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Abstract: The entropy of the partition generated by an n-tone music scale is proposed to quantify its regularity.
The normalized entropy relative to a regular partition, and its complementary, here referred to as the bias, allow to
analyze various conditions of similarity between an arbitrary scale and a regular scale. Interesting particular cases
are scales having limited bias because their tones are distributed along interval fractions of a regular partition.
The most typical case in music concerns partitions associated with well-formed scales generated by a single tone /.
These scales are maximal even sets that combine two elementary intervals. Then, the normalized entropy depends
on the number of tones as well as the relative size of both elementary intervals. When well-formed scales are
refined, several nested families stand out with increasing regularity. It is proven that a scale of minimal bias, i.e.

with less bias than those with fewer tones, is always a best rational approximation of log>h.
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1. Introduction

An n-tone music scale determines a partition of the octave in n intervals. Regarding their regularity,
scales can be of equal divisions of the octave, i.e., with n tones of equal temperament (n-TET scale),
where discretization precision increases as the number of tones grows, or of different divisions, where
precision increases in two ways, on the one hand, as the size of the intervals decreases and, on the
other hand, as its regularity increases. In particular, well-formed scales of one generator, hereinafter
referred to as cyclic scales, if they are non-degenerate (of equal temperament) are formed from two
elementary intervals [1,2], one longer than the interval of an #n-TET scale and the other of shorter width.
These scales also fulfill the condition of maximum evenness [3,4], that is, they present the most even
distribution, which does not depend on the relative size of the intervals. In many cases, as increasing
the number of tones of a cyclic scale, the regularity of the intervals decreases, still satisfying the
condition of maximal even set. Therefore, for cyclic scales it is not obvious how to quantify precision
and regularity of the partition as increasing the number of tones. The present work has the purpose of
analyzing it, as well as studying the bias from regular temperament in more general cases.

The regularity of the intervals of an n-tone scale E,; can be quantified in several ways. A fairly
common way is from their standard deviation. In the octave, the intervals A;, i € I = {1,...,n},
between consecutive tones, considered as a discrete random variable of equal probability such that
Y ic1 Ai = 1, have expected value t = %, which is the size of the elementary interval of the n-TET scale.
A measure of dispersion of these values about the mean is the standard deviation ¢, defined from its
square, the variance, as 0> = % Yici(A; — t)%. In this way it is possible to compare different n-tone
scales in terms of the average dispersion of their intervals relatively to the n-TET scale. However, this
procedure does not present interesting properties to deal, for instance, with successive refinements of
cyclic scales.

Another way to measure the regularity of E, may be based on the quadratic sum of its intervals.
We consider it in a more general way. Let us assume that (M, i) is a Lebesgue-measurable space

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0001-7748-1322
https://doi.org/10.20944/preprints202404.1227.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 April 2024 d0i:10.20944/preprints202404.1227.v1

20f21

such that #(M) = 1, and « = {A,};c; is a finite measurable partition of M, thatis', u(U;c;A;) = 1
and p(A;NAj) = 0if i # j. Then, the sum of squares for the partition « relative to the measure
pis S(a) = Yer (A% The function S(a) is a convex function of p(A;), which constrained to
Yie1 #(A;) = 1 has an absolute minimum for y(A;) = 1, Vi. In this case, S(a) = 1 is a decreasing
function of n. When the partition is refined, that is, if 8 = {B,}¢; is another partition of the octave,
then its sum a V B = {A; N B, }icj, jej is a refinement of them, in order to make successive refinements
it would be desirable to be able to express S(a V B) = S(a) + F(a, B), with a function F that is a linear
combination of squares of 1(A; N B;), i.e., also a sum of squares of the refinement. But this is not so,
because in F it will necessarily appear cross products.

Fortunately, the notions of regularity and fineness of a partition have in several fields a well-
known way of being quantified, which is the partition entropy. The concept of entropy was introduced
by Clasius in thermodynamics (in 1850), Boltzmann applied it to statistical mechanics (1877), Planck
related it to probability theory (1906), Shannon applied it to information theory (1948), Jaynes used it
as a measure of uncertainty (1957), and Kolmogorov extended it to deterministic systems (1958).

Certainly, entropy has been used in music almost from the beginning of information theory [5-7]
by considering the musical language as a source that produces a sequence of symbols representing
musical tones and by associating them with certain probabilities according to their frequency of
appearance. In particular, a wide range of works have used entropy to identify music styles, e.g., [8-11]
although results may vary depending on the preanalytical assumptions made in order to treat the
data (scale degrees, pitch class, octave equivalence, weighting by duration, key-signature dependency,
modal bias, etc.). With the same purpose, cross-entropy, e.g., [12] has been used to quantify stylistic
similarity between two sequences [13]. An up-to-date review on entropy and other physical parameters
applied to music is provided by Giindiiz [14].

Nevertheless, it seems that entropy as a measure of regularity of music scales has been neglected.
Therefore, in the current paper it is proposed to use the normalized entropy as a measure of their
regularity. Its application is illustrated in two cases. On one hand to study the similarity between an
arbitrary scale and an n-TET scale. On the other hand, to study the regularity of cyclic scales generated
by a tone h and the relationship between their bias and the rational approximation of log, / they
provide.

