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* Correspondence: mdjeam@foxmail.com 

Abstract: In the present work, a predictive modelling and optimization with the adaptive network 
based fuzzy inference system (ANFIS) modelling of mechanical properties of laser-coated 
NB/SiC/Ni welds was studied based on Taguchi design by laser cladding. An ANFIS model based 
on a Sugeno type fuzzy inference system was developed for predicting the hardness properties of 
SiC/BN/Ni welds by laser cladding with experimental data required for network training and 
prediction. Based on analysis of variance, three important factors were taken as inputs for the fuzzy 
logic inferences, while the hardness properties were taken as the output of the ANFIS. The 
microstructure of welds were analysed using scanning electron microscopy with an energy 
dispersive X-Ray spectrometer. Highly developed leaf-like dendrites and eutectic crystals were 
found in some areas of the melting zone for the BN/SiC/Ni weld, which was significantly hardened. 
The ANFIS model based on Taguchi’s design provides a better pattern of response because the 
predicted and experimental values were highly similar. As a result, a satisfactory result was 
achieved between the predicted and experimental values of hardness in laser-coated NB/SiC/Ni 
welds, whereby the success and validity of the method was verified. 

Keywords: SiC/BN/Ni welds; ANFIS; hardness properties; metal-matrix composite and laser 
cladding 

 

1. Introduction  

The protective capabilities of metal-matrix composite coatings for hard-surface environments 
with high temperature, wear, corrosion, impact and fatigue resistance have been of great interest in 
industrial applications, especially in the areas of cutting tools, turbine blades, engine valves, and so 
on. Recently, there has been a great deal of interest in the use of ceramic-matrix composites including 
carbides, nitrides and borides on steel and non-ferrous alloys, because of their integrated properties, 
which have proved to be an excellent protective material in additive manufacturing [1,2]. These hard 
alloys can be effectively used to improve the mechanical properties of metal-matrix composites. 
Silicon carbide alloys, with their high melting point and high hardness, are of great significance for 
sandpaper, grinding wheels, and cutting tools, where they have long been used by manufacturers for 
equipment such as bearings in high-temperature environments, heated machine parts, automotive 
brakes, and even knife-sharpening tools [3–7]. Therefore, they are widely used in harsh environments 
such as high temperature, abrasion, corrosion, shock and fatigue [8–10]. But, silicon carbide alloys 
are high in hardness and brittleness, which make them difficult to machine. A number of 
disadvantages of silicon carbide have been noted, including reduced strength, non-uniform 
distribution, thermal stress concentration and crack formation, particularly in high volume fraction 
silicon carbide coatings, thus limiting the application of silicon carbides. Therefore, typical silicon 
carbide alloys are hardly able to meet the requirements of workpieces in harsh working environments 
[11–13]. With these challenges, various surface strengthening techniques have been investigated, 
containing metal matrix composites with transition alloys and intermediates because of their good 
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wettability and ductility. Many of the existing publications have addressed the use of transition alloy 
materials for manufacturing metal-ceramic coatings by using laser cladding [18,19]. These transition 
alloys are equipped with a binder phase that protects the carbide from oxidation and decomposition 
[20–25]. They add binder phase materials to form metal-ceramic composite layers by laser cladding, 
which reduces the structural defects of highly brittle carbides during the cladding process. For 
example, Li et al. investigated the fabrication of mirrors made of silicon-carbide ceramics by additive 
manufacturing methods using material extrusion and laser cladding. The experimental results show 
that optical elements of silicon carbide with more complex structures can be manufactured, which is 
difficult to achieve with conventional ceramic moulding and sintering techniques [26]. Li et al. 
developed the microstructure, the mechanism of formation and the properties of Ti+SiC based on the 
Ti6Al4V substrate by laser cladding [27]. Yin et al. conducted hierarchical porous SiCnw-Si3N4 
composite ceramics with good electromagnetic absorption properties. An increase in solid loading 
decreased apparent porosity and improved flexural strength and fracture toughness [28]. Zhou et al. 
studied the preparation of carbon fibre reinforced Si3N4 ceramics with pyrolytic carbon (PyC)/SiC 
interphase by gel casting method. The results showed that the chemical compatibility between carbon 
fibres and Si3N4 matrix at high temperature was significantly improved by the introduction of 
PyC/SiC phase [29]. Mazumder et al. studied a series of Si3N4-SiCnw and MgF2-added Si3N4-SiCnw 
composites that were manufactured at 1650°C using hot press sintering [30]. Lusquiños et al. 
examined the laser melting of SiC/Si composite coatings on Si-SiC ceramic substrates. The results 
showed that the use of SiC+SiO2 mixed powders caused serious damage to the substrate material, 
while the use of SiC+Si mixed powders resulted in good coatings without causing damage to the 
substrate [31]. Zheng et al. depicted the microstructure and wear properties of laser clad Al+SiC 
powders on AZ91D magnesium alloy. The results show that the surface hardness of the cladding 
layer is higher than that of the substrate which increased with the increase of SiC content in the 
cladding layer. Meanwhile, the in situ synthesised SiC particle composite coatings significantly 
improved the wear resistance [32]. Sun et al. focused on the preparation process of BN materials and 
the application of BN composite coatings, in which h-BN has outstanding physical and chemical 
properties [33]. Based on the above literature, many studies have shown that the use of binder phase 
additives in metal matrix composites in highly hard environments has the potential to ameliorate the 
susceptibility of ceramic-reinforced coatings to laser cladding, whereas much of the research on 
ceramic-metal composites has been directed towards the characterisation of silicon carbide 
composites in one binder phase. However, studies on the mechanical properties of transition alloys 
and intermediates both used in metal-matrix composites, especially in silicon carbide composites, are 
still limited [34–39]. Silicon carbide is very hard to be coated because of its susceptibility to 
sublimation at high temperatures. Therefore, it is desirable to extend some useful transition and 
intermediate alloys to high carbon silicon which can be further explored in depth to improve the 
properties of silicon carbide composites. In this study, the introduction of layered structural 
dispersants such as boron nitride and nickel-based alloys into silicon carbide composites that can 
enhance the properties of ceramic-metal silicon carbide composites based on the concept of weak 
boundary phase of carbide. Moreover, the influence and relationship of process parameters on 
mechanical properties, such as modelling, cannot be studied systematically and accurately. However, 
the laser cladding process and cemented carbide composites both are highly nonlinear, multivariate, 
strongly coupled, and complex processes with large stochastic uncertainties that often require 
empirical decisions with less than optimal results. They are unable to give a full description of the 
complicated relationship between the data due to its behaviour of dynamic and nonlinearity. There 
is a need for several new attempts. The uncertainty of ceramic-metal composites is well solved by 
developing an several predictive models using soft programming technique such as artifcial neural 
network, fuzzy-logic, adaptive network-based fuzzy inference system etc so that the complex 
welding problems, such as parameter-property relationships, predicting and monitoring the quality 
of welded joints, designing welding process parameters, controlling weld shaping, tracking weld 
beads and detecting welding defects, can be solved [40–51]. There are, however, some drawbacks to 
them, such as poor global search capability and long training time. Furthermore, fuzzy logic 
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interference systems rely on the knowledge and experience of professional experts, which makes it 
difficult to obtain satisfactory results in the lack of information in knowledge databases. [52–59]. 
Therefore, the above discussion leads us to propose an improved adaptive neuro-fuzzy inference 
system in this paper. This is because that it is a hybrid AI technique, which is the combination of 
fuzzy logic and artificial neural networks. The ANFIS integrates the advantages of the fuzzy inference 
system, which is easily expressed in fuzzy linguistic terms, with the self-learning ability of artificial 
neural networks by giving full use of their strengths. Although optimisation and modelling of metal-
ceramic composites applied to welding processes has been reported in the literature. However, the 
optimisation and modelling of the properties of BN/SiC/Ni welds by laser cladding that uses ANFIS 
in Taguchi’s method do not appear to have been reported. 

