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Abstract: Alzheimer’s disease (AD) is characterized by the brain deposition of senile plaques
composed by amyloid-{3 peptides (Ap) that increase inflammation. An endogenous peptide derived
from the insulin-like growth factor (IGF)-I, glycine-proline-glutamate (GPE) has IGF-I-sensitizing
and neuroprotective actions. Here, we examined the effects of GPE on Af3 levels and hippocampal
inflammation generated by the intracerebroventricular infusion of A325-35 during 2 weeks (300
pmol/day) in ovariectomized rats and the signaling-related pathways and levels of AB-degrading
enzymes associated with these GPE-related effects. GPE prevented the Ap-induced increase in the
phosphorylation of p38 mitogen-activated protein kinase and the reduction in activation of signal
transducer and activator of transcription 3, insulin receptor substrate-1 and Akt, as well as on
interleukin (IL)-2 and IL-13 levels in the hippocampus. The functionality of somatostatin, measured
as the percentage of inhibition of adenylate cyclase activity and the levels of insulin-degrading
enzyme were also preserved by GPE co-treatment. These findings indicate that GPE co-
administration may protect from AP insult by changing hippocampal cytokine content and
somatostatin functionality through regulation of leptin- and IGF-I-signaling pathways that could
influence the reduction in Ap levels through modulation of levels and/or activity of A{3 proteases.

Keywords: Alzheimer’s disease; cytokines; Gly-Pro-Glu; IGF-I signaling; inflammation

1. Introduction

Alzheimer’s disease (AD) is an irreversible pathology that predominantly affects individuals
over the age of 65 and is influenced by many factors that contribute to its onset and progression.
These include the accumulation of intracellular neurofibrillary tangles and the presence of
extracellular deposits of amyloid fibrils at the core of senile plaques, which are associated with
neuronal death and a decline in cognitive function [1]. One of the main components of these plaques
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is amyloid (-peptide (Af), produced from the amyloid precursor protein (APP) by sequential
enzymatic alternative processing, and is considered to be a key factor in the pathogenesis of the
disease [2].

Inflammation is another important factor contributing to the pathogenesis of AD through the
activation of microglia and astrocytes, leading to the secretion of pro-inflammatory cytokines [3]. This
dysregulation of interleukins and chemokines in the brain causes neurodegeneration through
modulation of several signaling pathways, most notably nuclear factor kappa B (NF«B) [4]. One of
the factors that affect the generation of an inflammatory milieu is the increased production and
deposition of A3 peptides that activate microglia and the subsequent production of cytokines that
further enhance AP synthesis [5], a vicious circle that leads to neuronal death and pathological
changes in astrocytes that impair A3 clearance [6].

Chronic infusion of AP peptides is an experimental approach to AD as it induces hippocampal
Af deposition associated with neuronal death, deficits in synaptic plasticity and learning, as well as
changes in the inflammatory milieu similar to those seen in AD [7,8]. In particular, the neurotoxic
fragment A{325-35 fragment has a more pronounced deleterious effect than A{1-42 [9], as it is
associated with the key domain for aggregation [10].

Neurodegenerative diseases are a serious health concern worldwide, with a high incidence due
to increasing life expectancy and the lack of restorative treatments. Therapies based on the use of
different proteins have emerged as a possible strategy due to their high specificity and activity on
different biological targets [11]. Several endogenous peptides have anti-apoptotic and
neuroprotective properties in the central nervous system and among which, glycine-proline-
glutamate (GPE) a natural peptide cleaved from the N-terminus of insulin-like growth factor I (IGF)-
I, is a protective agent in brain injury [12] and has shown neuroprotective capabilities in experimental
models of AD [13,14].

GPE and its analogues have anti-inflammatory properties, which is one of their most important
effects, since inflammation favors aggregation processes and decreases the efficiency of glial cells in
the processes of clearance of A3 aggregates [6]. In this sense, IGF-I is involved in A clearance [15]
and also activates the Akt pathway, as does GPE [16]. A de-crease in IGF-I sensitivity increases A3
toxicity, while activation of its intracellular pathway is associated with an increase in the synthesis
and activity of AB-degrading enzymes [17], such as insulin-degrading enzyme (IDE).

These aforementioned data suggest that GPE may be useful in AD. However, there is little
information on the efficacy of GPE on the possible protective effect against the inflammatory
environment generated by continuous infusion of A25-35 and its relation-ship with changes in
activation of the Akt pathway. Therefore, we analyzed the activation of some signaling pathways
involved in the alterations of the inflammatory environment in the hippocampus by studying several
pro- and anti-inflammatory cytokines after AP infusion in the presence and absence of peripherally
administered GPE. As the expression of AB-degrading enzymes is related to changes in the Akt
pathway, we studied its activation, as well as the leptin signaling that can modulate it and others
related to the expression of certain cytokines [18,19]. Finally, since somatostatin (SRIF) modulates the
action of A3 proteases [20], we studied the functionality of this neuropeptide after Ap infusion and
the effect of GPE therapy.

