of parameter gradients V, in order to avoid premature convergence that
would “stall” due to architectural computations and not due to actual minimization of the loss. For
example, we do not accept architectures that produce constant outputs when those constants are not
local loss minima.

Proposition 1 (Locally attractive GNNSs). Find architecture Ay with parameters 6 € © in a connected
compact set such that, for any parameters 0 minimizing a differentiable loss L and any € > 0, there exists a pa-
rameter endomorphism S achieving ||V L(Ag) || < € for any parameters 6 in some connected neighborhood
of the minimum.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

8 of 34

If there exist multiple endomorphisms (i.e., transformations of parameters), one can select those
that create plateaus more difficult to escape from for deep minima, but are easier to escape from for
shallow local minima. For example, this can be achieved by controlling some the attraction radii
of Subsection 3.2. During this work’s experimental validation, we select radii based on domain
knowledge; our analysis reveals that the radii can be controlled by the diffusion rates of graph filters
we employ, and thus we look at personalized PageRank filter with a usually well-performing default
diffusion parameter. Future research can make a more advanced search for appropriate filters that
would create different radii.

Lastly, we tackle training objectives that can be expressed as a collection of sub-losses £(M, H, R)
defined over a collection of attributed graphs M = {(M, H) } with node prior representations H and
predicted node output representations R that we aim to discover. We can pool all losses to one quantity
for a GNN architecture Ay:

C - L(M, H, Ag(M, H
(Ag) (MI,II}I?)E(M(Ay ()

This setting can learn to approximate any equivariant AGFs (any reduction mechanism to node
predictions can also learn invariant AGFs), albeit not densely (i.e., not necessarily with arbitrarily small
error, for example because there the architecture is not expressive enough). The above setting also lets
our analysis create functional approximations to non-functions, for example that may include two
conflicting loss terms for the same attributed graph. An implicit assumption of our analysis is that
there exist architectural parameters that can replicate at least one local minimum.

3.2. Local Attractors for One-Dimensional Bode Features in One Graph

To remain close to the original outputs of graph filters while also controlling for desired objectives,
we adopt practice of adjusting their inputs [25]. If we choose to do so, different outputs are at most
as dissimilar as different inputs, given that by definition ||F(M)ho — F(M)h|| < Amax|/ho — h|| where
Amax < 1is the filter’s maximal eigenvalue when its parameters are normalized. As a first step, we
exploit the structural robustness imposed by positive eigenvalues to create a local attraction area for
some graph algorithm.

Consider starting priors iy € RV and a twice differentiable loss £ : R — RV on some compact
domain R C RV that has at least one local minimum (reminders: |V| is the number of nodes, and both
priors and posteriors in our current setting are vectors that hold a numeric value for each node). Our
goal is to find one such minimum while editing the priors. To this end, we argue that positive definite
graph filters are so stable that they require only a rough approximation of the loss’s gradients in the
space of priors to asymptotically converge to local optima for posteriors. This observation is codified in
Theorem 1. We improve this result in Lemma 2, which sets up prior editing as the convergent point of
a procedure that leads to posterior objective optimization without moving too far away from starting
priors hg.

Lemma 1. For a positive definite graph filter F(M) and differentiable loss L(r) over graph signal domain
R C RV, update graph signals over time t € [0, c0) per:

oh(t) _
F f(r(t))

r(t) = F(M)h(t)
stALF(r) + VL@ < 2 ||VL(7) | forall |V,L(r)|| > 0,7 € R

Amax

where A, Amax > 0 are the smallest positive and largest eigenvalues of F(M) respectively. This leads to
lim¢ o0 ||V L(7(t))]|| = O if posteriors remain closed in the domain, i.e., if r(t) € R.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

9 of 34

Proof sketch. Essentially f(r) roughly approximates the loss’s gradients. Small non-exact approxima-
tion is absorbed by the positive definite filter’s stability. A full mathematical proof is provided in
Appendix B.

Lemma 2. Let a differentiable graph signal generation function® Hg : © — RVl on compact connected domain
© admit some parameters 6y € @ such that Hg, = ho. If, for any parameters 6 € ©, the Jacobian Jy,,(6) has
linearly independent rows (each row corresponds to a node) and satisfies:

|Err(0)V,L(r)|| < 2-||V,L(r)|| forall VL(r) # 0

Amax
Err(6) = T — J31,(8) (3, (6) 3, (6)) 133, (6)
s.t. 1’(9) = P(M)H@ € Heo

then there exist parameters 0oo € © such that ||V, L(r(0)) || = 0.

Proof schetch. Empirically, Err(6) is a matrix that represents differences between the unit matrix. The
Jacobian J 4(6) of 6 is multiplied with the right pseudo-inverse of the difference, which will be close to
the unit matrix for enough parameters. Otherwise, differences are constrained to matter only for nodes
with high score gradient values (non-zero Jacobian elements). Thus, as long as the objective’s gradient
retains a clear—though maybe changing—direction to move towards to, that direction can be captured
by a prior generation model .4y of few parameters that may (or should) fail at following other kinds of
trajectories. If such a model exists, there exists a parameter trajectory it can follow to arrive at locally
optimal prior edits. A full mathematical proof is provided in the supplementary material. [

We are now equipped with the necessary theoretical tools to show that neural networks are valid
prior editing mechanisms as long as starting priors are close enough to ideal ones and some minimum
architectural requirements are met. This constitutes a preliminary local attraction result that applies
only to a graph signal processing pipeline and is codified in Theorem 1. A closed expression of the
theorem’s suggested architecture follows:

Ag(M,H) = F(M)H®P)
H®) = MLPy(H°) 3)
H = H|Dim|F(M)H

where | is horizontal concatenation, the near-ideal priors are Ay(M, H) = R = r, and MLP, represents
the trainable multilayer perceptron that computes updated priors H(L) and parameters 6 comprise all
of its layer weights and biases. Dim represents any additional node information that determines the
loss function’s value.

Implementations should follow the dataflow of Figure 4 presented at the beginning of this section.
To show the existence of a neural network architecture, we use a specific universal approximation
theorem that works well with our theoretical assumptions. However, other linear layers can replace
the introduced one; at worst, and without loss of validity, these would be further approximations. The
combination of an MLP component with propagation via graph filters sets up our architecture as a
variation of the predict-then-propagate scheme after selecting appropriate H(%).

2 In Lemma 2, the subscript is the function’s Hy input.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

10 of 34

(M, H|Dim) F(M)H (M, H|F(M)H|Dim) (MH®) R=F(M)H®

— H MLP ’@E F(M) B

Figure 4. The one-dimensional universal local attractor (ULA1D) architecture; it obtains the outcome of

F(M)

diffusing the blue prior vector H through adjacency matrix M with a graph filter F(M), and then refines
the posteriors. The refinement consists of concatenating the prior, the node information contributing to
the loss function (black and white Dim), and the original posteriors to provide them as inputs to an
MLP that learns new priors H(L). These in turn pass through the same graph filter to create new locally
optimal posteriors R.

Theorem 1. Tuake the setting of Lemma 2, where the loss’s Hessian matrix Hy (r) linearly approximates the
gradients N, L(r) within the domain v € R with error at most eg. Let us construct a node feature matrix H (0)
whose columns are graph signals (its rows H) [v] correspond to nodes v). If hg, F(M)ho, and all graph signals
other than r involved in the calculation of L(r) are columns of H\%), and it holds that:

M|V L(r)|| > 2eplr — rool|

/\max

foranyr € R\ {re}, then for any €s > 0 there exists MLPy with relu activation, for which
|[F(M)MLPy(H©) — reo]| < €co

Proof scketch. Thanks to the universal approximation theorem (we use the form presented by [26] to
work with non-compact domains and obtain sufficient layer widths), neural networks can produce
tight enough approximations of the desired trajectory gradients. At worst, there will be two layers to
form a two-layer perceptron. We also use a second set of neural layers on top of the first to compute
their integration outcome. A full mathematical proof is provided in Appendix B. O

Theorem 2 shows that any twice differentiable loss can be optimized from points of a local
area (i.e., this is a universal local attraction property), given that a sufficiently large L1 posterior
regularization has been added to it. Therefore the architecture of Theorem 1 is a local attractor of
some unobserved base architecture, an unobserved feature transformation, and an unobserved
parameter subdomain that nonetheless creates a known attraction radius in the space of posteriors.
Locally optimal posteriors cannot attract all optimization trajectories; the radius of the hypersphere
domain from which ideal posteriors can always attract others is at worst 0.5/V| ﬁ?’

If attraction hyperspheres are overlapping between local minima, it is uncertain which is selected.
This is why we want to impose local attractiveness in the first place; to minimize overlaps between
deep and shallow minima so that optimization can permanently escape from the pull of the latter.
Therefore, radii need to be large enough to enclose original posteriors within at least one hypersphere
of nearby ideal ones, but not large enough to attract posteriors to shallow optima. For points farther

3 Larger radii can be obtained for near-quadratic objectives, for which ey is small. In practice, this can be imposed by also

adding a large enough L2 regularization, but we leave theoretical study of this option to future work.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

11 of 34

away than the attraction radii from all local minima, it is unclear if any minimum would be found at
all by a learning process.

A similar analysis to ours [27] points out that spectral graph theory research should move beyond
low-pass filters and graphs with small eigenvalues; in this case, our worst attraction radius provides a
rough intuition of which scenarios are easier to address. For example, we can explain why directly
optimizing posteriors can lead to shallow optima [27]; direct optimization is equivalent to using
the filter F(M) = I, which exhibits large optimization horizon radius 0.5V, and is therefore likely
to enclose many local minima as candidates towards which to adjust posteriors, including shallow
ones. Conversely, filters that acknowledge the graph structure play the role of a minimum curation
mechanism, which is a popular but previously unproven hypothesis [28,29] that we verify here.

Theorem 2. There exists sufficiently large parameter lyeq € [0, ZW] for which

L(r) = L(r) + lreg(Illl1 = [F(M)ho[11)

satisfies the properties needed by Theorem 1 within the following domain:

R ={re} U {r :Ir = reo| < 0.5max {|V|, W}At‘x}
where 1o is the ideal posteriors optimizing the regularized loss. If the second term of the max is selected, it
suffices to have no regularization lyeg = 0.

