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Abstract: Soil organic matter  (SOM)  is  important  for  the global carbon cycle, and hyperspectral 

remote sensing has proven a promising method  for  fast SOM content estimation. However, soil 

physical properties  significantly affect  the sensitivity of  satellite hyperspectral  imaging  to SOM, 

leading  to poor generalization  ability of  the  estimation model. This  study  aims  to  improve  the 

spatiotemporal transferability of the SOM prediction model by alleviating the coupling effect of soil 

physical  properties  on  the  spectra.  Based  on  satellite  hyperspectral  images  and  soil  physical 

variables, including soil moisture (SM), soil surface roughness (root mean squared height, RMSH), 

and  soil  bulk weight  (SBW),  a  soil  spectral  correction  strategy was  established  based  on  the 

information unmixing method. Two  important  grain‐producing  areas  in Northeast China were 

selected as study areas to verify the performance and transferability of the spectral correction model 

and  SOM  content prediction model. The  results  showed  that  soil  spectral  corrections based on 

fourth‐order polynomials and the XG‐Boost algorithm had excellent accuracy and generalization 

ability, with residual predictive deviations  (RPD) exceeding 1.4  in almost all bands.  In addition, 

when the soil spectral correction strategy was adopted, the accuracy of the SOM prediction model 

and  the  generalization  ability  after  model  migration  were  significantly  improved.  The  SOM 

prediction accuracy based on the XG‐Boost corrected spectrum was the highest, with a coefficient 

of determination  (R2) of 0.76, root mean square error  (RMSE) of 5.74 g/kg, and RPD of 1.68. The 

prediction accuracy, R2, RMSE, and RPD of the model after migration were 0.72, 6.71 g/kg, and 1.53, 

respectively. Compared with the direct migration prediction of the model, adopting the soil spectral 

correction strategy based on fourth‐order polynomials and XG‐Boost reduced the RMSE of the SOM 

prediction results by 57.90% and 60.27%, respectively. The performance comparison highlighted the 

advantages of considering soil physical properties in regional‐scale SOM prediction. 

Keywords:  soil  organic  matter;  soil  physical  properties;  hyperspectral  imagery;  spectrum 

correction; model migration 

 

1. Introduction 

As the largest carbon reservoir among the terrestrial ecosystems, soil (pedosphere) constitutes 

the global carbon cycle with hydrosphere, atmosphere, biosphere, geosphere, and  lithosphere  [1]. 

Minor  soil  carbon  pool  changes  can  significantly  alter  atmospheric  CO2  concentration,  thereby 

affecting global carbon cycling and climate [2]. The vast majority of carbon stored in soil is organic 

carbon as the carbon component of organic matter [3–5]. Soil organic matter (SOM) is also the primary 

source of biological nutrients and energy in soil, and the SOM content is often used as a vital soil 
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fertility evaluation indicator [6,7]. Therefore, precisely understanding the SOM content and spatial 

distribution  is  crucial  for promoting  sustainable agricultural development, enhancing  soil  carbon 

sequestration potential, and regulating global climate change [8,9]. 

Remote sensing is a low‐cost, high‐accuracy, real‐time method for multi‐angle, multi‐temporal, 

and large‐area earth observation [10–12]. At present, the ability of hyperspectral remote sensing to 

predict and map SOM contents has been confirmed in many studies [13–15]. With the rapid growth 

of  remote  sensing data  and  the urgent need  for  large‐scale  soil  surveys,  the  research  on  remote 

sensing‐based soil element content prediction has gradually shifted from constructing high‐precision 

prediction models to establishing prediction models with strong spatiotemporal transferability [16–

18].  Imaging spectra are  the most  important data source, and  their characteristic  response  to  soil 

chemical  composition  is  an  important  foundation  for  hyperspectral  remote  sensing‐based  SOM 

content prediction [18–20]. However, imaging spectra are not affected by soil composition alone but 

comprehensively  reflect  the soil physical properties and chemical composition within  the ground 

sample, and soil physical properties and chemical composition exert a coupling effect on the response 

to  the  spectrum  [21–23].  Research  has  shown  that  the  scattering  contribution  of  soil  physical 

properties,  such as soil moisture  (SM) and surface  roughness properties  (e.g.,  root mean squared 

height, RMSH), to spectral reflectance seriously affects the sensitivity of the hyperspectral data to the 

SOM  content  [24].  The  near‐infrared  spectrum  is  very  sensitive  to  a  small  amount  of water  or 

hydroxyl  group,  easily  causing  irregular  radiation  characteristics.  As  the  SM  content  increases 

continuously until saturation, the soil reflectance decreases first and  increases due to the specular 

reflection effect [25]. In addition, the RMSH increments enhance light scattering and transmission on 

the soil surface, thus decreasing the reflectivity, especially in the visible and near‐infrared wavelength 

range [26]. Meanwhile, long‐term high‐intensity mechanized planting increases the soil bulk weight 

(SBW) of cultivated  land. The concomitant changes in SM, SBW, and spectral reflectance exhibit a 

complex  relationship.  Generally,  the  increase  in  SM,  SBW,  and  RMSH  decreases  the  spectral 

reflectance,  showing a  coupling  effect  [27,28]. Noteworthy,  the  effect of SOM  content on  the  soil 

spectrum is far weaker than that of soil physical properties [29]. Due to the satellite revisit period and 

soil physical condition uncertainties, the noise interference of soil physical properties on the spectrum 

greatly  limits  the  accuracy  and  spatiotemporal  transferability  of  the  remote  sensing‐based  SOM 

evaluation model, which needs to be solved urgently. 

The data reliability and completeness when mapping  information about the prediction target 

are often the keys to the generalization ability of the model [30,31]. To alleviate the influence of soil 

physical properties on hyperspectral data and improve the spatiotemporal transferability of the SOM 

content prediction model, scholars have fused hyperspectral data of long time series to reduce the 

sensitivity of the model to spectral differences caused by soil physical property changes [17,32–34]. 