2. Results

2.1. GPE Reduces Hippocampal AB25-35 Levels and Activation of Inflammatory Pathways After AB25-35
Infusion

AP25-35 infusion increased its levels in the hippocampus and this augment was partially
blocked by co-administration of GPE. GPE treatment of control rats did not alter A{325-35 levels
(Figure 1A). Phosphorylation of p38 mitogenactivated protein kinase (p38MAPK) was increased in
A[25-35-treated rats and GPE prevented the changes induced by A (Figure 1B). Phosphorylation of
NF«B at Ser536 is essential for the inhibition of NFkB responses, thereby counteracting inflammatory
processes [21]. Infusion of A325-35 reduced NF«B phosphorylation at Ser536 and co-administration
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of GPE prevented the changes induced by Ap25-35, whereas GPE had no effect on NF«B in control
rats (Figure 1C).
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Figure 1. Effects of APB25-35 and GPE co-administration on hippocampal A{25-35 levels and
phosphorylation of pro-inflammatory and leptin signaling targets. Levels of (A) A[325-35, relative
protein levels of (B) p38 mitogen activated protein kinase (pMAPK) phosphorylated (p) at Thr180 and
Tyr182 (pThr180Tyr182p38MAPK) and (C) nuclear factor kappa B (NFkB) phosphorylated at Ser536
(pSer536NFkB), (D) serum leptin levels and relative protein levels of (E) signal transducer and
activator of transcription 3 (STAT3) phosphorylated at Tyr705 (pTyr705STAT3) and (F) STAT3
phosphorylated at Ser727 (pSer727STAT3) in ovariectomized (Ovx) rats (control), Ovx rats treated
with B-amyloid 25-35 peptide (AP), Ovx rats treated with A(325-35 plus GPE (A + GPE) and Ovx rats
treated with GPE (GPE). Data are expressed as mean + SEM. N = 5. MFI, median fluorescent intensity
*p<0.05 *p<0.01.

2.2. GPE Partially Counteracts the Inhibitory Effects of AB25-35 on the Activation of Leptin Signaling

Chronic infusion of A{325-35 reduced serum leptin levels and co-administration of GPE
prevented the effects of this toxic fragment on circulating leptin concentrations, whereas
administration of GPE to control rats had no effect (Figure 1D). Phosphorylation of signal transducer
and activator of transcription 3 (STAT3) at Tyr 705 was reduced in both A(325-35 and AB25-35 plus
GPE-treated rats (Figure 1E), and reduction in phosphorylation of STAT3 at Ser 727 induced by Ap25-
35 was avoided by GPE co-administration (Figure 1F).

2.3. AB25-35-Induced Downregulation of IGF-I-Related Signalling is Prevented by GPE Treatment

Serum IGF-I levels were not modified by A{325-35 infusion and GPE increased IGF-I when
administered to A(325-35 and control rats (Figure 2A). Hippocampal IGF-I levels did not change in
any of the experimental groups (Figure 2B). Phosphorylation of the IGF-I receptor (IGF-IR) at specific
tyrosine residues is a critical step in the activation ofof this signaling pathway [22]. Phosphorylation
of IGF-IR on Tyr1131 was decreased in A325-35 treated rats treated, with no changes in the other
groups studied (Figure 2C). Phosphorylation of insulin receptor substrate (IRS)-1 on Tyr residues was
reduced in A325-35- and A{325-35 plus GPE-treated groups (Figure 2D). Phosphorylation of IRS-1 at
Ser 636 residue inhibits the activation of downstream targets [23]. A325-35 infusion increased
phosphorylation at this residue and GPE co-administration prevented this increase (Figure 2E).
Finally, Akt phosphorylation at Thr308 was reduced after AP25-35 infusion and GPE co-
administration prevented this decrease, whereas GPE had no effect in control rats (Figure 2F).
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Figure 2. Effects of A325-35 and GPE co-administration on IGF-I levels and IGF-I-related signaling
targets. Serum (A) and (B) hippocampal levels of IGF-I and relative protein levels of (C) insulin-like
growth factor-I receptor (IGF-IR) phosphorylated at Tyr1131 (pTyr1131IGF-IR), (D) insulin receptor
substrate 1 (IRS1) phosphorylated at Tyr residues (pTyrIRS1), (E) IRS1 phosphorylated at Ser636
(pSer636IRS1) and (F) Akt phosphorylated at Thr308 (pThr308Akt) in ovariectomized (Ovx) rats
(control), Ovx rats treated with $-amyloid 25-35 peptide (Af3), Ovx rats treated with ApB25-35 plus
GPE (A + GPE) and Ovx rats treated with GPE (GPE). Data are expressed as mean + SEM. N =5. AU,
absorbance units, MFI, median fluorescent intensity * p < 0.05, ** p < 0.01, *** p <0.001.