Proof sketch. The area from which posteriors can be attracted to local optima is wider the closer to linear
posterior objectives are. Furthermore, loss derivatives should also be large enough that, when their
norm is multiplied with A, they still push optimization trajectories towards minima from faraway
points of the domain. Large enough L1 regularization translates to /. derivative magnitude at each
dimension. That is, it introduces a constant push of posteriors towards zero that keeps gradients
sufficiently large. A full mathematical proof is provided in Appendix B. 0

In the next subsection, we select losses with Lipschitz gradients. This means that Theorem 2 can
create constrained attraction radii for /,,¢ = 0 given a graph filter with small enough eigenvalue ratio,
as long as ey > 0, which means that the loss should not be exactly the square distance from the starting
posteriors. Although we select this losses that satisfy the Lipschitz gradient property throughout the
rest of analysis, we keep the more general version of the theorem to support future research directions,
if needed.

3.3. Attraction across Multiple Graphs

In Lemma 3 and Theorem 3, we now show that ULA1D (i.e., the architecture of Equation 3) adheres
to a universal minimization property over respectively finite and infinite collections of undirected
unweighted attributed graphs with a bounded number of nodes. Both results can be applied for
variation of the MLP component that use different universal approximation theorems, given that
activation functions are still Lipshitz. The second theorem stipulates some additional conditions
that let us generalize the architecture’s minimization to infinite sets of attributed graphs with one-
dimensional node representations. We consider the conditions mild in that they are easy to satisfy. For
example, node features may be (batch-)normalized to make them bounded.

Both theorems require a finite number of nodes of processed graphs to properly work with. This
may be larger than the number of nodes in training graphs if similar substructures are encountered,
but the theorems do not reveal an upper bound, and thus the latter should be empirically evaluated in
practical applications. At the same time, during the proof of Theorem 3 we employ a graph with a
non-polynomial number of nodes that represents an equivalently hard problem. Theoretically, this

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

12 of 34

means that our architecture could require a non-polynomial (though bounded) number of training data
samples to learn under the required local attraction concerns. This only affects generalization power
given the number of samples, i.e., whether low training and validation losses translate to low test
losses, and is easy to check for in practice. Importantly, the space ULA1D implementations (and, by
extension, the ULA implementation when we extend results to multidimensional node representations)
is not only dense on local attractors but can actually reach them given enough training samples.

A final caveat of Theorem 3 is that, for MLP activations that are not differentiable everywhere, the
property of remaining in the local attraction area can theoretically be guaranteed only in probability.
In particular there may exist points with “infinite” derivatives that may propel losses outside that area.
In practice, though, activation functions are computed on finite machines where twice differentiable
relaxations can be considered in areas smaller than the numerical tolerance without affecting computa-
tional results. In this case, the dense subset of the neighborhood coincides with the full neighborhood.
The theorem’s version we present is geared towards future investigations of how limits in numerical
tolerance could affect the local attraction property in practice.

Lemma 3. Let a finite set of attributed graphs with undirected unweighted adjacency matrices M with up to a
finite number of nodes v and one-dimensional node representations H be denoted as M = {(M, H) : |V| < v}.
Let loss L(M, h,) be twice diffentiable with respect to r and take any €« > 0. Then any selected 0 that lets
Equation 3 be local loss minimum on all attributed graphs of M is contained in a connected neighborhood ®g,_,
of B0 for which:

|V+L(M,H, Ag(M, H))|| < € forany (M,H) € M and 6 € Og_

Proof sketch. We generate a larger graph that comprises all subgraph structures and vertically concate-
nates corresponding node features. Thus, by reframing the small derivative outcome as an objective
on this new attributed graph, Theorem 2 lets us minimize it to arbitrarily small derivative. A full
mathematical proof is provided in Appendix B. O

Theorem 3. Consider infinite sets M, bounded node feature values, Lipshitz loss gradients with respect to both
h and r, and MLPy that has activation functions that are almost everywhere Lipshitz with Lipshitz derivatives
(e.g., relu). Then, Lemma 3 holds for a dense subset of the neighborhood.

Proof sketch. Given that both the architecture and loss gradients are Lipshitz, similar pairs of node
features will create similar gradients for the same adjacency matrices. We thus create a discretization
of the domain of node features with small numerical tolerance. In this discretization, there is a finite
number of possible adjacency matrices given the bounded number of graph nodes, and a finite number
of values for each feature given that we discretize a bounded Euclidean space. Therefore, we have a
finite (albeit non-polynomial) number of adjacency matrix and node features combinations, and we can
apply Lemma 3 to get small gradients, barring approximation errors that are related to the tolerance
and can thus be controlled to also be small. Results hold for a dense subset of the neighborhood only
to avoid points where activations are non-existing or non-Lipshitz derivatives. A full mathematical
proof is provided in Appendix B. O

4. Universal Local Attractor

Previously, our analysis assumed one node feature and output dimension. We now create the ULA
architecture, which generalizes the same analysis to any number of node feature and output dimensions.
Our strategy for multidimensional universal attraction starts in Subsection 4.1 by considering settings
where the number of node features and output dimensions are the same. In Subsection 4.2 we then
add linear transformation layers to map actual node features X to lower-dimensional representations
Hiprappea (this helps reduce computational costs), and from optimized feature representations to
architectural outputs Y with potentially different dimensions. A visualization of this scheme is

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

13 of 34

presented in Figure 5, and in Subsection 4.3 we point to finer details that implementations should pay
attention to. In Subsection 4.4 we finally discuss running time and memory complexity.

(M, X) HWl‘apped (Mrepeab H| Dim) R Rwrapped Y

M Project mp @"

ULATD Wi ® Linear

&8

EEE
[|

Figure 5. The ULA architecture pipeline based on its one-dimensional counterpart (ULA1D in Figure 4)
that produces posteriors HTS)Lr)a pped given prior representations Hy,qppeq- The priors are unwrapped
into a vector, and concatenated with an embedding of Hyqppeq features dimension identifiers that
each unwrapped row is retrieved from. Unwrapping also creates repetitions of the graph into a larger
adjacency matrix Myepeqar With M as its block diagonal elements. Outputs are rewrapped into matrix
form. Linear layers change the dimensions of node feature at the beginning and and of outputs at the
end.

4.1. Multidimensional Universal Attraction

First, we tackle the problem of multiple node feature dimensions to be diffused. Our strategy
involves treating each node feature dimension as a separate graph signal defined on copies of the
graph stacked together in a supergraph. We then optimize all dimensions by creating a supergraph of
them. This also creates a signal that stacks all dimensions on top of each other. The methodology of
this section is similar to the proof of Lemma 3 in that it vertically concatenates representations and
creates an underlying supergraph. However, if we blindly performed an unwrapping of tensor H to
an one-dimensional counterpart holding all its information, any computed loss function would not be
symmetric with respect to feature dimensions, as different dimensions require different outputs. This
would mean that computations would not be invariant with respect to node features, as a permutation
of features would create a different loss for different nodes.

To address this issue, we look back at Theorem 1, which stipulates that all necessary information
to compute the loss should be included as columns of H. In our case, the necessary information
consists of which feature dimension identifiers (i.e., the column numbers of H) each entry corresponds
to. We can capture this either via an one-hot encoding or via an embedding representation; we opt for

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

14 of 34

the second approach to avoid adding too many new dimensions to the one-dimensional unwrapped
H; it suffices to learn ceil (log, K) or fewer embedding dimensions for K = cols(H). Mathematically:

R = -AG (Mrepeat/ H)

H = (hy;hy;...; hy) | Dim

Dim = 1Embed(1);1Embed(2); .. .; KEmbed(K)

M 0 0 ... (4a)
o M 0 ...

Mrepeut = 0 0 M

s.t. mepped = (h1|h2| cee |hK)

where Ay is the ULA1D architecture, ; is vertical concatenation that vertically unwraps the represen-
tation matrix H, | is horizontal concatenation, 0 is a matrix of zeroes of appropriate dimension, 1 is
a |V| x 1 matrix of ones, and Embed a trainable embedding mechanism from integer identifiers to a
1 x ceil (log, K) matrix. To understand this formula, 1Embed (1) are matrices that vertically repeat the
corresponding embeddings |V| times to differentiate the feature dimension each row refers to. The
concatenated result Dim has dimensions (|V|K) x ceil(log, K) where |V|K is the number of nodes in
the new supergraph.

We now make use of ULA1D’s theoretical properties to generate posteriors R that locally minimize
the loss L(R) = L(Miyepeat, R) for every attributed graph (Myepeqt, H). If the loss is equivariant, it is
equivalent to defining an equivariant loss in terms of (M, Hyygpped) given an re-wrapping of R to
matrix Ryqpped with K columns:

mepped = (r1lra|...|rx) (4b)
st. R=(ry;r...;1x)

for |V| x 1 vectors 1,17, ...,rk. We do not need additional theoretical analysis to show that any
loss can be approximated, given that we reshaped how matrices are represented while leaving all
computations the same and that therefore Theorems 1 and 2 still hold.

4.2. Different Node Feature and Prediction Dimensions

As a last step in designing our architecture, we introduce two additional layers as the first and
last steps. In the former, we transform input features X to lower-dimensional representations Hyyppeq
of dimension K = col (mepped) that promote a computationally tractable architecture (Subsection 4.3).
The output linear layer also maps from K representation dimensions to col(Y') output dimensions.