2. Partition Entropy

Following the notation and terminology of Arnold and Avez [15], the entropy of the partition” a
is defined from a concave function z(t) as follows,

—tlog,t, 0<t<1

1
0, t=0 M

@)=Y z(u(A)); =(t) = {

It is fulfilled®,
H(w) = n 2 Tiz(u(A) < nz(EEipn(A)) = n2(}) = logyn

Therefore, for a partition of n elements, the value log, 7 is the maximum value that the entropy can
reach, and it is reached when the elements of the partition are of equal measure.
Thus, Y, z(1(Ai)) = L u(A;) log, ﬁ is the weighted average of the values log, —-— (what in

u(Aq)
probabilities would be the information associated with the value of the random variable A;, i.e., the

Equalities that involve measures are understood to be true except in a null set, that is, strictly we should write p(M \
UierA;) = 0, but we will not do it to simplify the notation.

It is also called metric entropy, and it consists in changing the metric of the theory of probabilities, i.e., the probability, by a
generic metric, where the concepts relative to the partitions remain.

If the function of a random variable f(x) is concave, the expected value satisfies E(f(x)) < f(E(x)) (Jensen’s inequality).
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expected value of the information content or self-information of the variable A;). The smaller j(A;),
the greater is the above logarithm, so this average gives an idea of how much refined the partition is.

Shannon (1948) showed that the entropy defined in this way is the only function that, except for a
multiplicative constant, satisfies the following postulates:

1. H(a) is a continuous function of y(A;).
2. Ifu(Ay) = -+ = u(An) = 1, then H(a) is an increasing function of n.
3. Let’s consider partitions « = {A;};c;, B = {Bj}je; and a refinement of both a V § = {A; N
Bj}ic1,jej- The conditional entropy of « relative to B is defined as
#(A;NB;)

H(a/B) = Xjn(By) L 2(n(Ai/ Bj)) = ¥ #(Bj) L (=155

]

) 0

where (A;/B;) is the conditional measure of A; relative to B;. Then, the following specific
property of entropy (sub-additivity)* holds,

H(aVpB)=H(a)+H(B/a) < H(x) + H(B) (3)

4. If ¢ is an automorfism of (M, u) and &« = {A;}ic;, pa = {@A;}ic; are both partitions, then
p(aVp) = gaV gpand H(w/p) = H(pa/pp).

Therefore, the partition entropy seems an appropriate parameter to measure how much a scale of n
arbitrary tones differs from an n-TET scale. It is also the parameter that provides us with an estimate
of how refined a scale is, because the entropy of a scale of 1 tones will always be greater than that of
a subscale of n—1 tones, and less than or equal to that of an n-TET scale. This will be useful when
dealing with cyclic scales. In addition, as the intervals of a partition are subdivided, the entropy is
additive with regard to the intervals being refined, which saves calculations.

3. Cyclic Scales

Computation of entropy for cyclic scales requires a brief review of their properties, which here-
inafter are summarized by following Cubarsi [16,17].

For any frequency ratio v € Q = (0,00), the values 2fv, k € Z, define one equivalence class. A
ratio of 2 between values corresponds to the frequency range of one octave. The set () is a commutative
group for multiplication. The set of all the octaves of the fundamental frequency ratio (vyp = 1) is
a monogenous subgroup of Q) of infinite cardinal, Q> = {2,k € Z}. The frequency classes are the
elements of the quotient group Qy = /02, also commutative for multiplication. For each equivalence
class, we choose a representative in [1,2), the reference octave, which we identify with (). A finite set
of these representatives will be referred to as scale tones.

An n-tone cyclic scale E is a scale of one generator, a real positive value h, which satisfy the sym-
metry condition, consisting of displaying several degrees of rotational symmetry that are equivalent to
the closure condition [18-20], although such an equivalence does not hold for scales with more than
two generators [21,22]. The partition of the octave induced by the scale notes has exactly two sizes
of scale steps, and each number of generic intervals occurs in two different sizes, which is known
as Myhill’s property [1,2]. For i = 3 we meet the particular case of the 12-tone Pythagorean scale,
generated by fifths, as well as those listed in Table 1, and for h other than a rational power of 2 (which
would lead to degenerate cases of equal temperament scales) we get generalized Pythagorean scales.

The scale tones are v, = ;f—i]]; k =0,...,n—1; with [k] = |klog, | (floor function). When
the scale tones are ordered clockwise direction from lowest to highest pitch in [1,2) (say, in cyclic
order) we find two extreme tones, the minimum tone v, and the maximum tone vy, xﬁll\?ﬂlflh determine

2 2

the two elementary factors U = v, = ;&—Zﬂ (up the fundamental) and D = ;= = 55— (down the

4 In general, for three measurable partitions a, 8,7, H(a V /) = H(a/7v) + H(B/aV v) < H(a/v) + H(B/7).
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fundamental) associated with the generic widths of the step interval, so that UMD™ = 2. The indices
satisfy n = m + M, all of them coprime.