In this study, ceramic-metal composite coatings on substrates by laser cladding are investigated 
by applying artificial intelligence which aims to provide a valuable insight into the mechanical 
properties of BN/SiC/Ni coatings. The mechanical properties of BN/SiC/Ni coatings are improved by 
optimization design and artificial intelligence, which an ANFIS algorithm based on Taguchi’s 
experiments is developed to model the hardness behaviour of the coatings. The influence of 
microstructural evolution, hardness properties and modelling of BN/SiC/Ni coatings with different 
parameters in laser welding is analysed. Furthermore, the hardness properties of laser BN/SiC/Ni 
welds are modelled using the ANFIS based on the parametric design to understand the response 
pattern of experimental domain. A better understanding of the hardness properties is gained through 
the prediction of ANFIS, which allowed us to know the effect of various variables on hardness by 
simulating the hardening behaviour of BN/SiC/Ni welds. 

2. Experimental Design and Analysis 

2.1. Materials and Preparations 

The experimental equipment of laser cladding consists of YLS-3000 fibre laser, six-axis robotic 
arm, laser water cooler and PLC control system, as shown in Figure 1a. In addition, the laser cladding 
experiments used the laser via nozzle shown in Figure 1b, where powder 1, a Ni-based powder, and 
powder 2, a BN-based powder, are mixed in a mixing chamber using nitrogen, which is coaxially fed 
to the SiC powder pre-positioned on the substrate to produce a fused layer, resulting in a BN/SiC/Ni 
weld. Transition metals such as nickel-based and BN-based powders are used in laser cladding that 
forms silicon carbide composite welds which improve the properties of high hardness silicon carbide. 
The size of the base metal is 40mm x 20mm x 10mm. The microhardness test was carried out using 
an AVK-C1 hardometer manufactured by Mitutoyo. The test is carried out on the entire weld bead 
including the molten zone, heat-affected zone and the base material, with a total of 14 points, while 
the hardness calculation is mainly measured in the molten zone for modelling calculation. Table 1 
lists the BN/SiC/Ni mixtures in this study, where the substrates are 40Cr and #45 steel, the NB 
powders were 0-30 %, the SiC powder is 70-100%, the Ni powder is 0-30%, the laser power is 2400-
2800 W, the carrier flow rate is 1400-1800 ml/min, and the travel speed is 2-6 mm/s and stand-off 
distance is 40-50 mm. 

Table 1. Control factors and their levels for butt joints. 

Symbol Controllable  
factors Level 1 Level 2 Level 3 

A Base metal 40Cr steel  #45 steel - 
B BN(wt%) 0 15 30 
C SiC(wt%) 100 85 70 
D Ni(wt%) 0 15 30 
E Power of laser(W) 2400 2600 2800 
F Carrier gas(mL/min) 1400 1600 1800 
G Travel speed (mm/s) 2 4 6 
H Stand-off distance(mm) 40 45 50 
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Figure 1. (a) The process of laser cladding used in this work (b) Enlarged schematic diagram of the 
operation of laser cladding of a specimen. 