Considering that R (and, equivalently, Ry sppeq) is the outcome of the intermediate ULA1D
that guarantees local attractiveness, the input and output transformation components are essentially
part of the loss minimized by the ULA1D architecture of Equation 3. In particular, a loss function
Louii(M, X, Y) defined over ULA’s multidimensional outputs Y is equivalent to minimizing the loss:

E(M/ H, AG (H)) = Emulti(M/ Linear)_(l (X)/ LinearY(Ae (M/ X)))

where H = Linearx(X), and Linearyx and Lineary are the input and output transformations respec-
tively. To enable an immediate application of local attractiveness results, the new loss needs to still have
Lipschitz gradients, which in turn means that input and output transformations should not be able to
approximate arbitrary functions, i.e., they cannot be MLPs. Furthermore, the input transformation
needs to be invertible. Selecting both transformations as linear layers and setting K > rank(H) satisfies
both properties. For ease of implementation, we make transformation trainable, but they may also be
extrapolated from informed ad-hoc strategies, like node embeddings for matrix factorization.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

15 of 34

4.3. Implementation Details

Implementations of the ULA architecture should take care to follow a couple of points requisite
for either theoretical analysis or common machine learning principles to apply. Ignoring any of these
suggestions may cause ULA to get stuck at shallow local minima:

a. The output of ULA1D should be divided by 2 when the parameter initialization strategy of
relu-activated layers is applied everywhere. This is needed to preserve input-output variance,
given that there is an additional linear layer on top. This is not a hyperparameter. Contrary to the
partial robustness to different variances exhibited by typical neural networks, having different
variances between the input and output may mean that the original output starts from “bad”
local minima, from which it may even fail to escape. In the implementation we experiment with
later, failing to perform this division makes training get stuck near the architecture’s initialization.

b. Dropout can only be applied before the output’s linear transformation. We recognize that dropout
is a necessary requirement for architectures to generalize well, but it cannot be applied on input
features due to the sparsity of the H|Dim representation, and it cannot be applied on the linearx
transformation due to breaking any (approximate) invertibility that is being learned.

c. Address the issue of dying neurons for ULA1D. Due to the few feature dimensions of this
architecture, it is likely for all activations to become zero and make the architecture stop learning
from certain samples from the beginning of training with randomly initialized parameters. In
this work, we address this issue by employing leaky relu Irelu = {x if x > 0,0.3x otherwise} as
the activation function in place of relu. This change does not violate universal approximation
results that we enlist. Per Theorem 3, activation functions should remain Lipschitz and have
Lipschitz derivatives almost everywhere; both properties are satisfied by prelu.

d. Adopt a late stopping training strategy that repeats training epochs until both train and validation
losses do not decrease for a number of epochs. This strategy lets training overcome saddle points
where ULA creates a small derivative. For a more thorough discussion of this phenomenon refer
to Subsection 6.2.

e. Retain linear input and output transformations, and do not apply feature dropout. We previously
mentioned the necessity of the first stipulation, but the second is also needed to maintain
Lipschitz loss derivatives for the internal ULA1D architecture.

4.4. Running Time and Memory

In Appendix C we analyse the proposed architecture’s running time and memory consumption in
big-O complexity notation. These are:

time € O(|E|NKlog K + |V|K(log® K + col(X) + col (Y)))
memory € O(|E| + |V|Klog K + K(col(X) + col(Y)))

where N is the number of the graph filter’s parameters, and K = col(H) the number of hidden node
feature dimensions. Both complexities grow slightly worse than linearly as we choose more hidden
dimensions, but our architecture remains computationally tractable; it is worse than linear increase
by a logarithmic scale on a well-controlled quantity, and incomparable to the exponential increase
in compute that would be needed to add more tensor dimensions, as happens for GNNs satisfying
univeral approximation.

Still, in terms of absolute orders of magnitute the logarithmic scale inside running time analysis
is log, K; for K = 64 selected in experiments there is a 6-fold increase in running time and memory
compared to simply running an APPNP architecture for graph diffusion. Factoring in that propagation
through graph filters runs twice (once to get initial posteriors, and then to refine them again) and we
obtain an approximate factor of 12-fold increase in running time compare to APPNP. This means that
large graphs residing at the limits of existing computing resources could be hard to process with ULA.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

16 of 34

Still, our architecture runs faster and consumes less memory than GCNII of those we compare with in
Subsection 5.2.

In experiments, we employ GPUs that let us parallelize feature dimensions, and hence reduce
the number of hidden dimension multiplications from O(K) to O(1) for the purposes of running time
analysis. That is, the running time complexity under this parallelization is divided by K. Performant
implementation of sparse matrix multiplication is not achievable by existing GPU frameworks, and
for graphs with few enough nodes that can fit the adjacency matrix in GPU memory we prefer dense
matrices and corresponding operations. In this case, instead of diffusion requiring |£| computations it
should be substituted with |V|? in the above complexities. We also adopt this to speed up experiments
given that we train hundreds of architectures for hundreds of training epochs each, but in larger graphs
the sparse computational model is both faster and more memory-efficient.

5. Experiments

In this section we use ULA to approximate various AGFs, and compare it against several popular
architectures. In Appendix D we show that ULA can be represented with an appropriate MPNN; it es-
sentially adds constraints to which parameter combinations can be learned to satisfy the local attraction
property. Consequently, our architecture’s expressive power is at most WL-1 and we compare it with
well-performing alternatives of at most as much expressive power described in Subsection 5.2. We also
perform an investigative comparison against an MPNN enriched with random node representations
for greater expressive power. Tasks we experiment on are described in Subsection 5.1, and span graph
analysis algorithms and node classification. Experimentation code is based on PyTorch Geometric [30],
and is available online as open source.* We conduct all experiments on a machine with 16GB RAM
and 6GB GPU memory.

5.1. Tasks

For our evaluation, we created a collection of synthetic and real-world tasks. Of these, synthetic
tasks present various degrees of expressive power and difficulty in being optimized by GNN archi-
tectures (including ULA). Each comprises a set of a 500 synethetically generated graphs of uniformly
chosen numbers of [25,100] nodes. There is a uniformly random [0, 0.1] chance of linking each pair of
nodes, with an added line path across all nodes in each graph to make them connected. The tasks we
compute for these graphs are the following, where 4Clique and LongShort require more than WL-1
expressive power to be densely approximated:

Degree. Learning to count the number of neighbors of each node. Nodes are provided with an
one-hot encoding of their identifiers within the graph, which is a non-equivariant input that
architectures need to learn to transfer to equivariant objectives. We do not experiment with
variations (e.g., other types of nodes encodings) that are promising for the improvement of
predictive efficacy, as this is a basic go-to strategy and our goal is not—in this work— to find
the best architectures but instead assess local attractiveness. To simplify experiment setup, we
converted this discretized task into a classification one, where node degrees are the known
classes.

Triangle. Learning to count the number of triangles. Similarly to before, nodes are provided
with an one-hot encoding of their identifiers within the graph, and we convert this discretized
task into a classification one, where the node degrees observed in the training set are the known
classes.

4Clique. Learning to identify whether each node belongs to a clique of at least four members.
Similarly to before, nodes are provided with an one-hot encoding of their identifiers within the
graph. Detecting instead of counting cliques yields a comparable number of nodes between

4 https://github.com/MKLab-ITI/ugnn

https://github.com/MKLab-ITI/ugnn
https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

17 of 34

the positive and negative outcome, so as to avoid complicating assessment that would need
to account for class imbalances. We further improve class balance with a uniformly random
number of [0,0.5] chance of linking nodes. Due to the high computational complexity of creating
the training dataset, we restrict this task only to graphs with a uniformly random number of
[5,20] nodes.

LongShort. Learning the length of the longest among shortest paths from each node to all others.
Similarly to before, nodes are provided with an one-hot encoding of their identifiers within
the graph, and we convert this discretized task into a classification one, where path lengths in
training data are the known classes.

Propagate. This task aims to relearn the classification of an APPNP architecture with randomly
initialized weights and uniformly random a € [0,0.9] (the same for all graphs) that is applied on
nodes with 16 feature dimensions, uniformly random features in the range [0, 1] and 4 output
classes. This task effectively assesses our ability to reproduce a graph algorithm. It is harder than
the node classification settings bellow in that features are continuous.

0.9Propagate. This is the same as the previous task with fixed « = 0.9. Essentially, this is perfectly
replicable by APPNP, which means that that any failure of the latter to find deep minima for it
should be attributed to the need for better optimization strategies.

Diffuse. This is the same task as above, with the difference that the aim to directly replicate output
scores in the range [0, 1] for each of the 4 output dimensions (these are not soft-maximized).
0.9Diffuse. This is the same as the previous task with fixed « = 0.9. Similarly to 0.9Propagate,
this task is in theory perfectly replicable by APPNP.

9 $ 15000 & 4000 £ 10000
e e} el T
o 4000 o o o
< < < 3000 < 7500
5 %5 10000 5 5
2000 K <000 g 2000 g 5000
£ £ £ 1000 £ 2500
=z =z =z =
0 0 0 0
1 5 9 13 17 21 0 4 8 12 16 20 24 2 12 22 32 42 52 62
Degree Count triangles Is in a 4-clique Longest shortest path

Figure 6. Distributions (in that order) of degrees, triangle counts, existence of 4-cliques, and longest
shortest path distances in synthetic graphs.

In addition to the above, we also conduct node inference experiments across the following three
real-world attributed graphs. These are used for the evaluation of GNNs for node classification, and
we point out that they run on only one graph. In general, WL-1 architectures are accepted as the
best-performing on these datasets, as there is no need to distinguish between different graphs:

Cora [31]. A graph that comprises 2,708 nodes and 57, 884 edges. Its nodes exhibit 3,703 feature
dimensions and are classified in one among 7 classes.

Citeseer [32]. A graph that comprises 3,327 nodes and 10,556 edges. Its nodes exhibit 1,433
feature dimensions and are classified in one among 6 classes.

Pubmed [33]. A graph that comprises 19,717 nodes and 88, 651 edges. Its nodes exhibit 500
feature dimensions and are classified iin one among 3 classes.

5.2. Compared Architectures

We select architectures that are conceptually similar to ours in that they employ graph diffusion
mechanisms. All experimented architectures are MPNNs, which means that they exhibit at most WL-1
expressive power. Therefore we may safely attribute differences in predictive efficacy as the hardness
of optimizing them.

MLP. A two-layer perceptron that does not leverage any graph information. We use this as a
baseline to measure the success of graph learning.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

18 of 34

GCN [12]. The architecture described by Equation 2. It comprises two linear layers, the first of
which is followed by a relu activation.

GAT [13]. A gated attention network that learns to construct edge weights based on the repre-
sentations at each edge’s ends, and uses the weights to aggregate neighbor representations.
GCNII [34]. An attempt to create a deeper variation of GCN that is explicitly design to be able
to replicate the diffusion processes of graph filters, if needed. We employ the variation with 64
layers.

APPNP [8]. The predict-then-propagate architecture with ppr base filter. Switching to different
filters lets this approach maintain roughly similar performance, and we opt for its usage due to it
being a standard player in GNN evaluation methodologies.

ULA [this work]. Our universal local minimizer presented in this work. Motivated by the success
of APPNP on node classification tasks, we also adopt the first 10 iterations of personalized
PageRank as the filter of choice, and leave further improvements by tuning the filter to future
work.