Table 1. Properties of cyclic scales: GRA=Good rational approximation (accurate scale);
RID=Regular interval distributed; BRA=Best rational approximation (optimal scale); MB=Minimal bias;
Il Xn=maximum distance 1/xn to a note of the n-TET scale.

n ‘ ‘ N m M 5
2] 3 1 T 0

3 GRA RID I12n 5 2 1 1

5| GRA RID BRA 1i3n MB 8 2 3 1

7 GRA RID 11 2 5 0

12 | GRA RID BRA Il4n MB 19 7 5 0

17 RID 27 12 5 1

29 | GRA 46 12 17 1

4 GRA RID BRA 65 12 29 1

53 | GRA RID BRA Ilén MB 84 12 41 0

94 149 53 4 1
147 | 233 53 9% 1
200  GRA 317 53 147 1
253 | GRA 401 53 200 1
306 GRA RID BRA Ii2n 485 53 25 1
359 | GRA  RID 569 53 306 0
665 GRA RID BRA II8n MB 1054 359 306 0
971 | 1539 665 306 1
1636 2593 665 71 1
2301 | 3647 665 1636 1
2966 4701 665 2301 1
3631 | 5755 665 2966 1
4296 6809 665 3631 1
4961 | 7863 665 429% 1
5626 8917 665 4961 1
6291 | 9971 665 5626 1
6956 11025 665 6291 1
7621 | 12079 665 6956 1
8286 GRA 13133 665 7621 1
8951 | GRA 14187 665 8286 1
916  GRA 15241 665 8951 1
10281 | GRA 16295 665 9616 1
10946  GRA 17349 665 10281 1
11611 | GRA 18403 665 10946 1
12276 GRA 19457 665 11611 1
12941 | GRA 20511 665 12276 1
13606  GRA 21565 665 12941 1
14271 | GRA 22619 665 13606 1
14936 GRA 23673 665 14271 1
15601 | GRA RID BRA II2n 24727 665 14936 1
16266 RID 25781 665 15601 0
31867 | GRA RID BRA Ii2n 50508 16266 15601 0
47468 RID 75235 31867 15601 1
79335 | GRA  RID BRA Ii2n 125743 31867 47468 1
111202 GRA RID BRA 176251 31867 79335 0
190537 | GRA  RID BRA 1Il8n MB | 301994 111202 79335 1
301739 478245 111202 190537 0
492276 | 780239 301739 190537 0
682813 1082233 492276 190537 0
873350 | 1384227 682813 190537 0
1063887 1686221 873350 190537 0

2;&—:]], which does not belong to the scale E!, provides the closure condition (either
vy — 1T orv, — 27) determining the n-order comma «x,, = mm(vn, o ) (in the frequency space), i.e.,
the error in closing the scale near the fundamental, with no other scale notes between them. The comma
itself does not provide information about whether v, closes above or below the fundamental. By using
the index N = [m] + [M] +1 = [nlog, h + ZJ two parameters prov1de this information. On the one
hand, the scale closure T = ;’;,, which is a value close to 1 satisfying & D = 7Tn- On the other hand,
the scale digit 5 = N — [n], taking values O or 1. Then, 6 =0 <= v, > 1 (v, — 17,9, = &) or
=1 <= 7, <1 (vn =27, =%, 1), The value | log, Tul| = log, x, multiplied by 1200 measures
the distance from v, to 1 in cents (¢).

Alternatively, each tone v in the frequency space is associated with a note or pitch class log, vk
in the octave Sy = R/Z, so that the above quantities have the corresponding one in Sy. Thus,
the elementary intervals u = log, U,d = log, D generate the partition of the octave in n intervals,
Mu + md = 1, satisfying u — d = ¢,, with interval closure ¢, = log, 7, and interval comma |¢,| =
log, x;. Sometimes is more useful to work in the multiplicative space of tones and sometimes in the
additive space of notes.

The tone v, =
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The fractions % are associated with convergent or semi-convergent continued fraction expansions

of log, h [23,24]. Among cyclic scales, two categories may be pointed out. On the one hand, optimal

5 N
n

of log, , i.e., the convergents of its canonical continued fraction expansions from both sides. On
the other hand, what wNe shall name accurate scales, which are associated with the best estimations
of the generator tone 277 ~ 1, corresponding to the good rational approximations % of log, h. Apart
from accurate scales, which include optimal scales, there are cyclic scales not associated with good or
best rational approximations, still corresponding to semiconvergents. For all these scales, the values
U, D and 1, have bounds according to Appendix A. In particular, |log, ;| quantifies the error of the
rational approximation of log, i. These bounds determine the interval between a note of the cyclic
scale E" and the one with the same ordinal in the n-TET scale, which is analyzed in Appendix B.

Finally, the family of cyclic scales follow a chain, EI! C Eﬁﬂ so that starting from the indices
(m, M) of E,’}, the same values for the next scale Eﬁ+ are (iym™=m+ M, MT=M <= 6=0, and (ii)
mt=m, MT=m+ M <= =1 (see Table 1).

scales, associated with the best closure 7, ~ 1, corresponding to the best rational approximations

4. Entropy of a Cyclic Scale

For a cyclic scale EJ!, with the measure defined for tone intervals as y([xp,x1]) = log, % for
0<xg<x1, consider the partition of the octave a=(uM,d™) composed of M intervals of width u and
m intervals of width d, regardless of the order in which the intervals follow each other. The partition

entropy is
HuM,d™) = Mz(u) + mz(d) (4)

We will explicitly write it in terms of the indices of the minimum and maximum tones m and M. In
order to do so, we define the values

x) = {logy 1"}, (x| =1- {log,i*};  x€R

where {log, x} is the mantissa of log, x, that is, log, h* — |log, h* |, so that the elemental intervals u, d
can be expressed in terms of the indices of the minimum and maximum tones as

u=|m, d= (M| ()
In this way, Eq. 4 becomes
H(jm)™, (M[™) = Mz(|m)) + mz({M]) (6)

Let’s see how to express the entropy of the cyclic scale EZJr, the one following E! in the chain
of cyclic scales. The scale refinement process is as follows. The partition (1™, d™) breaks, so that the
major interval splits into two, one of the same size as the minor one plus a remainder. This residual is
only smaller than the size of the smaller interval when the scale is optimal. This process is iterated.