2.2. Experimental Design and Layout 

With laser cladding, a number of controlled variables are required to minimize unwanted 
defects in the weld. If the variables are chosen poorly, voids, cracks, and dissolved SiC can be 
generated, leading to weld characteristics that cannot be controlled. However, the variables of laser 
cladding come to play significant roles in the behavior of the weld. This is because the laser cladding 
process involves many variables that affect the properties of the weld. Therefore, the variables of laser 
cladding must be controlled. A total of 18 experiments were conducted while using a two-and-three 
layer array of L18 orthogonal tables that could accommodate many design factors simultaneously to 
obtain sufficient experimental information. Table 1 shows the control factors and the level of each 
factor in the Taguchi design, where one 2-factor and seven 3-level factors containing A, B, C, D, E, F, 
G and H were allocated to the orthogonal arrays. It is a matrix of fractional factors that ensures a 
balanced comparison of the levels of any factor or interaction between factors. These factors and their 
alternative levels that were used in the experiment are listed in Table 2. In this study, The Taguchi 
method provides minimal sensitivity to various causes of variation, and optimizes control parameters 
by using orthogonal arrays over the entire parameter space, thereby yielding high-quality products 
with development and manufacturing costs. In order to evaluate the influence of factors on the 
response, Taguchi suggests using a special form of response transformation called signal-to-noise 
ratio (S/N), which measures quality with emphasis on variation [26]. In this study, the logarithmic 
transformation was used for the smaller-the-better case, such as the wear volume for cladding welds. 
The S/N ratio based on the loss functions is calculated from Equation (1): 












−= ∑

=

n

i
iy

n
Log

1

21/110η  (1) 

where 𝑦𝑦�𝑖𝑖 is the mean and Si is the standard deviation of the ith trial, m is the predefined value of 18 
trails, which is measured in decibels. The S/N ratio was calculated, and the mean and standard 
deviation of each variable are summarized in Table 2. Each trial was repeated three times for wear 
volume, which was analyzed for rank order and maximal values using mean value analysis with 
signal-to-noise ratio, ANOVA was also used again to determine the significant factors for each quality 
characteristic. Subsequently, predictions of quality characteristics were made using these factors 
incorporated into the ANFIS model. 
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Table 2. An orthogonal array with six parameters, three levels and the observed response by laser 
cladding. 

 
EXP 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

 
G 

 
H 

Microhardness (HV) S/N ratio 
(dB) H1 H2 H3 Mean St.Dev 

1 1 1 1 1 1 1 1 1 423 442 440 434.9 8.5 52.77 
2 1 1 2 2 2 2 2 2 437 434 472 447.6 17.2 53.02 
3 1 1 3 3 3 3 3 3 478 479 500 485.7 10.2 53.73 
4 1 2 1 1 2 2 3 3 367 386 377 376.8 7.8 51.52 
5 1 2 2 2 3 3 1 1 431 453 443 442.3 9.0 52.91 
6 1 2 3 3 1 1 2 2 596 589 626 603.5 15.8 55.61 
7 1 3 1 2 1 3 2 3 484 499 488 490.4 6.3 53.81 
8 1 3 2 3 2 1 3 1 412 432 424 422.5 8.2 52.52 
9 1 3 3 1 3 2 1 2 712 698 754 721.2 23.6 57.16 

10 2 1 1 3 3 2 2 1 353 376 380 369.7 11.9 51.36 
11 2 1 2 1 1 3 3 2 412 443 442 432.4 14.4 52.72 
12 2 1 3 2 2 1 1 3 578 602 609 596.4 13.3 55.51 
13 2 2 1 2 3 1 3 2 345 376 348 356.4 13.9 51.04 
14 2 2 2 3 1 2 1 3 712 756 796 754.6 34.2 57.55 
15 2 2 3 1 2 3 2 1 567 586 575 575.9 7.8 55.21 
16 2 3 1 3 2 3 1 2 375 396 382 384.4 8.7 51.70 
17 2 3 2 1 3 1 2 3 479 470 528 492.3 25.4 53.84 
18 2 3 3 2 1 2 3 1 493 512 529 511.4 14.7 54.18 

2.3. Adaptive Network Based Fuzzy Inference System 

Adaptive Neuro-Fuzzy Inference System (ANFIS), introduced by Jang in 1993 [52], that has 
gained remarkable attention from researchers, is a hybrid forecasting model that uses both neural 
networks and fuzzy logic which is a method for generating mapping relationships between inputs 
and outputs. ANFIS provides highly efficient models for approximation not only in neuro-fuzzy 
systems but also in various other machine learning techniques. Thus, the shortcomings of neural 
network black boxes that are unable to explain decisions and the weaknesses of fuzzy logic where 
learning relies on personal experience can be overcome. In ANFIS, the learning capabilities and 
relational structure of artificial neural networks are integrated with the decision-making mechanism 
of fuzzy logic. ANFIS, like artificial neural networks, utilises a training dataset to achieve sample 
learning of the rule base in the fuzzy logic system. The prediction of mechanical properties of welding 
using an ANFIS has the advantages of fast modelling and high prediction accuracy, which provides 
an effective way to solve the problems of difficult prediction models and low prediction accuracy due 
to the highly nonlinear nature of the welding process. Figure 2 depicts the architecture of ANFIS. It 
is deduced from Figure 2 that the network consists of three inputs (X1, X2, X3), where each input is 
organized by 3 membership functions. In addition, the layer containing 27 fuzzy rules and the output 
layer are useful at building the model. The number of nodes in the first layer can be calculated as the 
product of 3 (number of inputs) and 3 (number of fuzzy functions) (9). The number of nodes in the 
other layers (layers 2-4) is linked to the number of fuzzy rules (27). In Figure 2, the basic structure of 
the ANFIS model is shown. In this example, a five-layer neural network that simulates the operation 
of a fuzzy inference system as shown in Figure 3 is used. Figure 2 shows the topology of the proposed 
ANFIS for the hardness yield. Each node in the same layer of the architecture as shown in Figure 2 
has a similar function. Square nodes indicate nodes with adjustable parameters, and circular nodes 
indicate nodes without adjustable parameters. For more details on the implementation of the ANFIS 
network, it is refered to the literature [22]. ANFIS uses membership functions for several sets while 
employing the linear functions of Sugeno type for the rule output. Various types of membership 
functions (MF)are used, such as triangular, trapezoidal, gaussian, and bell functions. For example of 
Gaussian type of MF, the mathematical equation is: 
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Figure 2. A framework of ANFIS model with five layers including fuzzy membership layer, 
fuzzification layer, normalisation layer, defuzzification layer and output layer. 