Additionally, we compare our approach with one of greater expressive power:

GCNNRI. This is the GCN-like MPNN introduced by Abboud et al. [24]; it employs random
node representations to admit greater (universal approximation) expressive power and serves as
a state-of-the-art baseline. We adopt its publicly available implementation, which first transforms
features through two GCN layers of Equation 2 and concatenates them with a feature matrix
of equal dimensions sampled anew in each forward pass. Afterwards, GCNNRI applies three
more GCN layers and then another three-layered MLP. The original architecture max-pooled
node-level predictions before the last MLP to create an invariant output (i.e., one prediction
for each graph), but we do not do so to accommodate our experiment settings by retaining
equivariance, and therefore create a separate prediction for each node. We employ the variation
that replace half of node feature dimensions with random representations.

5.3. Evaluation Methodology

Training process. For synthetically generated datasets, we create a 50%-25%-25% train-validation-
test split across graphs, of which training and validation graphs are respectively used to train the
architecture, and to avoid overtraining by selecting parameters with minimal validation loss. For
real-world graphs, we create an evaluation split that avoids class imbalance in the training set, and
for this reason we perform stratified sampling to obtain 50, 50 validation, and 100 test nodes. In
all settings, training epochs repeat until neither training nor validation loss decrease for a patience
of 100 consecutive epochs. We retain parameter values corresponding to the best validation loss.?
For classification tasks, including counting tasks where the output is an integer, the loss function
is categorical cross-entropy after applying softmax activation on each architecture’s outputs. For
regression tasks, the loss function is the mean absolute error.

Predictive performance. For all settings, we measure either accuracy (acc—larger is better) or mean
absolute error (mabs—smaller is better) and compute their average across 5 experiment repetitions.
We report these quantities instead of the loss because we aim to create practically useful architectures
that can accurately approximate a wide range of AGF objectives. Evaluation that directly considers
loss function values is even more favorable for our approach (see Subsection 6), though of limited
practical usefulness. Since we are making a comparison between several architectures, we also compute

We allow decreases in training losses to reset the stopping patience in order to prevent architectures from getting stuck at
shallow minima, especially at the beginning of training. This increases the training time of architectures to requiring up
to 6,000 epochs in some settings, but in return tends to find much deeper minima when convergence is slower. A related
discussion is presented in Subsection 6.2.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

19 of 34

Nemenyi ranks; for each experiment repetition, we rank architectures based on which is better (rank
1 is the best, rank 2 the second best, and so on) and average these across each task’s repetition, and
afterwards across all tasks. In the end, we employ the Friedman test to reject the null hypothesis
that architectures are the same at the 0.05 p-value level, and then check for statistically significant
differences at the 0.05 p-value level between every architecture and ULA with the two-tailed Bonferroni-
Dunn test [35], which Demsar [36] sets up as a stronger variation of the Nemenyi test [37]. For our
results of 5 - 11 = 55 comparisons and 7 compared methods, the test has critically difference CD = 1.1
rounded up; rank differences of this or greater value are considered statistically significant. We employ
the Bonferroni-Dunn test because it is both strong and easy to intuitively understand.

Assessing minimization capabilities. To check whether we succeed in our main goal of finding deep
minima, we also replicate experiments by equalizing training, validation, and test sets and investigating
how well architectures can replicate the AGFs they are meant to reproduce. That is, we investigate
the ability of architectures to either overtrain, as this is a key property of universal approximation,
or -failing that- to univerally minimize objectives. Notice that success in this type of evaluation (i.e.,
success in overtraining) is the property we are mainly interested in this work, as it remains an
open question for GNNSs, contrary to traditional neural networks for which it is well-established. We
measure predictive performance above only to get a sense of how well the learned AGFs generalize.

Hyperparameter selection. To maintain a fair comparison between compared architectures, we employ
the same hyperparameters for the same conceptually similar choices by repeating common defaults
across GNN literature. In particular, we use the same number of 64 output dimensions for each trained
linear layer, and 0.6 dropout rate for node features and for all outputs of 64-layer representations except
for ULA’s input and output layers (which do not accept dropout). For GAT, we use the number of
attention heads tuned on the Cora dataset, which is 8. All architectures are also trained using the Adam
optimizer with learning rate 0.01 (this is the commonly accepted default for GNNs) and default other
parameters. For all other choices, like diffusion rates, we defer to architecture defaults.We initialize
dense parameters with Kaiming initilization [38]. Due to already high computational demands, we
did not perform extensive hyperparameter tuning, other than a simple verification that statistically
singificant changes could not be induced for both the Degree and Cora tasks (we selected these as
conceptually simple) by modifying parameters or injecting or removing layers, and in Subsection 6.4
we explain why this is not a substantial threat to the validity of evaluation outcomes.

5.4. Experiment Results

Table 2 summarizes experiment results across all tasks. In the case of generalization, ULA remains
close to the best-performing architectures, which vary across experiments. This corroborates its
universal minimization property, i.e., minimizing a wide breadth of objectives. There are certain tasks
in which our approach is not the best, but this can be attributed to intrinsic shortcomings of cross-
entropy as a loss function that at best approximates accuracy; even in cases where accuracy was not the
highest, losses were smaller during experimentation (Subsection 6.1). Even better, experiment results
reveal that ULA successfully finds deep local minima, as indicated by its very ability to overtrain,
something which other architectures are not always capable of.

A somewhat unexpected finding is that ULA outperforms GCNNRI in almost all experiments
despite the significantly worse theoretical expressive power. We do not necessarily expect this outcome
to persist across all real-world tasks and experiment repetitions, but it clearly indicates that (universal)
local attraction may be a property far more useful than universal approximation. Overall, the Friedman
test asserts that at least one approach is different than the rest, and differences between ULA and
all other architectures are statistically significant by the Bonferroni-Dunn test when all tasks are
considered, both when generalizing and when attempting to overtrain.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

20 of 34

From high-level point of view, we argue that there is no meaning to devising GNNs with rich
expressive power without also accompanying training strategies that can unlock that power. For
example, ULA exhibiting imperfect but over 95% accuracy in overtrained node classification on one
graph could be an upper limit for our approach’s expressive power, but it is a limit that is henceforth
known to be achievable. Furthermore, overtrained ULA, and in some cases GCN and GCNNRI,
outperform overtrained MLP on these tasks, where the latter essentially identifies node based on
their features, which reflects its ability to leverage the the graph structure for finding deeper minima.
Another example of expressive power not being the limiting factor of predictive performance is that
APPNP is always outperformed by ULA—and often by other architectures too—in the 0.9Diffusion
and 0.9Propagation tasks, despite theoretically modeling them with exact precision (the two tasks use
APPNP itself to generate node scores and labels respectively).

Table 2. Evaluations of predictive performance and their Nemenyi ranks in parentheses across 5
repetitions of each task. For each task, best performance is in bold.

Task Eval. MLP GCN APPNP GAT GCNII GCNNRI ULA
[12] (8] [13] [34] [24]
Generalization
Degree acc? 0.162 0.293 0.160 0.166 0.174 0.473 0.541
(5.6) (2.8) (6.2) (5.6) 4.6) (2.0) (1.2)
Triangle acc 0.522 0.523 0.522 0.522 0.522 0.554 0.568
(5.2) (3.6) (5.2) (5.2) (5.2) (2.4) (1.2)
4Clique acct 0.678 0.708 0.677 0.678 0.678 0.846 0.870
4.9) 4.1) (6.2) 4.9 4.9) (2.0) (1.0)
LongShort acc 1 0.347 0.399 0.344 0.350 0.348 0.597 0.653
(5.8) (3.0) (6.4) 4.2) (5.6) (2.0) (1.0
Diffuse mabs | 0.035 0.032 0.067 0.035 0.037 0.030 0.012
(4.0 (2.8) (7.0 (5.0) (6.0 (2.2) (1.0
0.9Diffuse mabs | 0.021 0.015 0.034 0.021 0.021 0.009 0.007
4.6) (3.0) (7.0 4.4) (6.0 (1.8) (1.2)
Propagate acc 0.531 0.501 0.510 0.455 0.443 0.503 0.861
(2.6) (4.0) (3.6) (6.1) (6.9) (3.8) (1.0
0.9Propagatecc 1 0.436 0.503 0.452 0.418 0.401 0.546 0.846
(5.3) (3.0) (4.0 (5.8) (6.7) (2.2) (1.0
Cora acc T 0.683 0.855 0.866 0.850 0.863 0.696 0.859
(6.6) (4.2) (1.4) 4.1) (2.4) (6.4) 2.9
Citeseer acct 0.594 0.663 0.676 0.661 0.679 0.443 0.669
(6.0 (3.9) (2.3) 4.0 (1.8) (7.0) (3.0
Pubmed acct 0.778 0.825 0.835 0.821 0.835 0.747 0.829
(6.4) (3.7) (2.0) (4.0) (2.1) (6.6) (3.2)

Average (CD=1.1) (5.2) (3.5) 47 4.38) 47) (3.5) (1.6)

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

21 of 34
Table 2. Cont.
Task Eval. MLP GCN APPNP GAT GCNII GCNNRI ULA
[12] [8] [13] [34] [24]
Deepness (overtraining capability)
Degree acc? 0.172 0.331 0.170 0.175 0.186 0.632 0.571
(5.7) (3.0) (6.6) (5.7) (4.0) (1.2) (1.8)
Triangle acc 0.510 0.510 0.510 0.510 0.510 0.536 0.568
4.7) (4.2) 4.7) 4.7) 4.7) (3.8) (1.2)
4Clique acc? 0.665 0.779 0.657 0.665 0.663 0.898 0.894
(5.0) (3.0) (6.4) (5.0) (5.6) (1.4) (1.6)
LongShort acc 1 0.347 0.391 0.347 0.351 0.347 0.588 0.688
(6.0) (3.0) (6.0) (4.0) (6.0) (2.0) (1.0)
Diffuse mabs | 0.032 0.028 0.061 0.032 0.033 0.026 0.012
(4.4) (3.0) (7.0) (4.6) (6.0) (2.0) (1.0)
0.9Diffuse mabs | 0.021 0.015 0.034 0.021 0.021 0.009 0.007
(4.6) (3.0) (7.0) (4.4) (6.0) (1.8) (1.2)
Propagate acc t 0.477 0.502 0.454 0.461 0.413 0.503 0.844
(4.2) (2.4) (4.4) (4.9) (6.6) (4.5) (1.0)
0.9Propagatecc 1 0.493 0.527 0.534 0.444 0.451 0.534 0.873
(4.8) (2.8) (3.2) (6.3) (6.5) (3.4) (1.0)
Cora acc T 0.905 0.914 0.905 0.911 0.864 0.930 0.996
(5.6) (3.2) (5.4) (3.8) (7.0) (2.0) (1.0)
Citeseer acc T 0.865 0.818 0.794 0.808 0.767 0.849 0.959
(2.2) (3.8) (6.0) (5.0) (7.0) (3.0) (1.0)
Pubmed acc? 0.868 0.871 0.862 0.855 0.859 0.869 0.956
(3.8) (2.0) (5.2) (6.8) (6.0) (3.2) (1.0)
Average (CD=1.1) (4.2) (3.0) (5.6) (5.0) (6.0) (2.6) (1.2)