Ge et al. attempted to introduce soil physical parameters as input variables into the element content 

prediction model [35]. Pan et al. established SOM content prediction models based on different SM 

ranges [36]. Most of these innovative improvement attempts at the macro scale have been successful, 

while the in‐depth development and analysis of satellite hyperspectral images at the pixel scale are 

still lacking. Considering the reflectance difference caused by soil physical properties, Minasny et al. 

developed a spectral correction model based on the EOP method to eliminate the influence of SM 

[37]. Castaldi et al. synthesized the dry soil spectrum by calculating the statistical variability of dry 

and wet soil, thereby improving the model prediction accuracy [21]. Although these methods have 

corrected the hyperspectral data to a certain extent, they are mostly based on one physical parameter 

and  ignore the coupling response of different soil physical properties to the spectrum. Due to the 

scarcity of  soil physical data  from  satellite ground  synchronization  experiments,  the potential of 

hyperspectral correction methods comprehensively considering multiple soil physical properties has 

not been fully explored. 

Developing a soil spectral correction method alleviating the coupling effect of surface physical 

properties on soil pixel spectra is a long‐term solution to improve the spatiotemporal transferability 

of  the  SOM  prediction  model.  The  complex  interactions  between  the  various  surface  physical 

properties  and  electromagnetic waves make  it difficult  to  simulate  the  relationship between  soil 
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physical  properties  and  the  spectrum with  physical models  [28].  Therefore,  this  study  aims  to 

separate the physical and chemical soil information in the spectral data with data‐driven methods. 

Studies  have  indicated  various  functional  relationships  between  soil  physical  parameters  (SM, 

RMSH,  and  SBW)  and  spectral  reflectance,  including  logarithmic,  exponential,  and  power 

exponential functions  [26,38]. However, most previous studies were based on multi‐spectral data, 

while  the  effect  of  soil  physical  properties  on  reflectance  remained  to  be  clarified  based  on 

hyperspectral  data  with  more  continuous  and  dense  bands  [39,40].  Although  these  functional 

relationships may change slightly due to differences in soil types, components, etc., they generally 

reflect the spectral characteristics induced by soil physical properties and are an essential basis for 

representing soil physical property information in the spectral data [41–43]. Based on this, spectral 

forward modeling can be carried out using soil physical properties, providing prior data for the soil 

spectral correction [44]. Moreover, separating the spectral information derived from soil physical and 

chemical  properties  requires  spectral  data  only  responding  to  soil  chemical  properties  in  the 

corresponding pure pixels. The dried and ground soil samples have the same uniform SM, SBW, and 

RMSH, and the soil spectra at this time is considered the “pure spectra “ that only reflects the soil 

chemical  composition  information  [6].  To  effectively  decompose  the  soil  physical  and  chemical 

information  in  the pixel  spectrum, nonlinear parameter  regression and machine  learning models 

have been used to simulate the coupling relationship between soil physical property spectra, “pure 

spectra”, and pixel spectra, respectively. These two data‐driven methods search for the rules between 

data  through  statistical  analysis  and  machine  learning  training,  respectively.  In  this  way,  the 

unknown data can be predicted, and the generalization ability of the soil spectral correction method 

can  be  guaranteed  by  the  regression  equation.  For  the  SOM  prediction model,  the  soil  spectral 

correction redistributes the observation information of the original hyperspectral remote sensing to 

ensure  the  uniformity  of  the  soil  physical  properties  of  all  pixels,  which  helps  improve  the 

spatiotemporal transferability of the model [45–47]. 

This work seeks to establish a hyperspectral SOM prediction model with high spatiotemporal 

transferability, which can guide soil investigation and parameter prediction. The objectives of this 

study are: i) evaluating the impact of soil physical properties on satellite hyperspectral data and their 

contribution to the bias in SOM content prediction; ii) developing soil spectral correction methods 

alleviating the coupling impact of soil physical properties on satellite spectrum; and iii) determining 

the spatiotemporal transferability potential of satellite hyperspectral data for SOM retrieval based on 

a  soil  spectral  correction  strategy.  Data‐poor  regions  might  benefit  from  the  proposed  SOM 

prediction  model  with  strong  spatiotemporal  transferability  when  mapping  SOM  to  develop 

appropriate policies. 

2. Materials and Methods 

Before  establishing  the  SOM  content  prediction  model  with  high  accuracy  and  strong 

spatiotemporal  transferability,  a  soil  spectral  correction method was  developed  to  alleviate  the 

coupling effect of surface physical properties on the soil pixel spectrum (Figure 1). Firstly, parameter 

estimation equations were used to establish empirical relationships between satellite hyperspectral 

data and the three main soil physical parameters SM, RMSH, and SBW. Three sets of simulated soil 

spectral data based on SM, RMSH, and SBW were obtained by correlating soil physical parameters 

with satellite hyperspectral images using empirical relationships. Then, a soil pixel spectral correction 

model was constructed based on the simulated spectrum, soil pixel spectrum, and ground spectrum 

using multi‐order polynomials and various machine learning models to separate soil physical and 

chemical information in the pixel spectral data. Finally, the SOM prediction model was constructed 

using XG‐Boost based on the original and corrected soil spectral data. Site 2 soil samples were used 

to evaluate the spatiotemporal transferability of the spectral correction models and SOM prediction 

models established with soil samples from Site 1. 
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Figure 1. Flowchart of SOM content prediction from hyperspectral data in this study. 

2.1. Study Area 

Site 1 is in the protected black soil cultivated land of Heilongjiang Province, Northeast China 

(131°30’‐132°03’ E, 46°36’‐46°49’ N), as shown in Figure 2, which has an area of 1095 km2. The area 

has a temperate monsoon climate, with an annual precipitation of approximately 614 mm. According 

to  the World Reference Base  for Soil Resources  (WRB),  the cultivated  land  is mainly Chernozems 

with  a  sedimentary  layer  under  the  topsoil,  which  has  a  clayey  and  heavy  texture  and  poor 

permeability,  often  forming  surface  saucer  water  during  precipitation  periods  [17].  The  heavy 

sediment  layer  formed  by  the  downward  leaching  of  dark  organic matter  in  the  clay  particles 

intensifies the water retention on  the surface. The cultivated  land surface  is covered by a  layer of 

black humus of over 10 cm. The soil has extremely high fertility and is rich in organic matter, which 

is suitable for crop growth [48]. 