 
Figure 3. Three inputs and one output fuzzy inference system for laser-coated BN/SiC/Ni welds. 

μ(x, a, b, c) =exp�−(𝒙𝒙−𝒄𝒄
𝒂𝒂

)2�        (2) 

where Gauss’s one-dimensional graph is the shape of the characteristic symmetric solution “bell 
curve”, where a is the height of the curve’s peaks, b is the coordinates of the centre of the peaks, and 
c is called the standard deviation, which characterises the width of the bell shape. ANFIS has done 
all the five essential processes of fuzzy control, i.e., input layer, membership layer, fuzzification layer, 
normalisation layer and defuzzification, which constitute an adaptive neuro-fuzzy system by using 
a learning algorithm of neural networks that automatically extracts rules from the source data of the 
input and output samples. Its structure of the model was made by merging adaptive network and 
fuzzy inference system, which functionally inherited the explainability character of the fuzzy 
inference system and the learning ability of the adaptive network, which is able to modify the 
parameters of the system according to the a previous knowledge, so as to make the output of the 
system closer to the real output. The architecture of the neuro-fuzzy model consists of five unique 
adaptive layers. Takagi and Sugeno proposed the T-S fuzzy model in 1985. The model was later called 
Sugeno fuzzy model. It is a nonlinear model that expresses the dynamic properties of complex 
systems and is the most commonly used fuzzy inference model. Figure 3 shows a neural network 
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with five layers in which the ANFIS model was trained. The input values, such as SiC, laser power 
and travel speed, are converted to fuzzy values by means of a membership function. A example of a 
simple fuzzy inference system, a first-order model of fuzzy Sugeno that is a typical rule base, which 
contains two If-Then rules can be expressed as follows 

Rule i:  If x1 is A1s, x2 is B1s,…, and xs is Cis; then yi=f(x1,x2,…,xn)     i=1,2,…,M      (3) 

where xi (i=1,2,..,s)is the antecedent input, A1s, B1s, and C1s are membership function and f(x1,x2,…,xs) 
represents the outputs in the consequent part. Typically yi=f(x1,x2,…,xs) is a polynomial. The following 
is a brief description of the Sugeno first-order model with two input variables. 

Layer 1: The inputs x1, x2, x3 are fuzzified by means of a membership function, which is 
transformed to obtain the degree of membership of the linguistic types A1, A2, A3, B1, B2, B3, C1, 
C2, C3 (e.g., Large, Medium, Small) in the interval [0,1]. The output of layer 1, Oij, can be expressed 
as 

𝑂𝑂𝑖𝑖1 = 𝜇𝜇𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖), 𝑖𝑖 = 1, … ,3, 𝑗𝑗 = 1, … ,3 (4) 

where μij is the jth membership function for the input Xi. 
Layer 2: The firing strength of each rule is obtained by multiplying the degrees of membership 

of each rule;the weight functions wi for the next layer is defined. 

Oi2 = wi = µAi(x1)µBi(x2) µCi(x3), i = 1, 2,3                                    (5) 

Layer 3: The firing strength of each rule obtained from layer 2 is normalised to represent the 
firing weight of that rule in the whole rule base. 

Oi3 = 𝑤𝑤𝚤𝚤��� = 𝑤𝑤𝑖𝑖
 ∑ 𝑤𝑤𝑖𝑖
3
𝑖𝑖=1

 i = 1, 2, 3                                           (6) 

Layer 4: The results of a calculated output of a linear combinator of the input functions using 
normalised weights. 

Oi4 =𝑤𝑤�𝑖𝑖 𝑓𝑓𝑖𝑖 i =1, 2, 3 (7) 

Layer 5: The output of the calculation is the sum of the results of the linear combination of the 
normalized weights of each rule. 

𝑂𝑂𝑖𝑖5 = ∑ w�i𝑛𝑛
𝑖𝑖=1 𝑓𝑓𝑖𝑖(xi)   i =1,2,3 (8) 

In this paper, the parameters in the model are classified into premise and outcome parameters, 
which are learnt by back propagation algorithm with the least squares calculation. Least squares are 
used in the forward propagation process to evaluate the subsequent parameters, whereas the 
backward propagation process updates the premise parameters. There are two important steps in 
executing an ANFIS model which are training and testing the data. The total number of experimental 
data to be used in constructing the ANFIS model is 36. In this study, 25 training data and 11 test data 
are used. The Root Mean Square Error (RMSE) function is employed to examine the performance of 
the training model by applying it to this network. Its computational formula is as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
M
�(𝑦𝑦𝑖𝑖 − 𝑑𝑑𝑖𝑖)

2
M

𝑖𝑖=1

 (9) 

where M is the total number of training sample, di is the real output value, and yi is the ANFIS output 
value in training algorithms. 