6. Discussion

In this section we discuss various aspects of ULA with respect to its practical viability. In
Subsection 6.1 we observe that our architecture being occasionally outperformed by other methods
stems from the gap between accuracy and usage of the categorical cross-entropy loss for training; ULA
always finds deeper local optima for the latter. Then, in Section 6.2 we describe the convergence speed
and observe the existence of groking phenomena that are needed to escape from shallow local minima.
Finally, in Section 6.3 we summarize the mild requirements needed for practical usage of ULA, and in
Section 6.4 we point out threats to this work’s validity.

6.1. Limitations of Cross-Entropy.

In the generalization portion of Table 2, ULA is not always the best-performing architecture. This
happens because, when minimization reaches minima of similarly low loss values, other architectures
incorporate implicit assumptions about the form of the final predictions that effectively regularize
it to a favorable choice. For example, the smoothness constraint imposed by APPNP and GCNII
layers often establish them as the most accurate methods for the node classification datasets, which are
strongly homophilic (i.e., when neighbors tend to have similar labels). This happens at the cost of the
same assumptions drastically failing to induce deep minima in other tasks. Therefore, there is still
merit in architectures curated for specific types of problems, as these may be enriched with hypotheses
that let shallows losses generalize better. On the other hand, ULA should be preferred for solving unknown
(black box) problems. Experimental validation is still required though, because expressive power is
also a limiting factor of our approach and hard problems could require a lot of data and architecture
parameters to train (Subsection 6.4 includes a more in-depth discussion of this concern).

Even when ULA is not the best approach, accuracy differences with the best approach are small
and—importantly—we empirically verified that it still finds deeper minima for the optimized loss

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

22 of 34

functions. For example, in Table 3 we show train, validation, and test losses and accuracies of all
trained architectures in a Cora experiment (at the point where best validation loss is achieved) and
the minimum train loss achieved throughout training; ULA indeed finds the deepest validation loss
minimum. Thus, the lesser predictive ability compared to alternatives comes both from differences
between validation and test losses, and discrepancy between minimizing the cross-entropy loss and
actual accuracy.

It is standard practice to employ categorical cross-entropy as a loss function in lieu of other
accuracy maximization objectives, as a differentiable relaxation. However, based on our findings,
following the same practice for node classification, at least for inductive learning with a few number of
samples, warrants further investigation. For example, adversarial variations of the loss function could
help improve generalization to true accuracy when classification outcome is not too certain. Finally,
MLP being able to reach relative deep losses on the train but not on valid or test splits is an indication
that node features can largely reconstruct node labels, but the way to do so should be dependent on
the graph structure.

Table 3. Differences between accuracy maximization and categorical cross-entropy minimization on
one Cora experiment. The best value of each column is in bold.

loss ({) acc (1)

Train Valid Test Train Valid Test

MLP 0.113 (min 1.061 1.059 1.000 0.657 0.659
0.103)

GCN 0.198 (min 0.541 0.564 0.986 0.863 0.860
0.194)

APPNP 0.288 (min 0.544 0.563 0.971 0.869 0.860
0.284)

GAT 0.261 (min 0.546 0.574 0.983 0.866 0.854
0.254)

GCNII 0.425 (min 0.656 0.668 0.951 0.866 0.849
0.423)

GCNNRI 0.262 (min 0.839 0.936 0.929 0.789 0.759
0.015)

ULA 0.161 (min 0.479 0.890 0.974 0.854 0.846
0.007)

6.2. Convergence Speed and Late Stopping.

Universal attraction creates regions of small gradient values. However, some of these could form
around saddle points through which optimization trajectories pass. These could also be shallow local
minima that optimization strategies like Adam’s momentum can overcome. To let learning strategies
overcome such phenomena, in this work we train GNNs by employing a late stopping criterion. In
this, we stop training only if neither training nor validation loss has decreased for a set number of
epochs, called the patience. Early stopping at the point where validation losses no longer decrease
with a patience of 100 epochs is already standard practice in GNN literature, but in this work we
employ late stopping with the same patience to make a fair comparison between architectures by not
underestimating the efficacy of the literature.

Late stopping comes at the cost of additional computational demands, as training takes place
over more (e.g., a couple of thousand instead of a couple of hundred) epochs. However, in Figure 7 we
demonstrate that this practice is necessary, at least for ULA, by investigating the progress of losses in
the first of the LongShort experiments; there is a shallow loss plateau early on that spans hundreds of
epochs, in which early stopping may have erroneously halted training.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

23 of 34

4 4
—— Train
Valid
34 31 — Test
22 22
5 5
1 1
0 0
0 1000 2000 3000 0 500 1000 1500 2000
Epoch Epoch

Figure 7. Convergence of train, validation, and test set losses of ULA (left) and GCNRNI (right).

6.3. Requirements to Apply ULA

Here we summarize the conditions needed to employ ULA in new settings while benefiting
from its local attraction property. We consider these mild in that they are already satisfied by many
settings. In addition to checking these conditions in new settings, make sure to follow necessary
implementation details of Subsection 4.3, as we do in our publicly available implementation at the
experiment repository.

a. The first condition is that processes graphs should be unweighted and undirected. Normalizing
adjacency matrices is accepted (we do this in experiments—in fact it is necessary to obtain the
spectral graph filters we work with), but structurally isomorphic graphs should obtain the same
edge weights after normalization. Otherwise, Theorem 3 cannot hold in its present form. Future

theoretical analysis can consider discretizing edge weights to obtain more powerful results.

b. Furthermore, loss functions and output activations should be twice differentiable and each of
their gradient dimensions Lipschitz. Our results can be easily extended to differentiable losses
with continuous non-infinite gradients by framing their linearization needed by Theorem 1 as
a locally Lipschitz derivative. However, more rigorous analysis is needed to extend results to
non-differentiable losses, even to those that are differentiable “almost everywhere”.

c. Lipschitz continuity of loss and activation derivatives is typically easy to satisfy, as any Lipschitz
constant is acceptable. That said, higher constant values will be harder to train, as they will
require more finegrained discretization. Notice that the output activation is considered part of the
loss in our analysis, which may simplify matters. Characteristically, passing softmax activation
through a categorical cross-entropy loss is known to create gradients equal to the difference
between predictions and true labels, which is a 1-Lipschitz function and therefore accepts ULA.
Importantly, having no activation with mabs or L2 loss is admissible in regression strategies,
for example because the L2 loss has a 1-Lipschitz derivative, but using higher powers of score
differences or KL-divergence is not acceptable, as their second derivatives are unbounded and
thus not Lipschitz.

d. Finally, ULA admits powerful minimization strategies but requires positional encodings to
exhibit stronger expressive power. To this end, we suggest following progress on respective
literature.

6.4. Threats to Validity

Before closing this work, we point to threats to validity that future researcher based on this work
should account for. To begin with, we introduced local attraction as a property that induces deep
loss minima thanks to allowing training losses to escape from shallow local minima. This claim is a
hypothesis that we did not verify through analysis; results discussed above, like ULA’s efficicacy in
finding smaller loss values in all cases and the groking behavior, align with our hypothesis. However,
it also requires theoretical justification that we left for future work. For example, further investigation
is needed between our objective of creating plateaus and how valleys and or local maxima are affected.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

24 of 34

We reiterate the importance of this work as a first demonstration that GNNs with the local attraction
property actually exist.

In terms of experimental validation, we did not perform hyperparameter tuning due to the broad
range of experiment settings we visited. This is a threat to interpreting exact assessment values of
provided architectures, as improved alternatives could exist. However, our main point of interest was
to understand substantial qualitative differences between architectures that can not be bridged by
hyperparameter tuning. For example, ULA exhibits close to double the predictive accuracy compared
to the similarly powerful GCN in some tasks of Table 2. When applying the same common defaults on
hyperparameter values, we also verified that minor adjustments (including adding additional layers)
did not improve predictive efficacy for the Degree and Cora settings by any noticeable amount, but
more principled exploration can be conducted by benchmarking papers.

Choosing paper defaults could err in favor overestimating the abilities of existing GNNs on the
non-synthetic graphs in that we select only architecturs and parameters that are both tuned and known
to work well. We employ this practice because it does not raise concerns over our approach’s viability,
and given that computationally intensive experimentation is needed to tune hyperparameters in all
settings.

Finally, experiment results were evaluated on synthetic graphs with a small number 100 of nodes
(up to 500), mainly due to computational constraints of larger-scale experimentation. This number
of graphs was empirically selected as sufficient for small predictive differences between training
and validation sets across all experiments. For graphs with more nodes, ULA could require a non-
polynomial number of hidden layer dimensions, as this was an intermediate step in our proofs. Thus,
for harder tasks and without sufficient training data or number of parameters, other architectures
could reach deeper minima. Furthermore, we can not necessarily extrapolate efficacy to an unbounded
number of nodes because theoretical results do not hold in that scenario; at the very least include
graphs with the number of nodes that will be seen in practice to validation set. Finally, if an insufficient
number of training samples is provided, overtraining—even with validation precautions—persists as
a risk that should be investigated for an approach tailored to deep minimization.