2.4. Effects of AB25-35 and GPE on Serum and Hippocampal Cytokine Content

Circulating levels of interferon-y (IFN-y) were increased in Ap25-35-treated rats (Figure 3A),
interleukin (IL)-2 was unchanged (Figure 3C), IL-13 was decreased after A{325-35 infusion (Figure
3E), and concentrations of IL-17A were increased in Af25-35- and Ap25-35 plus GPE-treated rats
(Figure 3G). Hippocampal concentrations of IFN-y were augmented in A{325-35-treated rats (Figure
3B), IL-2 levels were reduced after A325-35 infusion and co-administration of GPE- prevented this
reduction (Figure 3D), IL-13 levels were reduced after A25-35 infusion and GPE increased IL-13
levels compared to control rats (Figure 3F) and IL-17A concentrations were augmented in A{325-35-
treated rats and co-administration of GPE prevented this increase (Figure 3H).
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Figure 3. Effects of ApB25-35 and GPE co-administration on serum and hippocampal cytokine levels.
Serum levels of interferon (IFN)-y (A), interleukin (IL)-2 (C), IL-13 (E) and IL-17A (G) and
hippocampal concentrations of IFN-y (B), IL-2 (D), IL-13 (F) and IL-17A (H) in ovariectomized (Ovx)
rats (control), Ovx rats treated with B-amyloid 25-35 peptide (AP), Ovx rats treated with A25-35 plus
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GPE (AB + GPE) and Ovx rats treated with GPE (GPE). Data are expressed as mean + SEM. N =5. * p
<0.05, ** p <0.01.

2.5. AB25-35 and GPE Are Involved in Modulating the Activity of AC and the Levels of an Ap-Degrading
Enzyme

SRIF stimulates the activity and levels of Ap-degrading enzymes [24,25]. We therefore
investigated the functionality of this neurotransmitter. As SRIF receptors are coupled to adenylate
cyclase (AC) in an inhibitory manner, we examined basal AC activity, and SRIF-mediated inhibition
in membrane fraction from hippocampus. No differences in basal and inhibited AC activitiy were
observed between the experimental groups (Figure 4A and 4B, respectively). However, the capacity
of SRIF to inhibit basal AC activity was significantly lower in the A325-35-treated group, without
changes in the other groups (Figure 4C).

Hippocampal neprilysin levels were similar in all experimental groups (Figure 4D). IDE
concentrations were reduced in AP25-35-treated rats and co-administration of GPE prevented the
effects of Af3 infusion. GPE alone had no effect in the control group (Figure 4E).
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Figure 4. Effects of A325-35 and GPE co-administration on basal adenylyl cyclase (AC) activity
(pmol/min/mg protein) as well as on somatostatin (SRIF)-mediated inhibition of AC activity in
hippocampal membranes (A and B, respectively), percentage of SRIF inhibition of AC activity (C),
levels of neprilysin (D) and insulin-degrading enzyme (IDE) (E) in ovariectomized (Ovx) rats
(control), Ovx rats treated with $-amyloid 25-35 peptide (Af3), Ovx rats treated with ApB25-35 plus
GPE (A + GPE) and Ovx rats treated with GPE (GPE). Data are expressed as mean + SEM. N =5. * p
<0.05, ** p<0.01.

2.6. GPE does not Alter the AB25-35-Induced Decrease in Leptin and IGF Signaling in Neuronal Cultures

The addition of A(325-35 to neuronal cultures reduced phosphorylation of STAT3 on Ser727 and
IRS1 at Tyr residues (Figure 5A and 5B, respectively), as well as the IDE content in these cultures

(Figure 5C). GPE-coadministration had no effect on Ap25-35-induced changes (Figure 5A, 5B and
5C).
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Figure 5. Effects of A325-35 and GPE co-administration on phosphorylation of signaling targets and
levels of insulin-degrading enzyme (IDE) in neuronal and glial cultures. Relative protein levels in
neuronal and glial cultures of (A and D, respectively) of signal transducer and activator of
transcription 3 (STAT3) phosphorylated (p) at Ser727 (pSer727STAT3), (B and E, respectively) insulin
receptor substrate 1 (IRS1) phosphorylated at Tyr residues (pTyrIRS1) and protein concentrations (C
and F, respectively) insulin-degrading enzyme (IDE). Data are expressed as mean + SEM. N=5.* p <
0.05.

2.7. GPE Co-Administration Modifies A25-35-Induced Changes in Glial Cell Signaling and Cytokine
Secretion

AP25-35 decreased phosphorylation of STAT3 and IRS1 and IDE levels in glial cells (Figure 5D,
5E and 5F, respectively). Co-administration of GPE partially prevented changes in STAT3 and IRS1
phosphorylation (Figure 5D and 5F) and fully prevented A[325-35-induced IDE reduction.(Figure 5F).