Site 2 is in Changchun City, Jilin Province, Northeast China (125°24’‐125°43’ E, 44°36’‐44°46’ N), 

as shown in Figure 2, which has an area of 713 km2. Its terrain is flat, with an elevation between 189 

and 237 m. Due to the influence of geographical location and atmospheric circulation, the region has 

a temperate continental monsoon climate, with a frost‐free period of about 135 days and an average 

annual  precipitation  of  about  580 mm.  The  region  has  rich  river  systems,  relatively  abundant 

agricultural water resources, and strong SM spatial heterogeneity. The soil in the region is mainly 

Phaeozems with a fertile cultivated layer, and maize and rice are the main crops [49,50]. Site 2 has 

significantly different soil type, surface characteristics, and other environmental factors than Site 1, 

which  can verify  the  spatiotemporal  transferability of  the  SOM  content prediction model  in  this 

study. 
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Figure 2. Overview of study area. (a) The geographical location of the sampling sites in Heilongjiang 

and  Jilin provinces  in Northeast China;  (b, c) The soil parameter measurement points and  topsoil 

sampling points in Site 1 and Site 2, respectively; (d, e) The soil surfaces during the “bare soil period.”. 

2.2. Datasets 

2.2.1. Soil Sampling and Topsoil Parameter Measurement 

A total of 104 soil samples were collected from Site 1 on October 29, 2022 (Figure 2b). On April 

14, 2023, 40 soil samples were collected from Site 2 (Figure 2c). Among them, 80 soil samples from 

Site 1 were used as the training set for the soil spectral correction model and SOM prediction model, 

and the remaining 24 samples were used as the validation set. Meanwhile, the 40 soil samples from 

Site 2 were used to test the spatiotemporal transferability of the spectral correction model and SOM 

prediction model. All soil samples were collected from the cultivated land portion of the study area 

during the “bare soil period.” First, one 3D laser scanner (Trimble TX8, maximum standard range: 

120 m; Scanning speed: 1 million points per second) was installed at the midpoint of each edge of the 

quadrat to scan the soil surface structure (Figure 3). The sampling was conducted after the scanning 

to ensure the natural state of the soil surface structure within the sampled area. Next, nine subsamples 

were collected with a ring knife (depth 5 cm and volume 200 mL) in each 30 × 30 m quadrat. The real‐

time kinematic (RTK) survey technique was used to record the longitude and latitude of the quadrat 

midpoint. 

After being  transported  to  the  laboratory,  the SM  and SBW of  the nine  subsamples  in  each 

quadrat were  obtained  through weighing  and  drying,  and  the  average  of  the  subsamples was 

calculated to represent the overall level of the quadrat. Then, the nine subsamples were mixed into 

one  composite  sample,  ground,  and  sieved  to  a  size  of  ≤  0.2  mm  for  subsequent  spectral 

measurements and SOM content testing [51]. The SOM content was determined using the potassium 

dichromate  heating  method.  Soil  spectral  reflectance  was  measured  with  an  ASD  FieldSpec  4 

spectrometer in the darkroom. To ensure the same SBW of each sample, soil samples were loaded in 

a  disposable  culture  dish  (60 mm  diameter)  for  spectral measurements.  Each  soil  sample  was 

measured 10 times, and the average value was taken as the soil ground spectral data. The soil surface 

point cloud data from 3D laser scanning were spliced, cut, and filtered, and a 3D relative coordinate 

system was established  (Figure 3b). After processing,  the point cloud density was greater  than 3 
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points/cm3, and the relative coordinate system accuracy of the point cloud was less than 2 mm. The 

Z coordinate of  the point cloud data within  the  sample quadrat was extracted, and  the  standard 

deviation was calculated as the RMSH of the quadrat. 

 
 

Figure 3. Schematic diagram of soil sampling and topsoil parameter measurement. (a) Soil sampling 

points and 3D  laser stations within a quadrat;  (b) 3D  laser  scanning of a quadrat  to generate  soil 

surface point clouds. 

2.2.2. Hyperspectral Image Data Acquisition and Data Preprocessing 

The  Ziyuan1‐02D  (ZY1‐02D)  hyperspectral  image  data  were  acquired  from  the  Aerospace 

Information Research Institute, Chinese Academy of Sciences. According to the soil sampling time of 

the two regions, the images generated on October 29, 2022 (Site 1) and April 14, 2023 (Site 2) were 

selected as data sources. All images have less than 1% cloud coverage and meet the characteristics of 

the “bare soil period.” The spatial resolution of the hyperspectral images is 30 m, with a total of 166 

spectral channels and a spectral range of 400–2500 nm (Table 1). The sensor suffers strong noises in 

the wavelengths of 400 to 450 nm and 2460 to 2500 nm and is affected by atmospheric water vapor 

absorption in the wavelengths of 1290 to 1408 nm and 1828 to 1963 nm [52]. Therefore, the 450 to 1290 

nm, 1408 to 1828 nm, and 1963 to 2460 nm bands were selected as the spectral bands in this study. 

The  images were  subjected  to  stripe  removal, geometric  correction, and atmospherical  correction 

using Radiometric Calibration and FLAASH in the Environment for Visualizing Images 5.6 to obtain 

the original reflectance data. The bidirectional reflectance distribution function (BRDF) effect of the 

images is corrected by calculating the zenith angle and azimuth angle of the sun (and satellite). The 

kernel‐driven  BRDF  model  is  used  to  normalize  ZY1‐02D  reflectance  to  reduce  the  effect  of 

observation geometry on reflectance [53]. 

Table 1. ZY1‐02D satellite hyperspectral camera parameters. 

Specification  Parameters 

Spectral range (nm)  400‐2500 

Channels  76 (VNIR), 90 (SWIR) 

Spectral resolution (nm)  10 (VNIR), 20 (SWIR) 

Swath width (km)  60 

Spatial resolution (m)  30 

Revisit cycle (d)  3 

Lateral swing capacity (°)  ±26 

2.3. Spectral Correction Strategy 

The  image pixel spectrum comprehensively reflects soil physical properties (e.g., SM, RMSH, 

and SBW) and chemical composition within the ground quadrat. Spectral correction aims to separate 

the  reflection  features  attributed  to  the physical  and  chemical properties  of  the  soil  in  the pixel 

spectral data, thus alleviating the coupling effect of soil physical properties on the spectrum. Firstly, 
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linear, exponential, power exponential, and logarithmic parameter estimation equations were used 

to establish empirical relationships between satellite hyperspectral data and the three soil physical 

parameters SM, RMSH, and SBW on a band‐by‐band basis. These parameter estimation methods for 

fitting the relationship between soil physical properties and spectral reflectance have been verified in 

several studies [38,40]. 