As explained in §3, we must distinguish two cases, depending on whether 7y, is greater or less
than 1, or equivalently, if § equals 0 or 1:

The terms “good” and “best” rational approximation [25] are equivalent to best approximation “of the first kind” and “of
the second kind”, respectively [26]. For the current case, the conditions mean:

One-sided best approximation of log, 1™ satisfies, if 74 <1, ([k] + 1) — klog, h >N — nlog, h>0; 0<k<n.

One-sided best approximation of log, 1~ satisfies, if v, >1, 0<nlog, h — N <klog, h — [k]; 0<k<n.

Best rational approximation satisfies 0<|nlog, h — N|<|klog, h — ([k] +1)| and 0<|nlog, h — N| < |klog, h — [k]|; 0<k<n.

One-sided good approximation of log, 1™ satisfies, if 7, <1, [[k]]k“ —logy h >N —log, h>0; 0<k<n.

One-sided good approximation of log, 1~ satisfies, if v, >1, 0<log, h — % <log, h — L,lz]] ;0<k<n.
Good rational approximation satisfies 0 < |log, i — Y| < |log, It — W\ and 0<|log, h — Y| <|log, h — @ [;0<k<n.
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i 6=0,9>1,U>D,u>d Inthiscase, N =[n], m™=n, M" =M.
The refinement is done in the M intervals of size u and the m intervals of size d are maintained,

W=u—d=¢, < v =|m")=|m)— (M|
d'=d < d'=(M"| = (M|

/M+
u

+
We express® the entropy according to Eq. 3, being the new partition a V g = ( ,d'" ),

+ +
H@™ ,a'™ ) = H(uM,d"™) + Mu H(4,1— 4) =

u

= HuM,d™) + M [z(d) — z(u) + z(xn)]
In terms of the indices of the extreme tones, by noting H, = H(E/), it can be written as
Hye = Hy+ Ay By = M [z((M]) = z(|m)) + 2(xn)] @)

() 6=1,7%<1,U<D,u<d Inthiscase, N=[n]+1, m™=m, M"=n.
The refinement is done in the m intervals of size d and the M intervals of size u are maintained,

d'=d—u=—¢, < d'=(M"| = (M| —|m)
W=u < u =|m") =|m)

M+ mt
’ /
,d

The entropy of the new partitiona V f = (u ) is

Mt mt
u o, d!

H( ) = HuM,d") +mdH(%,1—14) =

= H(uM,d") +m [z2(u) - 2(d) + z(xn)])
In terms of the indices of the extreme tones it is equivalent to
Hye = Hy + D; - B = m [2([m) = 2((M]) + 2(xn)] ®)

5. Partition Modulation

According to Eq. A2, we write the elementary intervals of a cyclic scale as

w=gte, 4= ©)
We have referred to one degenerate case of cyclic scale, the limiting case when the two intervals are
one, u — d. Inthiscaseu =d = % and E}! = E,}, the n-TET scale. This is equivalent to ¢, — 0 in
the expressions of Eq. 9. However, we should consider two more degenerate cases. The larger is one
interval, the smaller is the other, always filling a full octave, Mu 4 md = 1. Therefore, if 4 — 0, then
the cyclic scale becomes an equal temperament scale of M tones and, if u — 0, the scale becomes an
equal temperament scale of m tones. In other words,

(i) According to Appendix A, for ¢, > 0, by Eq. A5, ¢ < 7. If ¢ — 7; then d — 0. In this case,
the intervals of the cyclic scale satisfy 0 < d < ¢, < u. Since u — d = ¢, then, when u — ¢, the
scale in no more non-degenerate and becomes an M-TET scale, with entropy

H, = H(uM,d™) - H(uM) = Hy = log, (M)
—

Obviously, an optimal cyclic scale is far from this situation, because it satisfies 0 < ¢, < d < u.

6 Sinceb[z(%) +z(1— )] =z(a) —z(b) +z(b —a) and u —d = xy, itholds u H(4,1 — 1) = z(d) — z(u) + z(xn).
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(ii) Also, according to Appendix A, for ¢, < 0, owing to Eq. A8, ¢, > —%. If ¢, = — % then, u — 0.
In this case, the intervals of the cyclic scale satisfy 0 < u < |¢,| < d. Thend — |¢,|, so that the
scale becomes a degenerate m-TET scale, with entropy

Hy, = HuM,d") — H(d") = Hy, = log,(m)

u—0

An optimal cyclic scale case is also far from this situation, since it satisfies 0 < |4)n| <u<d.

Lemma 1. The scales formed from the two elementary intervals u' = Lmé gnd d’ =

- = — = with values
- % <g< ﬁ generate an infinite and continuous family of n-tone cyclic scales C!'(&), which are neighbors of

El, such that Cl'(¢,) = EI and C!'(0) = E,}. In addition, z'f—w%m <{g< ﬁ, the scales CI! (&) are optimal.

1-M¢

These results are immediate consequence of the bounds obtained in Appendix A.

5.1. Modulating Temperament Scales

The most usual case of cyclic scale E! is the one associated with a generator corresponding to

a harmonic i € Z* of the fundamental tone. Then, the tonal class of the generator is § = 7 €

[log, 1]
(1,2), which can be written as § = 2@, where y = N — [1]n is the ordinal of the scale tone that
better approximates g [17], known as chromatic length of the pitch class of the generator. The value
u=|nlog,g+ %J also determines the indices m and M of the extreme tones, corresponding to the
ordinals 1 and n—1 of the scale notes. Since, as ym — n [m] = 1, m is the positive integer, 0 < m < n,
so that ym = 1 mod n.