Levels of IFN-vy in culture media were unaffected by Af3-25-35 or GPE co-administration (Figure
6A). AP25-35 induced a reduction of IL-2 levels that was prevented by co-administration of GPE
(Figure 6B). Concentrations of IL-13 were reduced after addition of Ap25-35 and GPE had no effect
(Figure 6C). Finally, AB-25-35 augmented IL-17A levels in culture media and GPE co-administration
partially prevented these changes (Figure 6D).
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Figure 6. Effects of AB25-35 and GPE co-administration on interleukin secretion in glial cultures.
Protein levels in culture media of interferon (IFN)-y (A), interleukin (IL)-2 (B), IL-13 (C) and IL-17A
(D). Data are expressed as mean + SEM. N =5. * p <0.05.
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2.8. AB25-35 Content Shows an Inverse Relation to 1L-2, SRIF Functionality and IDE

Hippocampal concentrations of A(3-25-35 were inversely correlated with hippocampal IL-2
content (Figure 7A) and the capacity of SRIF to inhibit AC activity, a measure of SRIF action (Figure
7B). Levels of A25-35 did not show a relationship with neprilysin (Figure 7C), but did show a
negative association with IDE (Figure 7D).
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Figure 7. Correlation of AB25-35 with (A) interleukin (IL)-2 content, (B) percentage of inhibition of
adenylate cyclase (AC) activity, (C) neprilysin and (D) insulin-degrading enzyme (IDE) levels in the
hippocampus. Correlation coefficients (r) and p values are represented for each analysis. NS, non-
significant.

2.9. Correlation of AB25-35, SRIF Functionality and AB-Degrading Enzymes with Phosphorylation of
Signaling Targets and Cytokine Levels in the Hippocampus

Linear regression analyses showed a direct correlation of Ap25-35 levels with phosphorylation
of the pro-inflammatory signaling targets, IFN-y and IL-17A, and an inverse relationship with
phosphorylation of the leptin- and IGF-I-signaling targets, IL-2 and IL-13. In contrast, the percentage
inhibition of AC by SRIF and IDE concentrations exhibited an inverse relationship with
phosphorylation of pro-inflammatory targets IFN-y and IL-17A, and a positive correlation with
leptin- and IGF-I-intracellular targets, IL-2 and IL-13 (Table 1). No correlations were found between
neprilysin and the above-mentioned markers (data not shown).

Table 1. Correlation between A{325-35 levels, SRIF inhibition of AC activity and IDE levels with
phosphorylation of intracellular signaling targets and cytokine content in the hippocampus.

AB25-35 (pg/mg)  SRIF inhibition AC

%) IDE (ng/mg)
r p r P r p
p-p38MAPK/MAPK (%) +053 * -059 -045 ¢
pSerNF«B/NF«B (%) -040 NS +049 * +0.38 NS
pTyrSTAT3/STAT3 (%) -0.74 +057 % +0.60 **
pSerSTAT3/STAT3 (%) -076 +0.65 ** +0.71 **
pTyrIGF-IR/mg protein -0.63 ** +0.61 ** +053 %
pTyrIRS1/IRS1 (%) -0.61  ** +041 NS +042 NS
pSerIRS1/IRS1 (%) +0.86 -0.67  ** -0.72
pThrAkt/Akt (%) -0.66  ** +0.62 ** +055
IFN-vy (pg/mg) +0.80 -0.60 ** -0.72 e

IL-2 (pg/mg) -050  * +0.37 NS +0.70
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IL-13 (pg/mg) -0.78 +0.51 * +0.69 ***
IL-17A (pg/mg) +0.60 ** -0.54 * -059 **

AC, adenylate cyclase; pThrAkt, Akt phosphorylated (p) at Thr308; IFN-y, interferon-y; pTyrIGF-IR, insulin-like
growth factor-I receptor (IGF-IR) phosphorylated (p) at Tyr1131; IL, interleukin; pTyrIRS1, insulin receptor
substrate 1 (IRS1) phosphorylated at Tyr residues (pTyrIRS1), pSer636IRS1, IRS1 phosphorylated at Ser636; p-
P38MAPK/MAPK, p38 mitogen activated protein kinase (pMAPK) phosphorylated at Thr180 and Tyr182;
pSerNF«B, nuclear factor kappa B (NF«kB) phosphorylated at Ser536; SRIF, somatostatin; pTyrSTAT3, signal
transducer and activator of transcription 3 (STAT3) phosphorylated at Tyr705; pSerSTAT3, STAT3
phosphorylated at Ser727. Correlation coefficients () and p values are provided for each analysis. N = 5. NS,
non-significant. * p <0.05, ** p < 0.01, *** p <0.001.