By  using  the  empirical  relationships  to  associate  soil  physical  parameters  with  satellite 

hyperspectral data, three sets of simulated soil spectral data based on SM, RMSH, and SBW were 

obtained. The soil ground spectrum measured with dried and ground soil samples is regarded as a 

“pure spectrum” that only reflects the soil chemical composition information [54]. Based on this, a 

spectral  correction model was  constructed, which  took  the pixel  spectrum  and  three  sets of  soil 

physical parametric simulated spectrum as input and ground spectrum as training targets. Through 

multi‐order polynomials and various machine learning algorithms, the correction relations between 

the pixel  spectrum and  the ground  spectrum were  established  to  strip  the  reflection  information 

attributed to soil physical properties in the pixel spectrum. The multi‐order polynomial equation is 

as follows: 

  (1)

where    is the ground‐based spectral reflectance of a certain band,    is the spectral reflectance 

simulated based on SM,    is the spectral reflectance simulated based on RMSH,    is the 

spectral  reflectance  simulated based on SBW,    is  the  spectral  reflectance of  the pixel,  i  is  the 

polynomial order,  ,  ,  ,  , and e are regression coefficients, respectively. 

2.4. Machine Learning Models 

2.4.1. Competitive Adaptive Reweighted Sampling (CARS) 

CARS  is adopted to extract sensitive bands corresponding to SOM  in the hyperspectral data. 

CARS  imitates  the  “survival  of  the  fittest”  principle  of Darwin’s  evolutionary  theory.  Through 

adaptive weighted sampling, it screens out the wavelengths with large absolute coefficients of the 

PLS model  and  removes  the wavelengths with  small weights,  thus  obtaining many  subsets  of 

wavelength variables. Next,  the subset of wavelengths with  the  lowest  root‐mean‐square error  is 

selected  via  cross‐validation  as  the  optimal  subset  [46,55]. CARS  can  effectively  retain  the  best 

wavelength combination related to the measured characteristics. 

2.4.2. eXtreme Gradient Boosting (XG‐Boost) 

XG‐Boost is an ensemble learning model based on the Boosting strategy, which combines several 

CART  trees  into  a  strong  learner. As  an  ensemble algorithm  framework,  it  supports  the parallel 

gradient lifting of the base learner, thus greatly improving the model training speed. The Newton 

method is used to solve the extreme value of the loss function, which is expanded to the second order 

using the Taylor formula. The loss function is optimized with the first‐order gradient function and 

second‐order gradient function to reduce model complexity [56]. Simultaneously, the probability of 

over‐fitting  is  reduced  through  regularization, significantly  improving  the model’s generalization 

ability. 

2.4.3. Model Validation 

In this study, the coefficient of determination (R2), root mean square error (RMSE), and residual 

predictive deviation (RPD) were selected as evaluation indices, as expressed below: 

  (2)
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  (3)

  (4)

where  n  is  the  number  of  samples;  yi  and  Yi  represent  the  measured  and  predicted  values, 

respectively;  denotes the measurements on average. 

3. Results 

3.1. Description of Soil Physical Parameters and SOM Content 

The statistical results of soil physical parameters and SOM content are listed in Table 2. At Site 

1, the mean SM, RMSH, and SBW values were 0.25 cm3/cm3, 2.49 cm, and 0.98 g/cm3, respectively, 

with coefficients of variation (CV) of 31.99%, 30.92%, and 15.31%. The moderately high CV and SD 

indicate  the  combined  influence  of  structural  and  anthropogenic  factors  on  soil  surface physical 

properties, showing strong spatial heterogeneity. The SOM content varied significantly from 25.84 to 

75.97 g/kg, with a standard deviation (SD) of 10.51 g/kg and a CV of 24.30%. Site 2 had significantly 

different soil properties from Site 1. The average SM, RMSH, and SBW were 0.37 cm3/cm3, 3.65 cm, 

and 1.13 g/cm3, respectively, which were significantly higher than Site 1 and had stronger variability. 

The SOM content at Site 2 ranged from 27.40 to 72.97 g/kg, averaging 41.57 g/kg, which was lower 

than Site 1. 

Table 2. Statistics of soil physical parameters and SOM content at the two sites. 

Dataset  Unit 
Site 1  Site 2 

Min  Max  Mean  SD  CV %  Min  Max  Mean  SD  CV % 

SM    cm3/cm3  0.14  0.47  0.25  0.08  31.99  0.21  0.63  0.37  0.14  37.93 

RMSH    cm  1.32  4.99  2.49  0.77  30.92  2.04  5.78  3.65  1.34  36.71 

SBW    g/cm3  0.71  1.41  0.98  0.15  15.31  0.85  1.51  1.13  0.18  15.92 

SOM    g/kg  25.84  75.97  43.25  10.51  24.30  27.40  72.97  41.57  10.28  24.72 

3.2. Effect of Soil Physical Properties on Soil Spectra 

To  verify  the  reliability  of  the  ZY1‐02D  hyperspectral  image,  the  soil  pixel  spectrum was 

compared with the soil ground spectrum (Figure 4). Although the soil pixel spectrum has a similar 

shape  to  that  of  the  soil  ground  spectrum,  it  has  some  noise  and  a  relatively  low  smoothness, 

especially in the VNIR wavelength range. In addition, the spectral reflectance in the soil pixels was 

slightly  lower  than  that measured  in the  laboratory. The Spearman correlation coefficients (SCCs) 

and Pearson correlation coefficients (PCCs) between soil pixel reflectance and soil ground reflectance 

in each band were calculated. The results showed that the PCCs between the two sets of spectral data 

were below 0.5  in most wavelengths, while  the SCCs  in  the visible  light and short‐wave  infrared 

wavelength  range  were  basically  greater  than  0.5,  indicating  a  possible  nonlinear  relationship 

between the pixel spectral reflectance and the ground spectral reflectance  in the same wavelength 

range. To further reveal the  factors affecting the pixel spectrum, the differences  in soil reflectance 

between different physical property gradients were  compared. With  the  increase of SM,  the  soil 

spectral reflectance decreased significantly, especially  in  the 500  to 1300 nm and 1450  to 1700 nm 

wavelength  ranges  (Figure  5). The  soil  spectral  reflectance decreased  relatively  slightly with  the 

increase in SBW. The effect of RMSH on the soil spectrum was the most significant, and the reflectance 

decreased significantly with the increase of RMSH. In summary, the coupling effect of multiple soil 

physical properties on the spectrum is an important reason for the deviation of the two sets of spectral 

data, which seriously  limits  the acquisition of soil “pure spectrum” by  the  imaging spectrometer. 