For fixed 1 (and also m and M), the family of cyclic scales C!(&) has generators that, in general,
are not the tonal class of any harmonic, that is, they are real scales. In this case we write them
as ¢ = 2FT+§, so that, for § € (—%, %), we get a partition modulation, which is a continuum of
irregular temperaments [27,28] close to E/ and E,) , also corresponding to cyclic scales. Hence, the
n-tone cyclic scales Cl!(&) is a family of modulating temperament scales around the generator 2%, namely
T = {Ch(&) ¢ € (—ma)}

For example, for n = 12, and ¢’ = v/5, the value ¢ = % log, 5 — L% log, 5 + %J = —0.03422
gives rise to the quarter-comma meantone temperament, which fits well the class of the fifth harmonic,

in exchange for decreasing in 5¢ the accuracy of the third one. Since the value of || is lower than
1
ntm

= % = 0.05263, it results in an optimal scale.

5.2. Entropy in Terms of the Closure

Let us consider an n-tone modulating the temperament scale C!*(&) € 7,/'. According to equations
4 and 9, we write the entropy of C!(&) as

Hy = H(m, M, &) = Mz(1") 4 iz (12ME)

Using the relationship z(§) = %z(a) + az(%), it is immediate to see that
H(m, M, &) =logyn+ Mz(1+ mg) + 2z(1 — M¢)

that is,
H(m, M, &) = log,n — X (1+mg)log,(1+m¢) — “(1 — ME)log,(1 — M¢) (10)

By deriving Eq. 10 respect of {, we get,

%ig = —Mm [log, (14 m¢) — log, (1 — M¢)] an
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Ifo<¢g< ﬁ, the two terms of the previous equation are positive and the derivative is negative,
therefore, in this interval the entropy is a decreasing function. If —L < & < 0, both terms in the above
equation are negative and the derivative is positive, so in this interval the entropy is an increasing
function. At ¢ = 0 there is a local maximum, since log, (1 + m¢) —log, (1 — M¢) = 0 if and only if
PH _ _ Mm ( m

_ L %) < 0. Therefore,

¢ = 0. Thus, H in terms of ¢ is a concave function, since %2 = “nln2(THme

(@) If0 < ¢ < 4, then  H(m,M,0) =logyn > H(m,M,&) >log, M = H(m, M, ;).
(b) f—L <z <0,then H(m M, —L1)=1log,m < H(m, M) <log,n=H(m, M,0).

In addition, it is straightforward to see the following properties,

(c) If m < M, H(m,M,¢) < H(m,M,—¢) for § > 0and H(m, M, ) > H(m, M, —¢) for ¢ < 0.
(d) Ifm > M, H(m, M, &) > H(m, M, —¢) for £ > 0and H(m, M, &) < H(m, M, —¢) for & < 0.
(e) H(m, M, &) >H(M,m,~¢) for—L << L

Properties (c) and (d) refer to the slight asymmetry of the entropy far from ¢ = 0, which, as we shall
see in the last section, is negligible around ¢ = 0. Property (e) means that a cyclic scale generated
by h and its inverse scale, generated counter-clockwise with swapped indices of the extreme tones,
although they have different notes that differ in one comma, have the same entropy.

Therefore, the entropy of any 1-tone modulating temperament scale in the family 7,/ only depends
on the closure.

6. Normalized Entropy
Since the entropy increases as the partition is refined, to be able to compare qualities of different
scales, whether they are cyclic or not, we will consider the normalized entropy, i.e., relatively to the
maximum value it can reach, that of the equally tempered scale. For an n-tone scale Ey, it is defined as”
1(En) = gy H(En); 0<n <1
so that 77 tends to 1 as E,, approaches to an n-TET scale. For a cyclic scale E!!, we will write 17,, = 1(EL).

Let us see in which case the normalized entropy increases when a scale is being refined. Let us
assume two scales, not necessarily cyclic, E,, C E,+ withn < n™ (i.e., E,+ is a refinement of E,).

Lemma 2. The normalized entropy increases if and only if the relative increment of entropy in refining the
partition is greater than the relative increment of entropy of the corresponding equal temperament scales.

Proof. By the sub-additivity property, H(E,+) = H(E,) + A. It will be #(E,) < y(E,+ ) if and only if
H(E.) _ H(E,+) H(E,+) _ H(E;+)+A

log, n log, n™ 7 log, n log, n™ Hence
1 + 1
og, 1 og, 1 < A W
log, n H(E,)
O

The deviation of an n-tone scale E;;, not necessarily cyclic, relatively to the regular n-TET scale
will be measured from the complementary of the normalized entropy, which we will call bias,

0(E,) =1—ny(E,); 0<60<1 (13)

7 This ratio has also been called efficiency and relative entropy [29].

d0i:10.20944/preprints202404.1227.v1
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7. Bias of a Cyclic Scale

For a non-degenerate n-tone cyclic scale C!'(¢) € T, the bias 6(C(¢)) = 6, () depends on the
divergence of its elementary intervals u and d with regard to the elementary interval of the n-TET scale.
Thus, bearing in mind Eq. 10,

0n(C) = 5t [M(1+m&) In(1 + mg) + m(1 = MZ) In(1 — M)] (14)

nlnn

The graph of the function 6, is the mirror image up-to-down of H;, scaled by the factor @,

hence it is convex (Figure 1); the value 6,,(0) = 0 is its minimum in the interval ¢ € (—1, L), and
at the extremes (corresponding to degenerate scales) it takes the values 9,1(—%) =1- 11‘;1—’7’: and
Bn(ﬁ) =1- lﬂ\—i\f Therefore, in the interval (—%, 0), 6,(¢) is a decreasing function and in (0, ﬁ) itis
an increasing function of .

n 0
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Figure 1. Graphs of normalized entropy and bias.