3. Discussion

Extracellular plaque-like deposits within the hippocampus lead to cognitive impairment and
cause inflammation as Af3 protofibrils activate microglia, triggering an inflammatory response and
the release of neurotoxic cytokines [26]. This study was designed to analyze the effect of a
neuroprotective agent derived from IGF-I, the tripeptide GPE, on the changes in the inflammatory
environment of the hippocampus and its possible relationship with the activation of various signaling
pathways related to these processes. Here, we report that GPE blocks most of the changes in cytokine
content in the hippocampus induced by continuous infusion of Af and that this effect may be
mediated by preserving the activation of leptin- and IGF-I-related signaling pathways. In addition,
we show that the decrease in IDE after A insult is blocked by co-administration of GPE, contributing
to the reduction in hippocampal Af3 levels.

Our experimental model is a chronic infusion of A3, which induces some of the major changes
seen in AD patients, such as cognitive deficits [27] and increased brain inflammation [28]. The A{325-
35 fragment was chosen because it is proposed to be the functional domain of Af3 responsible for its
neurotoxic properties and it is also present in the brain of AD patients [10]. We chose the experimental
model of female rats after ovariectomy, as estrogens diminish Af3 toxicity [29] and most women who
suffer from AD are elderly and their estrogen levels have already dropped [30]. In addition, inhibition
of estradiol synthesis affects hippocampal synaptic plasticity only in females [31].

Our data shows an increase in the activation of pro-inflammatory signaling targets after Ap
infusion. There was an augment in p38MAPK phosphorylation and a reduction in the Ser residue of
NFxkB, that activates this molecule. As we have found in this study, it has previously been reported
that activation of these targets increases the levels of IFN-y and IL-17A [32], while decreasing the
content of the anti-inflammatory IL-13 [33]. A striking finding was the decrease in hippocampal levels
of IL-2, a cytokine classically associated with an inflammatory profile. This finding may be related to
the decrease in STAT-3 activation, since phosphorylation of this target increases the levels of this
interleukin and its subsequent signaling [34,35]. One of the mechanisms that may influence STAT-3
phosphorylation is Af itself, as it is a negative allosteric modulator of the leptin receptor [36], with
consequent decreased activation of downstream targets.

Co-administration of GPE was able to modify most of the AB-induced changes in signaling
pathways and inflammation. Hence, systemic administration of GPE reduces p38MAPK activation
[37] and suppresses the NFkB inflammatory pathway in experimental models of neurodegenerative
disease [38]. The effects of GPE mimic those exerted by IGF-I, increasing Akt activation [16], although
it does not bind to IGF-IR. Activation of the Akt pathway may be favored by the increase in leptin
signaling after GPE co-administration, as it was reported in other situations [39], and the increase in
serum leptin levels may explain, at least in part, the activation in its signaling and subsequent
phosphorylation of IGF-I-related targets. In this way, disruption of leptin signaling in a mouse model
of AD reduces Akt in parallel with upregulation of suppressor of cytokine signaling 3 (SOCS3) in the
hippocampus [40], and we have demonstrated that central infusion of leptin reduced the association
of SOCS3 with IGF-IR, increasing its phosphorylation and activation of downstream targets [41].

A role for reactive glia in neuronal damage and recovery has been reported. Treatment with GPE
suppresses microglial proliferation and prevents the loss of astrocytes after injury [42]. Our “in vitro”


https://doi.org/10.20944/preprints202404.1246.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 April 2024 d0i:10.20944/preprints202404.1246.v1

9

experiments seem to demonstrate that glial cells are involved in the modifications of cytokine levels
in the hippocampus, both after Ap administration and co-treatment with GPE, which partially or
totally restores the levels of cytokines affected by AP infusion. A activates astrocytes, inducing an
increase in GFAP, vimentin and pro-inflammatory cytokines, whereas GPE normalizes GFAP,
vimentin and cytokine profile [43,44]. Hence, GPE binds to astrocytes and reduces brain
inflammation [45].

Not only the changes in the activation of signaling pathways studied here modify cytokine
levels, but these factors can also regulate signaling themselves. For example, IL-2 synergizes with
IGF-I in processes related to memory enhancement in experimental animals and promotes Akt
activation in homeostatic processes of proliferation [46]. IL-13 also has anti-apoptotic and
proliferative effects in different tissues modulating the pathways analyzed here. Antiapoptotic effects
of this interleukin have been described through activation of the Akt pathway [47] and proliferative
effects by increasing STAT-3 phosphorylation [48]. Therefore, among the multiple activities
associated with the pathological conditions of AD [49], we may speculate that GPE may be
prevent/reverse A3 damage through changes in interrelated signaling pathways and cytokine
profiles, thereby enhancing its beneficial actions on this disease.