7. Conclusions and Future Directions

In this work we introduced the local minimization property as a means of creating GNN archi-
tectures that can find deep minima of loss functions, even when they can not express the best fit. We
then created the ULA architecture that refines the predict-then-propagate scheme to become a local
attractor for a wide range of losses. We experimentally corroborated that this architecture can find deep
local minima in a collection of several tasks compared to architectures of similar or greater expressive
power. Thus, local attraction and, in general, properties that improve the deepness of learned minima
warrant closer scrutiny by the literature, especially when it is difficult to make assumptions about
the predictive task (e.g., whether it can be best supported by homophilous diffusion) are not known
a-priori and universally promising options are sought out.

Future works need to properly analyze the benefits of local attraction beyond the empirical un-
derstanding gleaned from our experiments. In particular, our results can combined with optimization
theory and loss landscape analysis results of traditional neural networks [3]. Furthermore, local attrac-
tors with controlled attraction areas could serve as an alternatives to GNN architecture search [39].
Furthermore, ULA could be combined with architectures with greater expressive power, especially
FPGNN [15], which exhibits WL-3 and while also applying MLPs on all node feature dimensions.
Moreover, concerns over a potentially large breadth or width of intermediate layers can be met by
devising mechanisms that create (coarse) invariant representations of each graph’s structure. Finally,
compatibility or trade-offs between universal AGF approximation and local attractiveness should be
investigated.

Author Contributions: Conceptualization, Emmanouil Krasanakis and Symeon Papadopoulos; Data curation,
Emmanouil Krasanakis; Formal analysis, Emmanouil Krasanakis; Funding acquisition, Symeon Papadopoulos

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

25 of 34

and lIoannis Kompatsiaris; Investigation, Emmanouil Krasanakis; Methodology, Emmanouil Krasanakis; Project
administration, Symeon Papadopoulos and Ioannis Kompatsiaris; Resources, Symeon Papadopoulos and Ioannis
Kompeatsiaris; Software, Emmanouil Krasanakis; Supervision, Symeon Papadopoulos; Validation, Emmanouil
Krasanakis, Symeon Papadopoulos and Ioannis Kompatsiaris; Visualization, Emmanouil Krasanakis; Writing —
original draft, Emmanouil Krasanakis; Writing — review & editing, Symeon Papadopoulos.

Funding: This work and the APC was partially funded by the European Commission under contract number
H2020-951911 Al4Media, and by the European Union under the Horizon Europe MAMMOth project, Grant
Agreement ID: 101070285. UK participant in Horizon Europe Project MAMMOth is supported by UKRI grant
number 10041914 (Trilateral Research LTD).

Data Availability Statement: Experiments, datasets, and implemented architectures can be found online at:
https:/ / github.com/MKLab-ITI/ugnn

Conflicts of Interest: The authors declare a conflict of interest with regards to the Centre for Research & Technology
Hellas: Employment.

Appendix A. Terminology

For the sake of completeness, in this appendix we briefly describe several properties that we
mention in the course of this work.

Boundedness. This is a property of quantities that admit a fixed upper numerical bound, matrices whose
elements are bounded, or functions that output bounded values.

Closure. Closed sets are those that include all their limiting points. For example, a real-valued closed
that contains open intervals (a, b) also includes their limit points a, b.

Compactness. We use the sequential definition of compactness, for which compact sets are closed and
bounded.

Connectivity. This is a property of sets cannot be divided into two disjoint non-empty open subsets.
Equivalently, all continuous functions from connected sets to {0, 1} are constant.

Density. In the text we often claim that a space A is dense in a set B. The spaces often contain functions,
in which case we consider a metric the worst deviation under any input, which sets up density as the
universal approximation property of being able to find members of A that lie arbitrarily close to any
desired elements of B.

Lipshitz continuity. We refer to multivariate multivalue functions f(x) as c-Lipshitz if they satisfy the
property || f(x1) — f(x2)|[p < c[[x1 — x2]|p for some chosen p-norm || - ||,. Throughout this work, we
consider this property for the norm || - ||, which computes the maximum of absolute values. If a
Lipshitz function is differentiable, then it is c-Lipshitz only if || V|| < c. If two functions are Lipshitz,
their composition and sum are also Lipshitz. If they are additionally bounded, their product is also
Lipshitz.

Appendix B. Theoretical Proofs
Lemma 1. For a positive definite graph filter F(M) and differentiable loss L(r) over graph signal domain

R C RIVI, update graph signals over time t € [0, 00) per:

MO _ pry)

r(t) = F(M)h(t)
st || f(r) + VL) || < 2= |VL()| forall |V.L(F)|| >0,r € R

)\max

where A, Amax > 0 are the smallest positive and largest eigenvalues of F(M) respectively. This leads to
limy o0 ||V, L(r(t))|| = 0 if posteriors remain closed in the domain, i.e., if r(t) € R.

https://github.com/MKLab-ITI/ugnn
https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

26 of 34

Proof. For non-negative posteriors r = F(M)h(t), and non-zero loss gradients, the Cauchy-Shwartz
inequality in the bilinear space (x,y) = x” F(M)y determined by the positive definite graph filter F(M)
yields:

Cw(;t(t)) = (ve£(r(e)) B ™ = (v, (1)) F £ (1)
(Vrﬁ(r(ﬂ))TF(M)(—V,L(r(1) + (F(r(t)) + V,L(r(1)))

[
<
5

< (VoL (r(®)) FOLL (D) + (VL) TFO) (£(r(1) + VoL (r(1)))
< —MIIVrE(r(t)) ||2 + /\mafo(r(t)) + Vﬁ(r(t)) H ||V.C(r(t)) I
< M|VrLrD) P+ Amax oL || VL (r(D) || VL (r(1))]

=0

where T is the matrix transposition symbol. Therefore, the loss asymptotically converges to a locally
minimum point. [

Lemma 2 Let a differentiable graph signal generation function® Hg : ® — RIVI on compact connected domain
© admit some parameters 6y € @ such that Hg, = ho. If, for any parameters 6 € ©, the Jacobian J,(6) has
linearly independent rows (each row corresponds to a node) and satisfies:

|Err(0)V,L(r)|| < 2-||V,L(r)|| forall VL(r) # 0

Amax
Err(8) = T — I3, (8) (33, (8)J3,(6)) 13, (6)
s.t. 7(0) = F(M)Hg € Ho

then there exist parameters 0oo € © such that ||V, L(r(0)) || = 0.

Proof. Let us consider a differentiable trajectory for parameters 6(t) for times t € [0, c0) that starts
from 6(0) = 6y and (asymptotically) arrives at some 0o = lim;_,o 6(f). For this trajectory, it holds

that dz(i(t) = Jy, (G(t))%(tt). Let us also consider the posteriors r(t) = r(0(t)) = F(M)He(t) arising
from the graph signal generation function Hg ;) at times ¢ for parameters 6(t), as well the least square

problem of minimizing the projection of the loss’s gradient to the row space of Jy;, (6(t)):

minimize ||V, L(r(t)) — Iy, (0(t))x(t)||
The closed form solution to this problem can be found by:

x(t) = (Tp, T (8(£)) Tng, (0(1))) " T, (8()) VoL (r(t))

Thus, as long as h(t) = Hy(;) (we will call this Proposition PI), this lemma’s first precondition can be
written for posteriors r(t) = F(M)h(t) and V,L(r(t)) # 0 as:

IV L(r(£)) = I, (OD)x(D)]| < 2L NVAL (1)

)\max

We now set x(t) as the derivatives of some parameters across their trajectory, that is:

dH
x(t) = 40 = | V,L(r(1) — T2

< BLIVrL @)

6 InLemma 2, the subscript 6 is the function’s Hy input.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

27 of 34

Therefore, from Lemma 1 we obtain that our system asymptotically arrives at locally optimal posteriors,
i.e., with V,L(re) = 0 for 7o = limy_so0 7(£).

As a final step, we now investigate the priors signal editing converges at. To do this, we can see
that the update rule leads to the selection of priors h(t) at times ¢ for which:

) _ oo i () = n(0) + [7904t = h(0) + Ho,, — He, = Ho
t—r00 =0

For some parameters 0o = lim;_,« 6(t). We can similarly show that Proposition P.I holds true.
Hence, there exists an optimization path of prior editing parameters (not necessarily the same as the
one followed by the optimization algorithm used in practice) that arrives at the edited priors Hy_, that
let posteriors exhibit local optimality. [J

Theorem 1 Tuake the setting of Lemma 2, where the loss’s Hessian matrix H(r) linearly approximates the
gradients N, L (r) within the domain r € R with error at most ey. Let us construct a node feature matrix H®)
whose columns are graph signals (its rows H) [v] correspond to nodes v). If hg, F(M)ho, and all graph signals
other than r involved in the calculation of L(r) are columns of H%), and it holds that:

M|V L(r)|| > 2em]r = oo

/\max

foranyr € R\ {reo}, then for any €« > 0 there exists MLPy with relu activation, for which
|E(M)MLPy(H) — reo]| < €oo

Proof. Let H(r) be the Hessian matrix of £(r) with respect to node values of the graph signal r € R
of a domain R. Given that its rank is K(r), there exists a decomposition H,(r) = J(r)D(r) with
fixed inner dimensions Kmax = sup,. K(r). That is, J(r) has dimensions |V| X Kmax and D(r) has
dimensions Kmax X dim(®) where dim(®) counts the dimensions of the parameter space © (i.e., is the
number of parameters). When K(7) = Knax, the decomposition even becomes unique for the particular
r.