3. Experimental Results and Discussion 

3.1. Experimental Design Based on Orthogonal Array 

Table 2 shows the results of the L18 experiments, which were used to evaluate the microhardness 
of the NB/SiC/Ni alloy welds by calculating the signal-to-noise ratio (S/N) of the experimental values 
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with standard deviations. In a similar way, the microhardness results of the microhardness tester can 
also be seen in Figure 2. The experimental results show a significant difference in microhardness 
compared to the substrate, with an increase of about 2 times or more, which indicates a good 
hardening effect. The results of the tests on the hardness of various coatings are given in Table 2, 
where various patterns and EDS analysis of wear can be visualised. The distributions of hardness for 
tests 4, 9, 13 and 14 were 376.8±7.8 HV, 721.2±23.6 HV, 356.4±13,9HV and 754.6±34.2 HV, respectively, 
indicating that they were significantly higher than the hardness of the substrate. Comparing the 
hardness of the cladding layers in 40Cr and #45 steels is 603HV and 606HV respectively. There is 
almost no difference between the two. Also, in trials 6,9,12 and 14, The hardness values exceeded 
600Hv, i.e., the higher the S/N ratio, the more it indicates better hardened properties, while trials 
4,10,13 and 16, the hardness value was lower than 400Hv, i.e., the lower the S/N ratio, the more it 
indicates smaller hardness values. Figure 3 shows the distribution of the lowest and highest 
microhardness values in 18 groups of BN/SiC/Ni welds for both substrates, including the melting 
zone, the heat affected zone and the substrate. Three distinct sizes of hardness are shown for the 
zones such as melted zone, heat affected zone and substrate. The metallographic structures of the 
three zones of the cladding are in good agreement with each other. It is clear that the addition of SiC 
increases the microhardness of the coating. The increase in microhardness is mainly attributed to the 
dissolution of BN and SiC in the liquid phase which results in an increase in the volume fraction of 
carbon-boride formed during the laser cladding process. 

 
Figure 5. shows the distribution of microhardness values for BN/SiC/Ni welds with tests 4, 9, 13 and 
14, including the melting zone, the heat affected zone and the matrix. 

3.2. Microstructure of the Weld Zone for Laser-Coated NB/SiC/Ni Welds by Laser Cladding 

A magnified 2000X SEM picture of the microstructures in the cross-section of each of the laser-
coated NB/SiC/Ni weld can be seen in Figure 3, which shows that the molten zone of the weld is 
characterised by various sizes of grains. During the laser cladding process, different forms of carbides 
and precipitates are generated in the composite coatings due to the differences in the carbide, nitride 
and nickel content of the molten pool. There are large white areas and small black areas in the melting 
zone, whereas in the lower hardness areas, coarse crystalline with plate-like grains grows, while in 
the higher hardness areas, the particles are fine with white carbide structure. Unfortunately, this 
study has failed to avoid partial dissolution of silicon carbide on the molten pool. This is due to the 
different temperature gradient of the melt pool between the white and dark zones, which affects the 
corresponding structure of the solidification zone by cladding welds. In addition, Table 2 lists the 
EDS results for the typical areas labelled Tests 4, 9, 13 and 14 in Figure 3. The powder is pre-positioned 
on the substrate by laser cladding where the powder is melt-mixed with the substrate. The SEM 
micrographs of the laser coatings are shown in Figure 3a labeled Test 4, where large grains can be 
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seen, with plate-like coarse grains growing within the weld zone, along with crystalline structures of 
Si particles at the grain boundaries. The chemical compositions of the BN/SiC/Ni welds obtained by 
EDS are listed in Table 3. In EDS, the elements O and Fe are higher, C is lower, and Ni and Si are even 
lower. The cross-section of the cladding zone shown in Figure 3b indicated Test9 contains obvious 
black dissolved Si dendrites, no pores and cracks, and irregularly distributed aggregates in the lower-
left region, while the white region contains fine precipitated carbides and the lower-right region has 
some incompletely melted Si. The thickness of the melt layer is about 4-6 µm, which is much smaller 
than the thicknesses produced by the other fractions. Comparing Figure 3a with Table 2, it is clear 
that Figure 3b is harder. Furthermore, the EDS analysis shows that Figure 4b has less Si and C 
elements while more O and Ni elements than Figure 4a. This is due to the different temperature 
gradients in the melt pool, which affects the solidification time during deposits thereby resulting in 
different corresponding structures. As shown in Figure 3c, the grain growth is complete, but some of 
the black particles have not melted and accumulated at the grain boundaries, where pin-like eutectic 
crystals can be seen in the grains, as shown in the white part of the SEM micrograph. Typical areas 
labelled Test 13 in Figure 4c and the EDS results are shown in Table 3. An analysis of the distribution 
of elements in the melting zone by X-ray diffraction shows that the white areas are rich in O and Fe, 
while C, Si and Ni are less abundant, mainly iron oxide (Fe2O3), h-BN, γ-(Ni, Fe), B4C and iron silicide 
(Fe2Si) [12]. As shown in Figure 3d, most of the plate-like carbides and a few unmelted SiC and BN 
particles are clearly visible in the zone, which contains iron clusters in grey colour and precipitated 
carbides when melted. It is the hardest of the 18 groups. Table 3 analyses of test 14 using EDS. The 
analysis of test 14 by EDS is shown in Table 2. In the molten region, O decreases to 5,250% and Ni 
increases to 1.050, while the remaining elements show little change, which is not evidenced by the 
EDS analysis. Therefore, it seems to be necessary to use the microstructure of the molten zone as a 
support for the results. 

Table 3. The chemical composition of laser-coated SiC/BN/Ni welds by weight percentage (%) of 
atomic concentration as shown by EDS surface analysis in Figure 7. 