Therefore, it is necessary to separate soil physical and chemical information in the pixel spectral data 

and improve the SOM prediction accuracy of hyperspectral remote sensing. 
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Figure 4. Soil pixel spectrum, soil ground spectrum, and correlation coefficients of two sets of spectral 

reflectance. 

 

Figure 5. Spectral characteristics of soils with different physical properties. 

3.3. Empirical Relationship between Satellite Hyperspectral Image and Soil Physical Properties 

The empirical coefficients were  regressed based on  the  field data and  soil pixel  spectrum  to 

determine the relationship of soil reflectance with SM, RMSH, and SBW (Figure 6). Among the fitting 

equations between SM and soil reflectance, the exponential equation has the best fitting effect. Except 

for the 2000 to 2500 nm wavelength range, the fitting results were good, with R2 of 0.49 to 0.68. In the 

2000 to 2500 nm wavelength range, the fitting between SM and reflectance was not good, possibly 

due to the absorption of clay minerals to the spectral characteristics caused by the hydroxyl groups 

in  soil. With  higher  clay mineral  contents,  the water  retention  capacity  of  the  soil was  greater. 

According to the fitting results between SBW and soil reflectance, the exponential equation fitted the 

best in the 450 to 1800 nm wavelength range, with the R2 of 0.50 to 0.69, while the power exponential 

equation fitted the best in the 2000 to 2500 nm wavelength range. In terms of the entire wavelength 

range, RMSH had the strongest fitting relationship with soil reflectance among the three groups of 

soil physical parameters, implying its most significant effect on the soil spectrum. Among the four 

equations, the logarithmic equation had the best fitting effect, with the R2 of 0.55 to 0.69. In general, 

the  best  empirical  relationship  of  soil  reflectance  with  SM  is  exponential,  that  with  RMSH  is 
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logarithmic, and that with SBW is exponential in the 450 to 1800 nm wavelength range and power 

exponent in the 2000 to 2500 nm wavelength range. Three sets of soil reflectance data were simulated 

based on the empirical relationship between soil physical parameters and soil spectra, respectively 

(Figure 7). The soil reflectance simulated based on SM showed an almost uniform trend between 2000 

and 2500 nm, implying that the effect of SM on reflectance in this wavelength range was suppressed 

by other factors, resulting in insignificant spectral features. Other than that, the remaining simulated 

soil spectra showed significant differences. These soil spectra simulated through empirical equations 

based on soil physical properties were used to construct the soil spectral correction model. 

 

Figure 6. R2 for fitting soil physical parameters to soil pixel spectrum based on multiple parameter 

estimation models. 
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Figure 7. Soil spectrum simulated through empirical equations based on SM (a), RMSH (b), and SBW 

(c). 

3.4. Modeling of Soil Spectral Correction 

Empirical  coefficient models  and machine  learning models were  employed  to  establish  the 

correction relationship between the soil pixel spectrum and soil “pure spectrum”. The original pixel 

spectrum and three sets of soil spectrum simulated based on SM, RMSH, and SBW were used as input 

spectral data, and the ground‐based soil spectrum was used as the training target to build the soil 

spectral correction model band by band. The multi‐order polynomial‐based soil spectral correction 

model showed improved accuracy with the increasing order, and its RPD and RMSE were optimal 

in all bands at the fourth order (Figure 8). An excessively high order renders the empirical equations 

too complex, leading to over‐fitting, reduced adaptability to new data, and decreased accuracy. The 

RPD of the fourth‐order polynomial model was above 1.5 in all bands, indicating its good correction 

effect on the soil spectrum. 

 

Figure  8.  The  validation  set‐derived  accuracy  of  soil  spectral  correction  based  on  multi‐order 

polynomial coefficient regression. 

Four machine learning algorithms, namely, support vector machine regression (SVR), extreme 

learning machine  (ELM), back propagation neural network  (BPNN), and XG‐Boost, were used  to 

construct soil spectral correction models in the same way. The best soil spectral correction model was 

determined by comparing the mapping ability of the different machine learning algorithms to the 

coupling relationship between multiple soil spectra (Figure 9). The correction results showed that the 

four machine learning algorithms differed significantly in the soil spectral correction accuracy. The 

accuracy fluctuations around 1000 nm wavelength may be caused by other noise in the spectral data. 

Other  than  that, all  soil  spectral correction  results were good, and  the overall accuracy was high 

relative  to  the polynomial‐based models. As a  representative algorithm of  the ensemble  learning 

model, XG‐Boost achieved the best spectral correction results, with R2 above 0.6 and RPD above 1.6 

for all bands. The second best was ELM, while SVM and BPNN performed poorly. 
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Figure 9. The validation set‐derived accuracy of soil spectral correction based on machine learning 

models. 