We now select a prior generation model Hy with linearly independent rows and a Jacobian Jy;, (6)
that is a function (e.g., an MLP) approximating well the first of the decomposition elements. That is,
for any chosen small enough but non-negligible constant €3 > 0 within the domain R it holds that:

192,(8) = ()| < e

Throughout this proof, is a function of 6§, but we do not write r(6) for simplicity. The Jacobian does
not need to have linearly independent rows; small perturbations (with cumulative effect that, when
added to the actual approximation error, makes it smaller than €j) can be injected in each row to
make the rows of its approximation linearly independent. Additionally, we use the Hessian as a linear
estimator of gradients V,L(r«) per:

||Vr£(7’oo) - Vrﬁ(f’) — Hﬁ(?’) (roo — r) H S GHHT _ roo”
We now rewrite the loss’s gradient as a linear transformation of a factor £(r) with an error term e(r):
Vi L(r) = Ty, (0) L' (r) +€(r)

where the factor is £'(r) = J7T_[€ () (JMG(G)J/T\M(Q))AVE(TOO) + D(r)(r — 7o), and the error term
admits a small bound:

le(r) || < emllr = reol| + €5 |D(r)[[lIr — Tool| < sup [|r — reo || (€m + sup || D(r)]ley)
reR reR

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

28 of 34

At this point, we choose €] = 7 which yields lle(r)]| < 2epllr — ool

€H
supyer [|D(r)
Applying the linear estimation obtained above on the quantities of Lemma 2 we obtain:

[Err(0)VrL(r) || = IIVrL(r) = T34y (0) (B, (6) T34, (8)) T34, (0) (I, (O)L'(r) + e(r)) |
= (Ve L(r) = Jay (O)L' () + T34, (0) (33, (8)T34,(8)) "' Ty, (B)e (1) |
= [le(r) = I, (0) (F3, (0) T34, (6)) ~'T3, (0)e(r) || = || Err(6)e(r)||

However, the matrix Z — Err(6) = JHG(9)(.,]]%(9(9)@]]7{6(9))*1@1]756 is indempondent (that is, it holds
(Z—Err())(Z —E) =71 — Err(9)) and therefore its eigenvalues are either 0 or 1. Thus:

[Err(©0)V L(r)|| < lle(r)]| < 2emllr — reol| < ZLAVAL(P)]

Given that we showed the existence of a (deep neural network) function, J3,,(6), we integrate it to
retrieve Hy and then approximate the integral with a new deep neural network. Given the universal
approximation theorem’s form described by [26] the latter can be the architecture described by this
theorem, used to produce error less than €« A/\ . In this case:

IF(A)H" —reo| = |[F(A)H™ — F(A)Hq,, || < [F(A)[IHP = Ha, || < llew]

We could not immediately assume the existence of that final network, because we needed to verify
that the Jacobian’s properties for the function it approximates and “hide” methods of tracking equal
partial derivatives of different nodes behind the term €j.

As a final remark, one of the preconditions for Lemma 2’s application is for posteriors r to remain
within the domain R enclosing o = F(M)hg. Effectively, this stipulates that rg is implicitly injected
into the loss function as a choice on which direction to follow. One way to achieve this is demonstrated
in Theorem 2. [J

Theorem 2 There exists sufficiently large parameter l.q € [0, ZW] for which

L(r) = L(r) + lreg(llrll1 — [F(Mho)]l1)

satisfies the properties needed by Theorem 1 within the following domain:
R = {re} U { |r — ool < 0.5max {|V|, \|V 2 } ilax}

where 1o is the ideal posteriors optimizing the regularized loss. If the second term of the max is selected, it
suffices to have no regularization lyeg = 0.

Proof. For ease of notation, during this proof we define w = 0. 5 . Without loss of generality,
consider sgn(-) to be a twice differentiable closure of the sign functlon on the optimization trajectory,
i.e., a tight enough approximation of the element-by-element sign operator. If &g and ey are the
maximum derivative approximation error of £(r) and L(r) respectively, it suffices to select l;oq > 0
such that:

ZUHV,C(T)” + wlreg|V| > (GH + li’eg) sup ||1’ — Too”
.
& lreg(w|V| —sup ||r — reo|) > emsup |1 — rool| — w||VL(r)||
r r

< [V|w > sup ||r — reo|| or e sup ||r — reo|| < w||VL(7)]|
r r

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

29 of 34

where the first case needs to come alongside the condition

sup, ||r—rel|

lreg > GTVT—sup; Tr—rall

— sup, [Ir—rel| < 2wllg—qol
S leg = leg = =5mpr— 2 o
but in the second case it suffices to select any /;.¢ > 0. Given an appropriate selection, we obtain the
necessary criterion:

W[£(r)]| = Wl VL) + wlreg[V| > (€1 + Lreg) sup [|r — reo| = &7 — 7|
r

O

Lemma 3 Let a finite set of attributed graphs with undirected unweighted adjacency matrices M with up to a
finite number of nodes v and one-dimensional node representations H be denoted as M = {(M, H) : |V| < v}.
Let loss L(M, h,r) be twice diffentiable with respect to r and any €« > 0. Then any selected 0o that lets
Equation 3 be local loss minimum on all attributed graphs of M is contained in a connected neighborhood @y,
of Boo for which:

|V L(M, Ag(M, H))|| < € forany (M,H) € M and 6 € Oq_,

Proof. Let us write M = {(My, Hy), (My, Hy), (M3, H3) ... } and create the block-diagonal matrix:

M; 0 0
0 M, 0
M p—
0 0 M

and the feature matrix H = [Hy; Hp, H3; . ..], where ; is the vertical concatenation symbol (don’t forget
that this lemma refers to the one-dimensional setting where Hy, Hy, H3, ... are vectors, and therefore
H is also a vector.

By Theorem 2, the ULA1D architecture of Equation 3 admits parameters 8 € @ that reproduce
gradient norm up to €« for any twice differentiable loss, including the loss £,;(r) such that

Lai(Ag(M,H)) = L(My, Hy, Ag(My, Hy)) + £(Ma, Hy, Ag(Ma, Hp)) + ...

It also holds that: A
F(M;) 0 0
. 0 F(Myp) 0
F(M) = .
(M) 0 0 F(M3)

given that adjacency normalization is considers only row and column degrees for each node, and poten-

tially adding self-loops that add the unit matrix on the diagonal. Given this result, we now concatenate

vertically all parts of our predictive pipeline to obtain that: Ag(M, H) = [Ag(M1, H1); Ag(Ma, Hy); Ag(M3s, H3); . . .].
Thus, for any element i of M, we obtain:

IV L(M;, Hi, Ag(Mi, Hi) || < [V Lo (7) || < €0

As a final remark, we stress that previous theoretical results were obtained for a finite number of
nodes, and for this reason this proof only works on a set M with a finite number of elements, which
set up M as the adjacency matrix of a graph with a finite number of nodes (the sum of all nodes in
the set of graphs). Handling an infinite number of graphs is tackled in the proof of Theorem 3 that
follows. O

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

30 of 34

Theorem 3 Consider infinite sets M, bounded node feature values, Lipshitz loss gradients with respect to both
h and r, and MLPy that has activation functions that are almost everywhere Lipshitz with Lipshitz derivatives
(e.g., relu). Then, Lemma 3 holds for a dense subset of the neighborhood.

Proof. Our chosen Ay(M, H) is c(6)-Lipshitz with respect to H for some value c(0) > 0, as it is
composed from Lipshitz functions (activations and linear matrix multiplications and additions).
Consider that £ has a c.-Lipshitz derivative. We can now write:

[Ag(M, H;) — Ag(M, Hj) [loo < ¢(0)[|H; — Hjloo
= [|V:L(M, Hi, Ag(M, H;)) — V. L(M, H;, Ag(M, H})) |0 < cc(0)||H; — Hjl|o

where || - || Obtains the maximum absolute value of vector elements. Similarly, for the quantity
errdif(G) = V]’L:(M, Hi, .Ag (M, Hl)) — V]’L:(M/ Hi, .Ag (M, H]))

is cge-Lipshitz with respect to 6 for some constant cg > 0, i.e., [|errdif (6;) — errdif f(0;)|| < cqel|60; —
0;||co- Note that above all loses have H; as the second argument. We also have that the quantity

apprfeats(H;) = V,L(M, H;, Ag(M, H;))

isc fe-Lipshitz with respect to H; for some constant c e >0, 1e,
lapprfeats(Hy) — apprfeats(Hy) | < cfellH: — Hjlleo.

At the same time, consider the discretization of the feature space H that creates a collection for
numerical precision €yrec > 0 whose exact value will be selected later on:

Me,,.. = {(M, ceil(ep% —0.5)€eprec) : (M, H) € M}

For the discretization it holds that, for every (M, H) € M and 6 there exists the closest element in
(M, H') € Me,,,,, for which:

H' =arg min [|H—H'c < €prec
(M H")eM4)

= [|V,L(M,H, Ag(M,H)) — V,L(M, H, Ag(M, H"))||

14

< coe(0)[[H — H'| < coe(6)eprec 3
Having established bounds for the error of replacing elements of M with their discretized
equivalents, we now move on to the main proof. Consider any € > 0, select a fixed €, with
appropriate value (we will see how to determine this later). Now, the discretization has a number of

elements upper bounded by a finite number:

VI(IVI41) /2,77 (diff \col(H)
|M€Prec| SZ‘ I(‘ I)/ le(elg%)
where dif f = supy, H; |H; — Hj|loo < o0 is a finite number due to bounded feature values, i.e., it is
the maximum difference of values across all feature dimensions. Therefore, per Lemma 3 there exists
compact domain @, around 6o, with more than one elements for which ||V, £L(M, H', Ag(M, H'))|| <
¢ given that (M, H') € Me,,,.. From this we obtain that, for any 6 € @j,, in a new connected subset

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

31 0f 34

Og,, € Og, N{O: |6 — Oolco < 2} (this new set still has more than two elements and is compact and
connected as an interesection of compact and connected sets):

IV,L(M, H, Ag(M, H))|
< [V:L(M, H, Ag(M, H"))|| + [IVL(M, H, Ag(M, H)) — V,L(M, H, Ag(M, H"))|
= |V,L(M, H, Ag(M, H"))|| + [lerrdif f(6)
< |[VL(M, H, Ag(M, H"))|| + |lerrdif f (6co) || + cgel|6 — foo |0
< IV L(M, H', Ag(M, H"))|| + ||appr feats(H) — app feats(H')]|
+ llerrdif f(0eo) || + cgell® — Boolloo
< |[VAL(M, H', Ag(M, H'))|| +cp|[H — H'|| + |lerrdif f (6eo) || + cgel|6 — boo |0

V|V
S é‘% + Cfe€prec + CCC(Q)eprec# + % = €0

where the last equality holds for the choice ¢ = €oo . As a final remark, c(0) is
q Yy prec che+cﬁ sup%@ew o(0) TV‘ ()

cc-Lipschitz almost everywhere, given that it is is composed by a finite number of almost-everywhere
Lipschitz derivatives. Therefore, there exists a subset of ®y_ that is dense on the latter, for which
cc-Lipschitz. Thus, our choice for €, exists and is finite, because the denominator is positive and
SUPgc@, c(0) < ¢(0oo) + c||0 — Ooo || o 1s finite, which in turn holds true given that ®y_ is compact and
the L2 norm continuous. O

Appendix C. Algorithmic Complexity

Let us annotate the embedding dimension K = col(H) and entertain a scenario with no paral-
lelization. The generation time of embedding matrix Dim is proportional to its number of elements and
therefore O(|V|Klog, K). Linear node feature transformations also require O(|V|col(X)K) time and
the output linear layer requires time O(|V|col (H"))col (Y)). Inside ULA1D, for sparse matrix-vector
multiplication on each filter parameter we require time:

O(L|E|Kcol(H®)) = O(LIE|K(2 4 1og, K)) = O(L |€] Klog K)

assuming that self-loops are added, so that || > |V|, where L is the number of the employed filter’s
parameters and |£| is the number of nodes of the base graph, i.e., the number of non-zero elements of
the adjacency metric M and not of Myepeqt- This is because we perform a premature re-wrapping of
H®) into vector form (this is just a computational rearrangement) before passing it through the filter
F(M), effectively going back to left-multiplying each feature dimension with the normalized adjacency
matrix.