No. of 
trials 

Atomic concentration (%) 
C O Si Fe Ni 

Trial4 5.509 11.820 0.539 81.580 0.551 
Trial 9 2.051 24.967 0.383 69.031 3.568 

Trial 13 2.746 3.845 0.342 92,651 0.337 
Trial14 2.564 5.259 0.516 90.611 1.050 
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Figure 4. Comparison of signal-to-noise ratio and microhardness with a standard deviation of laser-
coated NB/SiC/ Ni welds. 

 
Figure 6. SEM microstructures of various tests in the deposits by laser cladding including (a) trial4;( 
b) trial9; (c) trial13; (d) trial14. 

 
Figure 7. The elemental intensity of the EDS surface analysis with Figure 6 in a laser-coated weld. 
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3.3. Effect of Designing with Ternary SiC/BN/Ni Mixtures on Hardness Yields 

In order to solve the problem of the mixture ratio of three materials using mixture design, it 
effectively controls the mixture properties of lased cladding. The effects of the three mixture powders, 
including SiC, BN, and Ni alloys, are considered in turn to determine the relationships between the 
hardness and the variables and to determine the nature of the hardness. For a better visualization of 
the effect each component in the three SiC, BN, and Ni blends, the various hypsographic maps using 
a mixture design are shown in Figure 4, which shows how the three factors (SiC, BN, and Ni) affect 
the hardness SiC, BN, and Ni response of the clads that yield a desirable value. Figure 4 shows the 
region of the ternary contour plot which gives an insight into the appropriate proportioning of the 
three component mixtures of SiC, BN and Ni on the welds of the cladding. As shown in Figure 4a, 
the triangular response surface to show the effect of SiC, BN, and Ni at fixed control factors and levels 
for the laser cladding are generated by a linear mixture. The response plots show that hardness is 
highest with 100% increase in SiC which is decreased slightly with increase in BN. That is, there is a 
tendency for the upper-left region to have higher hardness, while the lower-right region has lower 
hardness. Similarity, the plots in Figure 4b show the response surface with contour plots for the effect 
of SiC, BN, and Ni that are generated by a linear mixture. It displays a contour plot of the hardness 
using a linear mixture, where the red areas have higher hardness values while the blue areas have 
lower hardness values. Clearly, the optimum zone of 70–90 wt% SiC 10–30 wt% BN and 10–20 wt% 
Ni gives the desirable zone for the mixture design. However, the decrease in hardness is due to the 
addition of proper amounts of Ni element into the WC/Ni/Co blend, but this hardness increases when 
the amount of SiC powder increases. In summary, there are graphically shown contour areas of linear 
mixtures which show the desired value of 606HV and a mixture of 67% SiC, 17% BN and 17% Ni was 
picked. In the triangular contour plot, the area of red highlights is ideal for individual powder 
components and mixture powder components on the pattern of hardness, which has a greater impact 
on the expected output for different combinations of mixture components than the other highlight 
areas. 

(a) (b) 

 
Figure 8. Triangular contour plots for three powder mixed effects with a linear mixture, accounting 
for the effect of individual and mixture powder components including SiC, BN, and Ni alloys for the 
hardness. (a) three-dimensional surface plot. (b) contour plot of predicted hardness. 

3.4. The Analysis of Variance of Laser-Coated BN/SiC/Ni Welds 

The effects of mean values can reflect the importance of the relative performance between each 
of the control factorial levels. Signal-to-noise ratios are calculated based on the mean values of levels 
1, 2, and 3 for each factor in Figure 5. The ranking of the mean response and the effects of the 
magnitude in the experimental results were evaluated. Their S/N ratio is effective in detecting 
important factors of laser cladding that affect weld quality. The factors affecting the hardness values 
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of the laser cladding layers are shown in Table 5. The ordering of the parameters affecting the 
hardness values is further shown as C, G, E, H, B, F, D and A. also, As seen in Table 5, A2, B2, C3, D1, 
E1, F2, G3 and H3 have the highest S/N values which have the maximal effect on the hardness values, 
i.e., they are the optimum values. Furthermore, a further analysis of variance based on Equations (10) 
and (11) was done on Table 5 to validate the significance of the control factors in Table 4. The aim of 
the analysis of variance (ANOVA) was to investigate the design parameters of laser-coated 
BN/SiC/Ni welds that have a significant effect on the hardness of the deposit. These contribution rates 
can be used to assess the importance of each factor to the hardness that is relevant. The total sum of 
squares, SST, for the ANOVA is: 

SST =∑
=

−
n

i
i ZZ

1

2)(  (10) 

where Zi is the correlated Z response for the ith test, Z is the total average of the correlated hardness 
responses, and n is the number of tests. SSK is the sum of squares of the test control factor k, where 
k = A, B ..... . H, is calculated as 

SSK = 







−∑

=

k

j

m

j
Kk ZZm

1

2)(  (11) 

where 
jKZ  is the average response for jth level of Factor k, km  is the number of repetitions of each 

level of Factor k. The estimated variance of Factor k, MSK, is the ratio of SSK to its degrees of freedom 
(DOF), and the estimated variance of random error is so-called the mean squared error, or MSE, 
which is the ratio of SSE to its degrees of freedom. Then, the F-ratio is simple the ratio of MSK to MSE. 
Hence, the ratio (percentage) of contribution of factor k is a highly significant indicator for comparing 
the contribution of factors. That is, the higher the ratio of contribution, the greater the overall variance 
of the effect is. Table 5 shows the mean squares of the eight control factors, which illustrate the effect 
of each factor on the variance. Notices that are more important based on the results of Equations (10) 
and (11) are shown in AVOVA. Compared with the contribution of the error factor (7.62%), we chose 
the most important SiCwt% (C), laser power (E), and travelling speed (G), while substrate (A), 
BNwt% (B), Niwt% (D), carrier gas (F), and spacing (H) have smaller percentages, as shown in Table 
5. The percentage of explainable variation of these important parameters in the overall is 77.58%. We 
reconfirmed the most important factors obtained from the average factor analysis in Table 4. These 
important factors are further incorporated into the ANFIS prediction of the hardness of laser-coated 
welds. 