This study shows that the deleterious effects of Af3 on SRIF functionality are blocked by GPE.
Although the regulatory mechanisms of SRIF tone are partially unknown, both our previous results
[13] and new data included in this study suggest that activation of leptin and IGF-I signaling may be
involved in the protective effect of GPE on this neurotransmitter. Leptin may be involved in the
preservation of SRIF cells against A effects as this adipokine protects against AB-induced cell death
through a STAT3-dependent mechanism [50]. IGF-I-related signaling may promote SRIF synthesis,
as Akt activation promotes CREB phosphorylation, which induces the expression of SRIF and its
receptors [51].

One of the most striking findings was the reduction in A{3 levels when GPE was co-administered.
In this way, the increase in SRIFergic tone may modulate the expression of Af3-degrading proteases
[52]. Here we found an increase in hippocampal IDE levels, with no differences in neprilysin content.
Nevertheless, as the activity of neprilysin is regulated by SRIF [53], the increased functionality of this
neuropeptide suggests an active role for this protease in the decrease of Af levels. IDE may also be
regulated by phosphatidylinositol 3-kinase (PI3K) activation, as factors that augment Akt
phosphorylation may rise IDE expression and synthesis [54].

We cannot rule out additional factors mediating the effects of GPE on Af3 levels. This tripeptide
can be metabolized to cycloprolylglycine, another important metabolite of IGF-I [55]. This dipeptide
improves memory and reduces A3 plaque load in double transgenic mice APP/presenilin-1 (PS1)
[56]. Leptin signaling may also be involved in the depletion of A in the hippocampus, as has been
reported in diabetic rats subjected to high-intensity interval training, which showed an increase in
leptin receptor, Janus kinase 2 (JAK2) and STAT3, and a concomitant reduction in glycogen synthase
kinase 33 (GSK3p), neurofibrillary tangles and Af levels [57].

Several interleukins may also be involved in the decrease in A{3 content, particularly IL-2 and
IL-13, which increase after co-administration of GPE. For example, a decrease in IL-2 levels has been
found in hippocampal biopsies from patients with AD. Furthermore, in the hippocampus of APP/PS1
transgenic mice, IL-2 administration induces the activation and regrouping of astrocytes around
amyloid plaques, decrease AP content and improves synaptic plasticity [58]. Central infusion of IL-
13 ameliorated cognitive deficits via degradation and clearance of intra- and extraneuronal Af3
peptides in APP23 mice, by modulating AB-degrading proteases [59]. The decrease in the
hippocampal content of IL-17A levels after GPE co-treatment may also be related to diminished Af3
levels. Thus, this interleukin promotes AD progression in the APP/PS1 mouse model by increasing
neuroinflammation through the NF«B pathway and A3 deposition [60].

It is clear that more research is needed to better understand the role of changes in the activation
of signaling pathways and their relationship with inflammatory markers in experimental models of
this disease. Further “in vitro” studies could provide additional information on the effects of these
cytokines in relation to changes in the activation of these signaling targets and enzymes involved in
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Ap degradation, as well as the cell populations involved in these actions. Another aspect to take into
account is the lack of memory testing in this study and the relationship with changes in peripheral
inflammation. Our results showed inflammatory changes in the circulation, although they were more
pronounced in the hippocampus. Some studies have shown an association between the increase in
serum cytokines and the progressive decline in spatial memory after Af3 infusion [61]. In relation to
this finding, there are also reports showing the association between biomarkers of inflammation and
the degree of dementia in AD patients [62].

In summary, our results show that GPE activates signaling pathways that modulate the
inflammatory milieu. These changes may increase the levels of one of the key AB-degrading enzymes,
with a subsequent decrease in amyloid burden, one of the major hallmarks of this neurodegenerative
disease. Given the limited success in the development of therapies for AD, GPE could be a successful
tool to reduce one of the main factors affecting the development of this disease, and therefore
represent a possible future perspective for the treatment of this disease.

4. Materials and Methods
4.1. Materials

All chemicals were purchased from Merck (Darmstadt, Germany) unless otherwise noted.
Osmotic minipumps were from Alzet (Palo Alto, CA, USA).

4.2. Preparation of AB25-35

A25-35 peptide was prepared according to the method reported by Burgos-Ramos et al. [63].
This fragment was dissolved in 1% acetic acid, following the manufacturer’s instructions. One day
before the implantation, osmotic minipumps were connected and filled with 200 ul of Ap25-35
solution and primed in 0.9% saline solution at 37 °C overnight [64].

4.3. Animals and Experimental Design

This study was approved by the Ethics Committee of the Universidad de Alcald de Henares
(SAF 2010-22277, Ministerio de Ciencia y Tecnologia) and complied with Royal Decree 1201/2005
(Boletin Oficial del Estado, BOE No. 252) pertaining to the protection of experimental animals and
with the European Communities Council Directive (86/609/EEC). Female Wistar rats, weighing 250
280 g, supplied by Harlan Laboratories Models S.L. (Barcelona, Spain), were housed in groups of 2
rats per cage on a 12 h light/dark cycle with free access to water and food and were allowed one week
of acclimatization before the start of the experiments. Care was taken to use the minimum number of
animals.