However, MLP layers within ULA1D multiply the combined graph attributes H|Dim with dense
transformations with (2 + ceil (log, K)) x (4 + ceil (log, K)) parameter dimensions, and the outcome
of the latter with dense transformation of (4 + ceil (log, K)) x 1 dimensions (since H(") is a column
matrix). This requires total time O(|V|Klogj K). In the end, summing all these running times, we
obtain the following time needed to run one forward pass:

time € O(|€|LKlog K + |V|K(log? K + col (X) + col (Y)))

In terms of memory complexity, for graph filter propagation we iteratively compute matrices
M"HO forall n = 1,2,...,N by left-multiplying the outcome for 7 — 1 with M an aggregate them
into one matrix with the same dimensions of H(®). This requires memory O(|V|col(H"))) that is
independent of N, and becomes O(|V| Klog K) given that ULA1G parses |V|K nodes with O(log K)
dimensions each. Additionally, we need to store adjacency matrices in O(|£|) memory, and layer
parameters that similarly to before consume at worst O(log® K) memory for ULA1D. Input and output

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

32 0f 34

linear transformations consume O(col(X)K) and O(Kcol(Y)) memory respectively. Overall, summing
these requirements we have the following memory needs:

memory € O(log? K + K(col (X) + col(Y) + |V|KlogK))
= O(|V|Klog K + K(col(X) + col(Y)))

Appendix D. ULA as an MPNN

Here we explain that any trained ULA architecture can be written as an MPNN. To begin with,
both MLPs and propagation of node representation matrices one hop away constitute message passing
layers. For example, predict-then-propagate architectures like APPNP are also MPNNSs. At the same
time, passing the unwrapped H through an MLP is equivalent to passing through a different MLP’ the
wrapped version holding the same values:

Huyrapped = (M1Embed(1)|hp[1Embed (2)| . . . [feors(rr)) |[1Embed (K))

for corresponding layer representations H ©

wrapped with MPNN layers:

0) 0)

¢(€) (H(e)w(é) + b(Z)) = ¢([) (H(Z) Wr(epeat + bﬁepeat)

wrapped

=WOIWO| ... and p') bO|p()] In this variation, the rewrapped version of

repeat =

where W(e)

repeat

H®) is equal to Hz(quzzpped'

References

1. Loukas, A. What graph neural networks cannot learn: depth vs width. arXiv preprint arXiv:1907.03199 2019.
Nguyen, Q.; Mukkamala, M.C.; Hein, M. On the loss landscape of a class of deep neural networks with no
bad local valleys. arXiv preprint arXiv:1809.10749 2018.

3. Sun, RY. Optimization for deep learning: An overview. Journal of the Operations Research Society of China
2020, 8, 249-294.

4. Bae, K; Ryu, H.; Shin, H. Does Adam optimizer keep close to the optimal point? arXiv preprint
arXiv:1911.00289 2019.

5. Ortega, A.; Frossard, P.; Kovacevi¢, J.; Moura,].M.; Vandergheynst, P. Graph signal processing: Overview,
challenges, and applications. Proceedings of the IEEE 2018, 106, 808-828.

6. Page, L. Brin, S.; Motwani, R.; Winograd, T.; et al. The pagerank citation ranking: Bringing order to the web
1999.

7. Chung, F. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences 2007,
104, 19735-19740.

8. Gasteiger,].; Bojchevski, A.; Glinnemann, S. Predict then propagate: Graph neural networks meet personal-
ized pagerank. arXiv preprint arXiv:1810.05997 2018.

9. Agarap, AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 2018.

10. Gilmer, J.; Schoenholz, S.S.; Riley, PE,; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry.
In Proceedings of the International conference on machine learning. PMLR, 2017, pp. 1263-1272.

11. Balcilar, M.; Héroux, P.; Gauzere, B.; Vasseur, P.; Adam, S.; Honeine, P. Breaking the limits of message passing
graph neural networks. In Proceedings of the International Conference on Machine Learning. PMLR, 2021,
pp. 599-608.

12. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907 2016.

13. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y.; et al. Graph attention networks.
stat 2017, 1050, 10-48550.

14. Cai, J.Y,; Fiirer, M.; Immerman, N. An optimal lower bound on the number of variables for graph identifica-
tion. Combinatorica 1992, 12, 389-410.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

33 of 34

15. Maron, H.; Ben-Hamu, H.; Serviansky, H.; Lipman, Y. Provably powerful graph networks. Advances in neural
information processing systems 2019, 32.

16. Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W.L.; Lenssen, J.E.; Rattan, G.; Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceedings of the Proceedings of the AAAI conference on
artificial intelligence, 2019, Vol. 33, pp. 4602—4609.

17. Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhutdinov, R.R.; Smola, A.]. Deep sets. Advances in
neural information processing systems 2017, 30.

18. Keriven, N.; Peyré, G. Universal invariant and equivariant graph neural networks. Advances in Neural
Information Processing Systems 2019, 32.

19. Maron, H; Fetaya, E.; Segol, N.; Lipman, Y. On the universality of invariant networks. In Proceedings of the
International conference on machine learning. PMLR, 2019, pp. 4363-4371.

20. Xu, K;; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826 2018.

21. Wang, H,; Yin, H.; Zhang, M.; Li, P. Equivariant and stable positional encoding for more powerful graph
neural networks. arXiv preprint arXiv:2203.00199 2022.

22. Keriven, N.; Vaiter, S. What functions can Graph Neural Networks compute on random graphs? The role of
Positional Encoding. Advances in Neural Information Processing Systems 2024, 36.

23. Sato, R.; Yamada, M.; Kashima, H. Random features strengthen graph neural networks. In Proceedings of
the Proceedings of the 2021 SIAM international conference on data mining (SDM). SIAM, 2021, pp. 333-341.

24. Abboud, R;; Ceylan, LL; Grohe, M.; Lukasiewicz, T. The surprising power of graph neural networks with
random node initialization. arXiv preprint arXiv:2010.01179 2020.

25. Krasanakis, E.; Papadopoulos, S.; Kompatsiaris, I. Applying fairness constraints on graph node ranks
under personalization bias. In Proceedings of the Complex Networks & Their Applications IX: Volume 2,
Proceedings of the Ninth International Conference on Complex Networks and Their Applications COMPLEX
NETWORKS 2020. Springer, 2021, pp. 610-622.

26. Kidger, P; Lyons, T. Universal approximation with deep narrow networks. In Proceedings of the Conference
on learning theory. PMLR, 2020, pp. 2306-2327.

27. Hoang, N.; Maehara, T.; Murata, T. Revisiting graph neural networks: Graph filtering perspective. In
Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021, pp.
8376-8383.

28. Huang, Q.; He, H,; Singh, A; Lim, S.N.; Benson, A.R. Combining Label Propagation and Simple Models
Out-performs Graph Neural Networks. arXiv preprint arXiv:2010.13993 2020.

29. Zhou, D.; Bousquet, O.; Lal, T.; Weston, J.; Scholkopf, B. Learning with local and global consistency. Advances
in neural information processing systems 2003, 16.

30. Fey,M.; Lenssen,].E. Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428
2019.

31. Bojchevski, A.; Glinnemann, S. Deep gaussian embedding of graphs: Unsupervised inductive learning via
ranking. arXiv preprint arXiv:1707.03815 2017.

32. Sen, P; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network
data. Al magazine 2008, 29, 93-93.

33. Namata, G.; London, B.; Getoor, L.; Huang, B.; Edu, U. Query-driven active surveying for collective
classification. In Proceedings of the 10th international workshop on mining and learning with graphs, 2012,
Vol. 8, p. 1.

34. Chen, M.,; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and deep graph convolutional networks. In Proceedings
of the International conference on machine learning. PMLR, 2020, pp. 1725-1735.

35. Dunn, O.J. Multiple comparisons among means. Journal of the American statistical association 1961, 56, 52—-64.

36. Demsar, J. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning
research 2006, 7, 1-30.

37. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric statistical methods; John Wiley & Sons, 2013.

https://doi.org/10.20944/preprints202404.1340.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202404.1340.v1

34 of 34

38. He, K,; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1026-1034.

39. Nunes, M.; Fraga, PM.; Pappa, G.L. Fitness landscape analysis of graph neural network architecture search
spaces. In Proceedings of the Proceedings of the Genetic and Evolutionary Computation Conference, 2021,
pp. 876-884.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202404.1340.v1

	Introduction
	Background
	Graph Filters
	Graph Neural Networks
	Universal Approximation of AGFs
	Symbols

	One-Dimensional Local Attraction
	Problem Statement
	Local Attractors for One-Dimensional Bode Features in One Graph
	Attraction across Multiple Graphs

	Universal Local Attractor
	Multidimensional Universal Attraction
	Different Node Feature and Prediction Dimensions
	Implementation Details
	Running Time and Memory

	Experiments
	Tasks
	Compared Architectures
	Evaluation Methodology
	Experiment Results

	Discussion
	Limitations of Cross-Entropy.
	Convergence Speed and Late Stopping.
	Requirements to Apply ULA
	Threats to Validity

	Conclusions and Future Directions
	Terminology
	Theoretical Proofs
	Algorithmic Complexity
	ULA as an MPNN
	References