Based on the soil spectral correction accuracy, the soil spectral correction results of the fourth‐

order polynomial model and XG‐Boost model were selected for further analysis. The results showed 

that the soil spectra corrected with the XG‐Boost model were smoother than those corrected with the 

fourth‐order polynomial model and fitted the spectral shape of the soil “pure spectrum” more closely 

(Figure 10). The calculated correlation coefficients between the corrected soil pixel spectrum and the 

soil “pure spectrum” showed that the PCCs in most wavelengths were above 0.8, which was greatly 

improved  compared with  the  correlation  between  the  original  pixel  spectrum  and  the  ground 

spectrum.  Therefore,  after  spectral  correction,  the  spectral  response  induced  by  soil  physical 

properties  in  the  soil  pixel  spectrum was  alleviated,  and  the  proportion  of  information  on  soil 

chemical composition response signals in the pixel spectral data was significantly increased. In terms 

of the spectral shape of the soil pixel spectral correction results and their correlation with the soil 

“pure spectrum,” the correction results of the XG‐Boost model are slightly better than those of the 

fourth‐order polynomial model. However,  the accuracy  improvement effect of  these methods on 

hyperspectral SOM prediction needs further analysis through modeling. 

 

Figure 10. Soil pixel  spectra corrected with  the XG‐Boost model and  the  fourth‐order polynomial 

model and correlation coefficients of the two sets of spectral reflectance. 
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3.5. SOM Content Prediction Accuracy Based on Different Spectral Data 

Four  types  of  soil  spectral data,  namely, pixel  spectrum,  fourth‐order polynomial  corrected 

spectrum, XG‐Boost  corrected  spectrum, and ground‐based  spectrum, were used  to  establish  the 

SOM  content  prediction models,  respectively.  In  order  to  reduce  the  data  dimensionality  and 

improve the computational efficiency of the model, the spectral data were first subjected to feature 

extraction. Pearson’s correlation coefficient threshold was used to determine the sensitive bands of 

SOM. The correlation coefficient distribution between  the  four sets of soil spectral data and SOM 

content showed a relatively consistent trend. Specifically, the correlation coefficient decreased with 

the increasing wavelength before the 800 nm wavelength and increased after the 800 nm wavelength 

(Figure 11a). The bands with absolute correlation coefficients above 0.5 were selected as the sensitive 

bands of SOM. The sensitive spectral bands corresponding to SOM in the four spectral data sets of 

pixel  spectrum,  fourth‐order  polynomial  corrected  spectrum, XG‐Boost  corrected  spectrum,  and 

ground‐based spectrum were concentrated in the wavelength range of 628 to 1023 nm, 524 to 1223 

nm, 542  to 1560 nm, and 550  to 1762 nm,  respectively. CARS was adopted  to  further extract  the 

optimal subset of  features containing  the  least redundant  information  in  the sensitive bands. The 

optimal number of CARS iterations was determined by the RMSECV of multiple regression (Figure 

11b). The bands listed in Table 3 are the spectral bands selected by CARS for SOM inversion modeling 

and validation analysis. 

   

Figure 11. (a) Pearson’s correlation coefficients between SOM contents and spectral reflectance of each 

band. (b) RMSECV (unit: g/kg) of multiple regression with different CARS iterations. 

Table 3. Feature band statistics based on CARS. 

Spectral correction method  Wavelength (unit: um)  Total 

Pixel spectrum  0.67, 0.68, 0.70, 0.72, 0.74, 0.77, 0.79, 0.84, 0.87, 0.90, 0.93  11 

Fourth‐order polynomial 

corrected spectrum 

0.55, 0.60, 0.62, 0.68, 0.73, 0.76, 0.78, 0.82, 0.85, 0.87, 0.91, 0.96, 

0.99, 1.07 
14 

XG‐Boost corrected spectrum 
0.55, 0.62, 0.64, 0.69, 0.73, 0.77, 0.81, 0.83, 0.87, 0.89, 0.92, 0.94, 

0.99, 1.05, 1.17 
15 

Ground‐based spectrum 
060, 0.63, 0.67, 0.70, 0.73, 0.77, 0.81, 0.85, 0.87, 0.90, 0.91, 0.96, 

0.99, 1.03, 1.08, 1.22 
16 

The four sets of spectral bands selected through CARS and the SOM contents were used as the 

input data of the model. The XG‐Boost algorithm is used to construct the SOM prediction model. The 

results  indicated  that  these  two  spectral  correction  methods  significantly  improved  the  SOM 

prediction accuracy based on  the original pixel spectrum. Among all SOM prediction  results,  the 

ground spectral data had the highest prediction accuracy, with the  , RMSEP, and RPD of 0.79, 

4.89 g/kg, and 1.97, respectively (Figure 12). The prediction accuracy evaluated based on   was 

2
PR

2
PR

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2024                   doi:10.20944/preprints202404.1236.v1

https://doi.org/10.20944/preprints202404.1236.v1


  14 

 

0.64 when the original pixel spectral dataset was used as model input data. Adopting the soil spectral 

correction strategy based on  fourth‐order polynomials  increased  the prediction accuracy  ( ) by 

0.05, decreased RMSEP by 2.28 g/kg, and increased RPD by 0.38. The soil spectral correction strategy 

based on  the XG‐Boost model had a greater SOM prediction accuracy  improvement, with an   

increase of 0.12, an RMSEP decrease of 3.10 g/kg, and an RPD increase of 0.59. The SOM prediction 

accuracy with the corrected spectrum came close to that with the ground spectrum, implying that 

alleviating the coupling effect of soil physical properties on the soil pixel spectrum can effectively 

improve the hyperspectral SOM prediction accuracy. 

     

   

Figure 12. Scatter plots of predicted and measured SOM contents based on the four spectral data. 

4. Discussion 

4.1. The Transferability of the Soil Spectral Correction Model and SOM Prediction Model 

The soil pixel spectral correction methods based on empirical coefficient and machine learning 

models provided new strategies for improving the SOM prediction accuracy based on hyperspectral 

images. The two soil spectral correction methods based on different models have their advantages 

and limitations. The soil spectral correction method based on XG‐Boost significantly affected the SOM 

prediction accuracy improvement, but its correction process and principles were difficult to express 

mathematically. Despite its weak SOM prediction accuracy improvement, the soil spectral correction 

method  based  on  the  fourth‐order  polynomial model  expressed  the  improved method with  the 

coefficient equation, which was more conducive to its promotion. The high transferability of the soil 

spectral correction method is a key prerequisite for constructing a SOM prediction model with strong 

generalization ability [57]. To verify their spatiotemporal transferability, 40 groups of Site 2 soil pixel 

spectra and ground experimental data were imported into the two spectral correction models. The 

spectral correction results showed that the corrected soil spectra were very consistent with the shape 

of the soil “pure spectra” (Figure 13). Compared with the soil spectrum after fourth‐order polynomial 