Twenty female Wistar rats of 8 weeks of age were bilaterally ovariectomized under anesthesia
(0.02 mL of ketamine/100 g body weight and 0.04 mL of xylazine/100 g body weight) as previously
reported [43]. Three weeks after ovariectomy, the animals were distributed into four groups. In the
first group, a cannula attached to an osmotic minipump was implanted in the right cerebral ventricle
(-0.3 mm anteroposterior, 1.1 mm lateral) and A325-35 was infused for 14 days (300 pmol/day,
infusion rate 0.5 pL/h) as described [65]. In a second group, A325-35 was infused at the same time
and dose, and three intraperitoneal injections of GPE (300 g, dissolved in isotonic saline) were
administered at 0, 6 and 12 days. Another group received GPE alone, as described for the previous
group. Control rats received vehicle by the same administration routes. On day 14, the rats were
sacrificed, the serum was stored at -80°C and the brain was dissected on ice to obtain the
hippocampus [66].

4.5. Tissue Homogenization and Protein Quantification

For immunodetection of Ap25-35, phosphorylated (p) Thr308Akt, Akt, IDE, IFN-y, IGF-1, IGF-
IR, IL-2, IL-13, IL-17A, pSer636-IRS1, pTyr-IRS1, IRS1, pThrl80/Tyr182-p38MAPK, p38MAPK,
neprilysin, pSer536-NFkB, NF«kB, pSer727STAT3, pTyr705STAT3 and STAT3, hippocampus was
homogenized on ice in 400 pL of lysis buffer (Merck). Lysates were frozen 12 hours at -80°C and then,
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centrifuged at 12,000X g for 5 min at 4°C. Supernatants were stored at -80°C until assayed. Protein
levels were determined by the Bradford method (Bio-Rad Laboratories, Madrid, Spain).

4.6. ELISAs
4.6.1. AB25-35

Hippocampal levels of A{325-35 were determined using an ELISA kit from Blue Gene Biotech
(China), with a monoclonal capture antibody against A25-35 and another detection antibody
conjugated to horseradish peroxidase (HRP). After 60 min incubation at 37°C, the wells were washed
and incubated with a substrate and the absorbance was read at 450 nm.

4.6.2. AB-Degrading Enzymes

Neprilysin levels in the hippocampus were measured using an ELISA from Cusabio (Wuhan,
China). Homogenates were incubated with a capture antibody for 120 min at 37°C. Once samples
were removed, a biotin-antibody was added. After 60 min, HRP-avidin and a substrate were added
until the color developed.

Levels of IDE were assessed using a kit from Cloud-Clone Corp. (Houston, TX, USA). After
incubating the homogenates for 120 min with a biotin conjugated-IDE antibody, an avidin-HRP
complex was added, incubated for 90 min at 37°C and subsequently washed. Substrate solution was
added until a blue color developed.

4.6.3. IGF-1

Serum and hippocampal IGF-I concentrations were analyzed using an ELISA kit from R&D
Systems (Minneapolis, MN, USA). Serum and homogenates were incubated with a monoclonal anti-
IGF-I capture antibody for 120 min at 25°C. After washing, conjugate was added and incubated for
120 min. Wells were washed again and incubated with a substrate solution for 30 min and the
absorbance read at 450 nm.

4.6.4. Phosphorylation of IGF-I Receptor

The assay (Cell Signaling Technology, Danvers, MA, USA) detects levels of IGF-I receptor
protein when phosphorylated at Tyr1131 residue. Homogenates were incubated for 120 min at 37°C
in a plate coated with the pTyr1131-IGF-I antibody. After washing, a detection antibody was added
and incubated at 37°C for 60 min. Afterwards, the plate was washed again and an HRP-linked
secondary antibody was added and incubated 37°C for 30 min. Finally, after washing, the substrate
was added and the absorbance read at 450 nm.

4.6.5. Leptin

Serum leptin levels were measured using a kit from Merck. Standards, controls and samples
were added together with a capture antibody, to a plate coated with a capture antibody. After 120
min of incubation, the plate was washed and the enzyme was added and incubated for 30 min. After
washing, the substrate was added until the development of a blue color and then read at 450 nm.

The intra- and inter-assay coefficients of variation were lower than 10% for all assays.

4.7. Multiplexed Bead Immunoassays

Phosphorylated and total levels of Akt, IRS1, p38MAPK, NFkB and STAT3 in the hippocampus
as well as concentrations of IFN-y, IL-2, IL-13 and IL-17A in serum and hippocampus were measured
using multiplexed bead immunoassays (Bio-Rad Laboratories and Merck) following the
manufacturer’'s recommendations. Beads conjugated to antibodies and serum or homogenates (25 pL
each) were incubated, and antibody conjugated to biotin was added and incubated. Then, beads were
incubated with streptavidin-phycoerythrin. At least 50 beads per variable were examined in the Bio-
Plex suspension array system 200 (Bio-Rad Laboratories). Raw data (median fluorescence intensity,
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MFI) were evaluated using Bio-Plex Manager Software 6.2 (Bio-Rad Laboratories). The intra- and
inter-assay coefficients of variation were lower than 10%.