Table 4. The main effect for S/N ratios during the hardness of welds by laser cladding. 

 A B C D E F G H 
Level 1 53.67  53.18  52.03  53.87  54.44  53.55  54.60  53.16  
Level 2 53.68  53.98  53.76  53.41  53.24  54.13  53.81  53.54  
Level 3 0.00  53.87  55.23  53.74  53.34  53.35  52.62  54.33  
Effect 0.01  0.79  3.20  0.46  1.19  0.79  1.98  1.17  
Rank 8 5 1 7 3 6 2 4 

Table 5. An ANOVA table for S/N ratios during the hardness of welds by laser cladding. 

Control  
factors 

Sum of 
squares 

Degrees of 
freedom 

Mean 
square 

F-Test 
ratio Contribution 

A 0.00013 1.0 0.00013 0.00006 0.00 
B 2.214 2.0 1.107 0.469 3.57 
C 30.794 2.0 15.397 6.528 49.71 
D 0.674 2.0 0.337 0.143 1.09 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2024                   doi:10.20944/preprints202404.1249.v1

https://doi.org/10.20944/preprints202404.1249.v1


 13 

 

E 5.291 2.0 2.646 1.122 8.54 
F 1.996 2.0 0.998 0.423 3.22 
G 11.973 2.0 5.987 2.538 19.33 
H 4.284 2.0 2.142 0.908 6.92 

Error 4.717 2.0 2.359 1.000 7.62 
Total 61.944 17.0 3.644  100.00 

3.5. Confirm Run and Their Optimization on the Hardness Properties 

Three repetitions of each test were carried out in different areas of the melting zone in order to 
estimate the optimum performance of the welds for all the tests. Table 2 lists the results and the S/N 
ratios obtained using the formulae that fulfils the “ larger-the-better” property. Table 4 shows the 
computation of the response of the S/N ratio in the orthogonal array experiment using mean value 
analysis. Clearly, the larger S/N ratio indicates better performance of the laser-coated BM/SiC/BN 
welds. That is, the higher the S/N ratio, the more important the factor is. As shown in Figure 4, the 
optimal value for each factor was derived from the maximum S/N value for each level of the factor. 
The optimal setting for the factorial levels is A2B2C3D1E1F2G3H3. The optimal parameters for the 
sputtering process are: substrate of #45 steel, 15wt%BN, 70wt%SiC, 0wt%Ni, laser power of 2400W, 
carrier gas of 1600 mL/min, travel speed of 6 mm/s, and stand-off distance of 50 mm. Of all the 18 sets 
of orthogonal array experiments, we choose the 9th group with a pessimistic colour, which is better 
in the first nine sets, and the 14th group with a dark-blue colour, which is better in the last nine sets, 
which are compared with the optimal group with a brown colour. As shown in Figure 6, the higher 
the hardness, the closer it is to the right side of the chart. Using a Gaussian plot, the thinnest solid 
curve shown on the right side of Figure 6 indicates the best test, which produces the greatest hardness 
with very little deviation. It is evident that the optimum setting of the control factors is remarkably 
robust to variability, which demonstrates that reproducibility is good. 

 

Figure 9. Comparison of probability density for the five trials in the orthogonal table with trial 9, trial 
14 and the optimal trial. 

4. Results and Discussion 

4.1. Analysis of ANFIS Model 

In this paper, a predictive model is created using first order TSK type fuzzy rules. Different 
number of membership functions were tested to find the optimal ANFIS model using a subtractive 
clustering method. The MATLAB R2021 software package is used. There is, however, the 
membership function of the Gaussian type that is optimally used. To understand the performance of 
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ANFIS, Figure 10 shows the prediction of the hardness of the fuzzy system with adaptive network 
which is executed by passing the three important parameters based on ANOVA such as SiC%, laser 
power and travel speed by laser coated weld. As shown in Figure 3, the fuzzy logic system has a rule 
base which contains 3 inputs (SiC%, laser power and travel speed) and 1 output (microhardness). It 
is applied to the fuzzy logic system that has been trained by the neural network which is shown 
graphically above the first rule in Figure 10 with a database of 20 rules. By applying logic rules and 
Mamdani reasoning procedures, multiple logic rules can be triggered to give fuzzy linguistic values 
for the output response. The model can be used to predict the hardness values of laser-coated welds. 
For example, the four inputs are SiC (70wt%), laser power(2400W) and travel speed(4mm/s), 
respectively, whilst the predicted value of microhardness is 603HV. As shown in Figure 11a, training 
a fuzzy system with a neural network generates a fuzzy layer, a rule base layer, a normalisation layer, 
an inference layer and a total output layer. Furthermore, the rule base of the fuzzy system is 
optimised by subtractive clustering method which completes the ANFIS model. As shown in Figure 
11b, the results of the root mean square error of the hardness response of the ANFIS model to the 
training and test data, the fuzzy system was trained by the neural network for 1000 times which 
resulted in the smallest root mean square error (RMS) of 1.23085 and 1.49378, respectively. 
Furthermore, the ANFIS predictor fits a distribution curve of the actual data, where the ANFIS 
prediction and the actual values form a diagonal straight line as shown in Figure 11c,d. The predicted 
and experimental values are remarkably similar, indicating that the model is reliable. The error for 
many of the validation tests was less than 3 %, while the maximum error was 9.40 %. However, the 
distribution of prediction errors for ANFIS fluctuates steadily, with only three prediction errors 
exceeding the standard deviation of the experimental values by more than 5 %. The comparison of 
the experimental data with the ANFIS predictions is shown in Figure 12, which verifies that the 
average error of the ANFIS predictions is 4.625%. It is therefore concluded that the developed ANFIS 
model provides an effective model for decision makers to predict the hardness characteristics of laser 
coated BN/SiC/Ni welds. 