2
PR

2
PR

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2024                   doi:10.20944/preprints202404.1236.v1

https://doi.org/10.20944/preprints202404.1236.v1


  15 

 

correction,  the  soil  spectrum  corrected with  the XG‐Boost model  is  smoother. According  to  the 

accuracy of the model migration test results, the soil spectral correction model based on XG‐Boost 

showed  better migration performance, with RPD  above  1.4  for  all  bands. The machine  learning 

algorithms represented by XG‐Boost were much better than the coefficient models in terms of the 

calculation  ability  to  establish  the  coupling  relationship  between  multiple  soil  spectra  and  its 

adaptability to new data. The reason is that this ensemble learning model comprehensively utilizes 

all the eigenvalues of each soil sample point and continuously adjusts the weight of the tree through 

iteration to explore the optimal solution of the coupling relationship between soil physical properties 

and the pixel spectrum [45,58]. 

 

Figure 13. Soil pixel spectra corrected with the XG‐Boost model and fourth‐order polynomial model, 

and the RPD of two correction models. 

The  poor  spatiotemporal  transferability  of  traditional  SOM  prediction  models  is  mainly 

attributed  to  their poor applicability  to different spatiotemporal spectral data  [59]. Evaluating  the 

improvement effects of soil spectral correction methods on the spatiotemporal transferability of SOM 

prediction models is the direct basis to prove the effectiveness of spectral correction methods [60]. 

The  Site  2  soil  samples  and  spectral  data were  used  to  evaluate  the  transferability  of  the  SOM 

prediction model  established with  the  Site  1 data. The  SOM prediction model  based  on ground 

spectra  exhibited  the  best  transferability, with RMSEP  only  increasing  by  0.39  g/kg  (Figure  14). 

However,  the  transferability  of  SOM  prediction models  based  on  the  original  pixel  spectrum  is 

extremely poor  as  surface physical property  changes  cause  spectral  reflectance deviations. After 

transferability verification, RMSEP increased by 8.05 g/kg, while RDP decreased by 44.04%. Adopting 

the two soil spectral correction strategies significantly improved the transferability of the prediction 

model  based  on  the  original  pixel  spectrum, with  an RPD  of  over  1.4  for model  transferability 

validation.  The  SOM  prediction model  based  on  the  XG‐Boost  correction  spectrum  had  greater 

transferability. Compared with  the model  transferability validation based on  the pixel  spectrum, 

RMSEP was  reduced by 60.27%, and RPD was  increased by 150.82%. These  findings proved  the 

effectiveness  of  the  soil  spectral  correction methods  and  the  feasibility  of  the  corrected  satellite 

hyperspectral data to predict SOM content. The SOM prediction model based on corrected satellite 

hyperspectral data can be used even at two sites with different soil types, soil physical properties, 

SOM contents, and spatiotemporal  features. The core of  this soil spectral correction method  is  to 

comprehensively  consider  the  coupling effect of various  soil properties on  spectral  reflectance  to 

restore the true spectral characteristics of the research target. For different research objectives, the 

main  factors affecting  the spectral  response of  the  target can be analyzed according  to  the actual 

environment and  imaging conditions  [39]. Therefore,  the proposed method  is not  limited to SOM 

prediction  and  can  provide  valuable  insights  for  soil  property  prediction  based  on  satellite 

hyperspectral data. 
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Figure  14. Scatter plots of  the measured  and predicted SOM  contents based on  (a) original pixel 

spectrum, (b) ground spectrum, (c) fourth‐order polynomial corrected spectrum, and (d) XG‐Boost 

corrected spectrum with Site 2 data, using the XG‐Boost model established using Site 1 data. 

4.2. Contribution of Soil Physical Properties to SOM Content Prediction Bias 

The  soil  spectral  correction method proved  to  greatly  improve  the  SOM  content prediction 

accuracy and spatiotemporal  transferability of  the pixel spectrum.  In other words, soil properties 

(SM, RMSH, and SBW) may be the main factors leading to errors in SOM estimation based on original 

pixel spectra. This section investigated the error dependence of the original pixel spectrum and two 

sets  of  corrected  spectral data  on  SM, RMSH,  and  SBW,  and  their  contribution  to  SOM  content 

prediction bias was estimated through the stepwise regression method. The results showed that the 

cumulative deviation contribution rate of these three soil properties to the SOM prediction results 

based on  the original pixel  spectrum was over  70%  at both  sites  (Figure  15). Thus,  soil physical 

properties are the main error source of SOM prediction [53]. The contribution of SM to SOM bias was 

the highest, followed by RMSH and SBW. This is related to the most significant response of the pixel 

spectrum  to  SM  within  the  sensitive  wavelength  of  SOM  and  possibly  the  stronger  spatial 

heterogeneity of SM compared to RMSH and SBW. The stronger spatial heterogeneity of soil physical 

properties leads to greater differences in the impact on pixel spectra and, thus, greater deviation in 

SOM prediction [10]. Adopting the spectral correction strategy significantly reduced the bias of SM, 

RMSH, and SBW in SOM prediction. Soil spectral correction based on XG‐Boost more significantly 

reduced the SOM prediction bias caused by soil physical properties than the soil spectral correction 

based  on  fourth‐order  polynomials.  This  result  fundamentally  explains  the  higher  prediction 

accuracy and stronger spatiotemporal transferability of the SOM prediction model based on the XG‐

Boost corrected spectrum. Despite the increased relative contribution of random errors, the total bias 

in terms of the accuracy of the predicted results was significantly reduced. Therefore, the spectral 

correction strategy did not introduce more error sources but only improved the relative contribution 

of other error factors to SOM prediction bias, such as hyperspectral image processing uncertainty and 
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field data acquisition uncertainty [61,62]. Judging from the relative contribution rate of soil physical 

properties to SOM prediction deviation before and after spectral correction, the contribution rate of 

SM  to  SOM  prediction  bias  decreased  the most  by  over  10%,  followed  by RMSH.  The  spectral 

correction method based on polynomials and XG‐Boost reduced  the average relative contribution 

rate of RMSH at the two sites by 10% and 14.5%, respectively. Although the declined contribution 

rate of SBW to SOM prediction bias was the smallest, the reduction exceeded 6%. By comparing the 

improvement effects of different input variables on SOM prediction bias, the improvement effects of 

soil physical properties on SOM content prediction accuracy ranked as SM > RMSH > SBW, consistent 

with  the  order  of  spatial  heterogeneity  of  these  three  soil  physical  properties  and  the  order  of 

sensitivity of soil spectra to them in the VNIR range. Thus, soil physical properties with strong spatial 

heterogeneity and sensitive spectral response should be prioritized in soil spectral correction. 