4.8. Adenylyl Cyclase Assay

Membranes from the hippocampus were prepared as previously described [67]. Adenylyl
cyclase activity was measured in membranes from hippocampus (0.06 mg/mL) incubated with 1.5
mM ATP, 5 mM MgSOs, 10 mM GTP, an ATP-regenerating system, 1 mM 3-isobutyl-1-
methylxanthine, 0.1 mM phenylmethylsulphonyl fluoride, 1 mg/mL bacitracin, 1 mM EDTA, and 10-
+ M SRIF. After a 15 min incubation at 30°C, the reaction was stopped by heating. After cooling, 0.2
mL of an alumina slurry (0.75 g/mL in Tris/HCl buffer, pH 7.4) was added and the suspension was
centrifuged. The supernatant was employed for the assay of cyclic AMP [68].

4.9. Cell Cultures and Treatments
4.9.1. Culture of Rat Hippocampal Neurons

Cultures were performed as reported [43]. Briefly, pregnant Sprague-Dawley rats were
sacrificed and 18-day rat embryos collected. Hippocampi were dissected in Neurobasal medium
(Gibco-Invitrogen, Madrid, Spain) containing 10% of fetal bovine serum (FBS, Gibco-Invitrogen). The
cell suspension was centrifuged for 10 min at 600X g. The pellet was resuspended in fresh medium,
and the cells were plated at a density of 5x10¢ cells/dish in poly-D-lysine 100 mm Petri dishes. After
10 days of culture, the neurons were treated for 24 h with 1 pM Ap25-35 alone or in combination with
100 pM GPE for 24 h. We measured the phosphorylated and total levels of STAT3 and IRS-1 and IDE
concentrations in the lysates by a multiplexed bead immunoassay and an ELISA, respectively.

4.9.2. Mixed Glial Culture

For this culture, 3-5-day old Sprague-Dawley rats were used. Briefly, the rats were sacrificed
and hippocampi were dissected by pipetting in Dulbecco’s Modified Eagle Medium (DMEM)/F12
medium (Thermo Fisher, Madrid, Spain) supplemented with 20% of FBS. Then, the cells were filtered
using a 40 pm cell strainer and centrifuged for 8 min at 900X g. Finally, the cells were seeded in
DMEM/F12 with 20% FBS at a density of 5x106 cells/dish in 100 mm Petri dishes and cultured at 37°C
in humidified 5%C02/95% air. Once confluence was achieved after 7-10 days, glial cells were treated
with DMEM/F12 with 10% FBS alone (basal condition), with 1 um A{325-35 alone and with 1 uM
AP25-35 plus 100 uM GPE for 24 h. In cell lysates from glial cultures, we determined phosphorylated
and total levels of STAT3 and IRS-1 and IDE content and in the extracellular culture media, we
measured IFN-vy, IL-2, IL-13 and IL-17A concentrations by a multiplexed bead immunoassay.

4.10. Statistical Analysis

Data are summarized as mean + SEM. The analysis of all data was carried out using one-way
ANOVA followed by Bonferroni’s post hoc tests. Relationships between variables were performed
by linear regression analysis. Values were considered significantly different when the p value was
less than 0.05. Analyses were performed using Statview software (Statview 5.01, SAS Institute, Cary,
NC, USA) and graphs were generated using GraphPad Prism 8 (San Diego, CA, USA) software.
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AB Amyloid-{ peptide
AC Adenylate cyclase
AD Alzheimer’s disease
Akt Protein kinase B
ANOVA Analysis of variance
APP Amyloid precursor protein
AU Absorbance units
DMEM Dulbecco’s modified Eagle medium
ELISA Enzyme-linked immunosorbent assay
FBS Fetal bovine serum
GFAP Glial fibrillary acidic protein
GPE Glycine-proline-glutamate
GSK3p3 Glycogen synthase kinase 33
HRP Horseradish peroxidase
IDE Insulin-degrading enzyme
IFN-y Interferon-y
IGF-1 Insulin-like growth factor I
IGF-IR IGF-I receptor
IL Interleukin
IRS1 Insulin receptor substrate 1
JAK2 Janus kinase 2
MFI Median fluorescent intensity
NF«B Nuclear factor kappa B
Ovx Ovariectomized
P Phosphorylated
PI3K Phosphatidylinositol 3-kinase
PS1 Presenilin-1
p38MAPK P38 mitogen-activated protein kinase
SOCS3 Suppressor of cytokine signaling 3
SRIF Somatostatin
STAT3 Signal transducer and activator of transcription 3
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