 

Figure 10. Rule base for fuzzy logic inference using neural network in ANFIS with 3 inputs such as 
SiC, laser power and travelling speed and 1 output for micro hardness. 
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Figure 11. A framework for training of the ANFIS model (a), the error function of the training 
algorithm (b), and the plot of the training (c) and testing (d) predicted values for the ANFIS model 
against the experimental values. 

 

Figure 12. The prediction results of ANFIS model in comparison with the experimental data. 

4.5. The Predictor of Surface Response Using an ANFIS 

A three-dimensional graph of the prediction is made by using ANFIS model. As shown in Figure 
13, the effect of each working parameter on the hardness response can be understood using three 
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important variables such as SiC, laser power and travel speed based on ANOVA. Figure 13a shows 
the relationship between hardness with respect to SiC and laser power. At high laser powers near 
2800 W, the hardness is 350 HV at the lower level when the SiC is below 10 per cent, while it rises to 
the higher level of 700 HV when the SiC is near 20 wt%. Meanwhile, the laser power approaching 
2600 W and SiC near 20wt% results in a hardness of about 400 HV. As shown in Figure 13b, the 
hardness is less at a scanning speed of 4-6mm/s when the laser power is 2400w. In addition, when 
the laser power is in the range of 2500-2700w, the hardness is more than 600 HV, whereas the 
hardness increases with the increase of laser power to reach more than 700 HV when the scanning 
speed is nearly 6 mm/s. 

(a) 

 

(b) 

 

(c) 

 
Figure 13. Response surface plots for modelling the hardness yield of laser-coated silicon 
carbide/boron nitride/nickel welds using the ANFIS model. 

As shown in Figure 13c, it is evident that the hardness in relation to ratio of SiC and scanning 
speed is shown. If both SiC and scanning speed are low, the hardness is relatively lower value at 350 
HV. When the travel speed is 2-4mm/s, the hardness rises to 550HV with increasing SiC. Yet, when 
the travel speed is 5-6mm/s, the hardness rises slowly from 450HV to 550HV with 0-10wt% SiC, and 
stays at 580-600HV with 10-30wt% SiC. Based on the aforementioned graphs, the corresponding 
contours show considerable curvature, which indicates that the hardness curvature has a complex 
nature of correlation with SiC, laser power and Travel speed, which cannot be formulated 
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mathematically. These graphs show that the larger hardness values mostly fall near the design 
boundary. Also, it was observed by scanning electron microscopy that the welds at the boundary 
conditions produced finer structures and harder surface coatings, thus satisfying the desired 
hardened layer. The above graphs clearly show that it is feasible to understand the relationship 
between response and variables, whilst at the same time easily characterise the nature of the coatings 
in the design zone, which can then yield more information about the nature of the cladding system. 

5. Concluding Remarks 

In this study, the mechanical properties of laser-coated NB/SiC/Ni welds were predicted and 
optimised based on Taguchi’s design using the Adaptive Network for Fuzzy Inference System 
(ANFIS). Artificial intelligence methods using ANFIS models are available to model the hardness 
behaviour of welds. By using orthogonal array experiments, the effect of control factors on welds was 
determined. Based on ANOVA, three important factors such as SiC, laser power and travel speed 
were used as inputs for fuzzy logic reasoning while hardness properties were used as outputs for 
ANFIS. The microstructure of the melting zone consists mainly of dendritic crystals, with denser grey 
areas near the grain boundaries, while the grains in the heat-affected zone are significantly coarsened. 
Yet, the high-iron zone is mainly composed of iron oxides, borides and a small amount of molten 
nickel composites for the laser-coated BM/SiC/Ni welds. The difference in hardness attributes 
compared to the substrate is significant, increasing by a factor of about 4, which indicates good 
hardness properties. The relationship between important parameters and hardness of laser melting 
zone was constructed using an ANFIS. An ANFIS model based on the Sugeno type fuzzy inference 
system was established by using SiC/BN/Ni alloys for laser cladding with the data necessary for 
network training and prediction, which was used to predict the hardness properties of welded 
coatings. The algorithm using artificial neural networks with learning abilities by training the 
network in combination with least squares.The root mean square error (RMSE) obtained for the 
training data and test data in predicting of hardness response using an ANFIS model was 1.23085 
and 1.49378 after 1000 epochs of computation, respectively. Meanwhile, comparison of the 
experimental data with the ANFIS predictions has verified that the mean error of the ANFIS 
predictions is 4.625%. The response patterns of the ANFIS clearly show that it is viable to understand 
the relationship between the response and the variables, while also making it easy to determine the 
nature of the coating in the design domain. The experimental results of laser cladding of SiC/BN/Ni 
alloys and the simulation results of ANFIS show that the established ANFIS model is suitable for the 
prediction of the mechanical properties of welded joints which can map the nonlinear relationship 
between the inputs and outputs with high accuracy of prediction, so the established ANFIS 
prediction model is effective. 
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