   

Figure 15. Contribution rate of soil properties (SM, RMSH, and SBW) to the estimated SOM bias in 

Site 1 (a) and Site 2 (b). “Random” denotes the part that these three variables cannot explain. 

4.3. The Potential and Limitations of the Soil Spectral Correction Model 

As  soil  spectral  correction methods  are  designed  to  address  the  coupled  effects  of  surface 

physical properties on hyperspectral images, they are suitable for remote sensing image processing 

of various soil chemical composition predictions. Such methods suppress the sensitivity of spectral 

data to SM, RMSH, and SBW and reduce the possibility of SOM prediction results falling into the 

local optimum. Another advantage is that determining the empirical relationship of SM, RMSH, and 

SBW with the hyperspectral soil reflectance of ZY1‐02D satellite spectra improves the generalization 

ability  and  application  efficiency  of  the method.  In  addition,  this  study  also  has  two  potential 

applications.  1)  It  enables  the  application  of  optical  and  radar  remote  sensing  combined  in  soil 

physicochemical  property  estimation,  and  2)  it  provides  a  solution  to  the  spatiotemporal 

heterogeneity of spectral data due to uncertain changes in surface physical conditions in multi‐source 

remote sensing data fusion. Although the soil spectral correction model can restore most soil “pure 

spectrum” characteristics, some uncertainties may remain. The applicability of the proposed method 

to airborne hyperspectral sensors or other hyperspectral satellites requires evaluation with more data. 

In addition, this experiment only considered the influence of soil properties within 5 cm of the surface 

layer  on  the  spectrum, while  the  spectrum may  have  different  sensing  depths  for  different  soil 

properties [63]. Even though the spectrum only directly detects SM changes in shallow soil (about 0 

to 2 cm),  this depth also changes under different SBW and RMSH conditions  [20,64]. The vertical 

heterogeneity  of  SM  and  SBW may  be  the main  factor  causing  soil  spectral  correction  errors. 

Adopting a hierarchical strategy to establish spectral correction models for soil properties at different 

depths or assigning different weights to soil physical properties at different depths may maximize 

the effectiveness of the model within the specified depth and range. 
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4.4. Future Work and Suggested Next Steps 

This study,  for  the  first  time, used  the “pure spectrum” derived  from soil spectral correction 

considering  SM,  RMSH,  and  SBW  for  SOM  content  prediction  and  confirmed  its  excellent 

spatiotemporal transferability. The strategy of alleviating the influence of soil physical properties on 

spectral coupling may provide a paradigm for remote sensing‐based soil element content prediction 

in  the  future.  Soil  spectral  correction  of  the whole  hyperspectral  image  requires  real‐time  high‐

resolution  soil  physical  parameter  data  at  the  regional  scale.  The  strong  sensitivity  of  synthetic 

aperture radar remote sensing to soil physical parameters makes it possible to obtain rich information 

on  soil  physical  parameters  in  practical  applications  [65].  Future  research  may  combine  the 

advantages of hyperspectral imaging and radar remote sensing to improve the prediction accuracy 

of soil physicochemical parameters [66]. Given the type and dimension heterogeneity of optical and 

radar data, a new  link  to combine  the  two data was provided. Meanwhile, some  interesting new 

directions have also emerged. Due to the difference in imaging time between radar and hyperspectral 

images, the corresponding surface physical properties also change, especially SM, which  is highly 

susceptible to weather. Therefore, combining optical and radar data to eliminate the bias due to the 

temporal phase may be the optimal strategy to solve this problem. In addition, the perception depth 

of optical and radar remote sensing for soil properties needs further clarification. As radar sensors 

have better penetrability than optical sensors, quantifying the vertical heterogeneity of SM and SBW 

with radar remote sensing could be the key to further improving the soil spectral correction accuracy 

[67,68]. These strategies reduce errors in large‐scale soil physical and chemical parameter surveys to 

support regional strategic arrangements for sustainable agricultural development. 

5. Conclusions 

This study utilized satellite and ground hyperspectral data and soil physical parameters data to 

construct  two  soil  spectral  correction models  based  on  fourth‐order  polynomial  and  XG‐Boost, 

respectively, to alleviate the coupling effect of soil physical properties on  the pixel spectrum. The 

performance  of  the  soil  spectral  correction  models  and  their  influence  on  the  accuracy  and 

spatiotemporal  transferability of  the SOM prediction model were evaluated using data  from  two 

sites. The main conclusions are as follows. (1) The soil pixel spectral reflectance is nonlinearly related 

to soil ground spectral reflectance. The difference in surface physical properties is the main factor for 

the deviation of the two spectral data. RMSH has the most significant effect on the soil pixel spectrum, 

followed by SM and SBW.  (2) The  fourth‐order polynomial and XG‐Boost models have good soil 

spectral  correction  accuracy.  The  soil  spectral  correction model  based  on  XG‐Boost  has  higher 

accuracy and stronger spatiotemporal transferability as it considers all the features to continuously 

adjust  the weight of  the  tree and prevent  the  result  from  falling  into  the  local optimum.  (3) Soil 

spectral correction significantly alleviates the coupling effect of soil physical properties on soil pixel 

spectra,  effectively  improves  the accuracy of  the SOM prediction model, and, more  importantly, 

greatly  enhances  the  spatiotemporal  transferability of  the SOM prediction model based on pixel 

spectrum. Considering  the  response of  satellite hyperspectral  imaging  to  soil physical properties 

helps  to  understand  their  roles  in  SOM  content  prediction.  This work  provides  a  new  research 

paradigm for predicting soil property parameters in other regions. 
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