Remark that this behavior of 8, in terms of ¢ holds when 7 is fixed. In other words, 8, = 6(&; m, M )
Then, although for another n’-tone cyclic scale, n’ # n, the bias 6, has a similar behavior with respect
to ¢, we cannot assure that if ¢ < ¢’ then 0(&; m, M) < 6(¢';m’, M'), since this also depends on the
values of m’ and M/, such that m’ + M’ = n’.

Figure 2 shows the trends of the bias 6, and the interval comma |¢,| for Pythagorean scales
(generated by h = 3) in terms of n. In general, optimal scales have low bias, but not always a scale is
refined the bias decreases. For example, the first optimal scales are those of n = 5;12;41;53;306; 665 . . .
and the bias decreases for n = 5;12;53; 665 but the scale of n = 41 has greater bias than that of n = 5;12;
and the one of n = 306 has greater bias than those of n = 12;53. Also notice that there are intervals
where |¢,| decreases but 6, increases.
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Figure 2. Behavior of |¢,|=1log, x, (red) and 6,=1—1, (blue) in terms of the number of tones n
(bilogarithmic scales). In gray, maximum bias for several similarity levels to n-TET scales.

We will say that a cyclic scale E!* is of minimal bias (MB) if for any cyclic scale EZ, with n’ < n, then
0, < 8,y. Obviously, this is tantamount to say that 77, > #,/, hence, the scale has greater normalized
entropy than the previous ones. Not all optimal cyclic scales are MB.
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Before a deeper analysis, in an approximate way we may estimate how close an MB scale and
an equal temperament scale of the same number of tones are. We may use the criterion for which a
cyclic scale (not necessarily optimal) unambiguously approximates an n-TET scale if every note of the
former is at a distance equal or less than half an elementary interval from the latter. According to Eq.
A12 with A = 2, this leads to the condition ¢(x,,) < 11600 (say condition I12n).

This condition can be satisfied by optimal and non-optimal cyclic scales. For example, for n = 3
condition I12n is hold although the scale is not optimal. On the contrary, n = 41;306;111202 are
optimal scales but the condition I|2n is not met.

Let’s see what happens with the MB condition. In this case, up ton = 2- 10°, all scales that
satisfy MB also satisfy I12n, but there are scales that are I12n and not MB scales, for example for
n = 3;306;15601;31867;79 335. Hence, the condition that a note of the cyclic scale is closer than half
an interval of a note of a tempered scale is weaker than the MB condition. On the contrary, if we
further restrict the above condition, let’s say, that the respective notes are at most at a third interval,
ie., ¢(xy) < 3001 (say condition I13n), then, up to 7 = 2 - 10° all I 1 3n scales are MB scales. In Table 1
these and other properties are displayed.

8. Scales with Limited Bias

8.1. Scale Distributed within Regular Intervals

We study several families of scales for which it is possible to estimate a priori the lower limit of
the entropy.

We say that two n-tone scales E, and E], sharing the fundamental tone alternate if their notes in
cyclic order, s; = log, 0; € Ey, s;- = log, (T]-’ € E;,, 0 < j < n, fulfill one of the following conditions:

(@ sj1< s;- <sj; 0<j<n (E,alternateby the right of E;, ) 15
(b) 5;71 <sj < s;.; 0<j<mn (E,alternate by the left of E}, ) (15)

If EJ, is the equal temperament scale E,] , then we write o/ = ¢/ and say that E,, is reqular interval
distributed (RID). In this case, the alternance can also be defined from the following relations involving

intervals between tones?®,

1 1 .
(@ 0<I8)<— () 0<I@Fo)<_; 0<j<n (16)

Note that these conditions are generally more restrictive than the condition

1 1 1

! — PR — —
d(oj, ) < L = <I( ],19]) <~ (17)
Obviously, Eq. 16 implies the condition of Eq. 17, although, as seen in Appendix B, for cyclic scales
they are equivalent.

For example, suppose case (a). If 0 < I(cj, 19’-) < 1, then the interval between two consecutive
— (0}, 19’-) + I(é‘;H,UjH) < 2,50 that
) < 2.

notes of E, satisfies I(0j, 0741) = 1(0j, 81, 1) + I( ]+1"7j+1) =1
d(0j,0j41) < 3. Instead, if d(o; 19’) 1 , then d(0j, 0741) < d(0j, ]) + d(z9]’, 19]’“) + d((fjﬂ,ﬁ;ﬂ
In a similar way would be reasoned case (b).

Lemma 3. The interval between two consecutive notes of an n-tone RID-scale is lower than 2.

8 The interval between two tones v; < v, in (0,00) is I(v,v1) = log, v2 —log, v;.
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8.2. Scale r-Similar to n-TET

A criterion for measuring the proximity between scales is similarity [30]. Two n-tone scales T
and T’ are similar at level r > 0 (r-similar) if for each tone 7; € T, EIT].’ € S, such that d(T;, Tj’ ) <rand
d(t, 1) >r,Vk #j.

For example, a cyclic scale E} and the n-TET scale have level of similarity 5- if and only if any
pair of notes with ordinal j, i.e., §; € El, 19; € E,}, satisfy d(v;, 19]’) n. This condition is equivalent to
the condition of Eq. A12 with A =2, ¢(k,) < 8% .

However, for the current purpose of evaluating and comparing entropy partitions, we will slightly
modify such a concept by assuming that the fundamental is shared by both scales. Then, we say a

scale Ey, is similar to the n-TET scale at level r, with 0 < r < 4, if their tones satisfy
d(oj,0)) <r; 0<j<n (18)

8.3. Scale One-Side r-Similar to n-TET

We introduce a concept that will mix the one of similarity with the one of distribution within
regular intervals, which will be appropriate to study the bounds of the entropy for cyclic scales.
Let 19]’- be the tones of the n-TET scale. We say that a scale E,, is one-side r-similar at level r (r-OSS)

to the n-TET scale, with 0 < r < %, if
@ 0<I(o;0) <r (b)) 0<I(0,05) <7; 0<j<n (19)

It is OSS by the right (a) or by the left (b), respectively. Therefore, when r = % it matches the definition
of a RID-scale.

9. Entropy of a Scale ﬁ-OSS to n-TET

Consider an n-tone scale E,, not necessarily cyclic, which is %-OSS to n-TET for A > 1. We
already know that the maximum entropy is log, n. Let’s see the minimum entropy it can reach. We
assume case (a) of Eq. 19 and consider the n notes (n > 2) of E, in cyclic order in [0,1) U {1}, since
the entropy does not change if we add a null set. We also extend the range of possible variation
of the intervals between notes at the extremes to include the limiting, degenerate cases. The points
determining the division of the octave are

1<i<n-1, s,=1

1 1
sp =0; Si:;‘f'ti/ OStiSE,

By writing T = %, the respective intervals are, by assuming ¢ty = t, =0,
Ti=si—sia=T+ti—ti1,1<i<n

Then, scale E, generates the partition « = {T;},i € {1,...,n}, with entropy

n

ZZ(T =Y (T+t;—ti1)log,(T +t; — t;_q)
i=1

The entropy H(a) is a concave and differentiable function f(t1,...,t,-1), f:V — R, with V =
o, ﬁ]”’l, a hypercube, which is a convex and compact space. Then, f has a local and global maximum
at (t1,...,t,—1) = (0,...,0), corresponding to an n-TET scale with T; = T and H = log, 1, and the
global minimum is reached at one or some of the vertices of V. These vertices are determined by the

possible values t; € {0, & T } 1 <j<n-1,and the resulting intervals T; can only take the following

values: interval T1, Values - and A)jzl, interval T;,, Values 1and A /\n ; and the intermediate intervals,

A=1 1 )\Jrl

values =, ., and .
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The octave is covered by a number of different intervals satisfying
A+B+C=n (20)

of which A in number have width 4— )‘ 1 Bwidth 1 .- and C width )‘H , so that’ A —|— B4 i tC ’\H =1
Therefore,
AA—-1)+BA+C(A+1)=An (21)

The entropy at one of these vertices can be written in terms of the respective number of intervals as

f=Az(A5h + Bz({;) + Cz(A5h) =
(22)
=logyn+ % g(A,C); g(A,C) = Az(A) +Cz(4)

where z is the concave function defined in Eq. 1, also extended for values t > 1, where z(t) < 0.
Among possible configurations, we look for the minimum value that f can take, which will correspond
to the minimum value of g. Notice that this quantity is added to the entropy of an n-TET scale, being it
consistent with the fact that the B intervals of width 1 are not involved in the expression. However,
the intervals in number C, of greater width than %, contribute to decreasing the entropy, while those
in number A, of width lower than %, contribute to increasing it, since the corresponding function z
evaluated in values less than 1 is positive.

In the current case, by combining equations 20 and 21, we get A = C and B + 2C = n. Therefore,

g(C) =CZ(A,1); Z(Aa) =z(25%) +z(A4), A>a (23)

If n is even, the maximum value for C, by assuming B = 0, is C = 5. Hence, the number of
intervals of null-size is also A = %. Then!’, g(4) = %#Z(A, 1), corresponding to a degenerate scale of %
non-null intervals. Therefore, if n = 2 the entropy satisfies log,n+3Z(A,1) < H(a).

If n is odd, the maximum value for C and A is “5%, with B = 1. Then, ¢ = %1 —Z(A,1), corre-
sponding to a degenerate scale of ”TH non-null 1ntervals. Therefore, if n # 2 the entropy satisfies
logyn+3Z(A,1)(1— 1) < H(w).

Case (b) is similar. It would be reasoned by considering that f(t1,...,t,—1)=f(—ty—-1,..., —t1),
i.e., it is equivalent to case (a), but following the intervals from right to left starting at 1. Therefore,

Theorem 1. The entropy and bias of a scale ——OSS to n-TET satisfy

n=2, log,n+3Z(A,1) < H(a) < log,n; 0<6(a) < Z(A,1)

— 210g n

n#3, logyn+3Z(41)(1-1) < H@) <logym 0<0(w) <~z 1) @

We explicitly write two cases. For A = 1, since Z(1,1) = —2, the entropy of a RID-scale satisfies,
ifn =2,log, 4 < H(a) <log,nand,ifn #2,log, 2+ 1 < H(a) < log,n

For A = 2, since Z(2,1) = —0.189, the entropy of a scale %—OSS to n-TET satisfies, if n = 2,
log,n —0.189 < H(a) < log,nand, if n # 2,logyn —0.189(1 — 1) < H(a) < log, n

Levels for A = 1,2,4,8,16 are displayed in Fig. 2.

®  Some of these intervals may have width zero, giving rise to a degenerate scale with less than 7 non-null intervals.

10 The function Z(A,a) = z(27%) +z(24%) witha > 0is defined for A > a, where satisfies Z(A, ) < 0, always increasing from
Z(a,a) = =2 until Z(A,a) — 0 when A — oo.
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10. Entropy of a Scale ﬁ-Similar to n-TET

Let us calculate the minimum entropy that can reach an n-tone scale E;;, not necessarily cyclic,
having a similarity level % with the n-TET scale for A > 2. According to the previous notation and
considerations, the points that determine the division of the octave are

S0=0; si=—4b, —SH<o, 1<i<n-1; s =1
The respective intervals are, T; = 5; —s;_1 = % +t—ti1, 1 <i < n byassuming ty = t, = 0.
As before, we write the entropy of the partition « = {T;}, i € {1,...,n},as H(a) = ¥}'; 2(T}) =
f(ty,...,ty—1), where f:V — R, with V = [—%, %]”_1, a convex and compact space. The local and
global maximum of f takes place at (t1,...,t,-1) = (0,...,0), corresponding to the scale of n-TET,
with T; = T and H = log, n. The global minimum is reached at one or some of the vertices of V.
These vertices are determined by the possible values t; € {— /\ o M} 1<j<n-1,and the resulting
intervals T; can only take the following values: the extreme intervals Ty and T} values 2 TS 1 and A);;l,
while the intermediate intervals can have values )‘/\ 2 ,11, and )‘H . The octave is covered by a number
of different intervals satisfying

A+B+C+D+E=n (25)

of which A in number have width A)fn , B width /\M ,C w1dth , D width )‘H and E width )‘fnz,

that AA-2 + BAZL + C & + DAL + EAT2 — 1 Therefore,
AA=2)+BA=1)+CA+DA+1)+EA+2)=An (26)
The entropy at one of these vertices can be written in terms of the respective number of intervals as

f=Az(3:2) + Bz(Az2) + Cz(4) + Dz(AE) + Ez(342) =
(27)
=log,n+ 1 ¢(A,B,D,E), g(ABD,E)=Az(22)+Bz(3) + Dz(A) + Ez(42)

Once again, the intervals of width % are not involved in this expression. The intervals in number D
and E, of greater width than %, contribute to decreasing the entropy, while those who are there in
number A and B, of width lower than %, contribute to increasing it.

The minimum value of g is obtained by the highest possible values of E and D (in that order) and
minimum of A and B.

In the current case, by combining equations 25 and 26, we get A = E + %D - %B and

B +2C + 3D +4E = 2n (28)

If n is even, at most there can be E = 7 intermediate intervals of width % By substitution of
this value into Eq. 28, we get B 4+ 2C 43D = 0, so that B=C=D=0and A = g Hence, the minimum
gis g(5,0,0,%) = 5Z(A,2), corresponding to a degenerate scale of 5 non-null intervals. Therefore, if
n = 2 the entropy satisfies log, n + $Z(A,2) < H(a).

If n is odd, we should examine two alternatives. On the one hand, if we assume there are E = ”T_l
intermediate intervals of width )‘;12, by substitution into Eq. 28 we get B +2C + 3D — 2 = 0. Possible
interval values are (B,C,D) = (0,1 0) (2 0,0). In this case, the minimum value of g is provided by the
first triad, i.e, B=D=0, C = 1, A = "1, which yields g(“52,0,0, 1) = 51 Z(A,2), corresponding
to a degenerate scale of % non-null intervals. In this case,

log,n+3Z(A,2)(1— 1) < H(w) (29)

On the other hand, as second alternative, if there are E = ”T*?’ intermediate intervals of width %, itis
hold B+2C +3D — 6 = 0. Possible interval values are (B,C, D) = (0,0,2); (1,1,1); (3,0,1); (0,3,0); (4,1,0).
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The minimum of g is provided by the first triad, so that B=C=0,D =2, A = ”2;1, and g(”T_l, 0,2, ”7_3) =
”Tflz(%) + Zz(%) + "%32(%) corresponding to a degenerate scale of 5! non-null intervals.
Hence,

A1) 432(442)
(A2)

A2y
log, n+ 17(},2) |1 — 12 < H(a) (30)
The factor multiplying % is a positive value between 3(2 — log, 3) = 1.245 and % for A > 2. Since the
value Z(A,2) is negative, the above factor increases it. Hence, the entropy of Eq. 29 is lower than the
entropy of Eq. 30. Therefore,

Theorem 2. The entropy and bias of a scale )\1—”—similar to n-TET satisfy

n=2, log,n+3Z(A,2) < H(x) <log,n; 0<0(a) < —@Z(A,Z)
@31)

n#2, logyn+3Z(A,2)(1—1) <H(a) <log,n; 0<6(x)< Z(A2)(1-1)

__1
2log, n
We explicitly evaluate the case for A = 2. Since Z(2,2) = —2, if n = 2, then log, 5 < H(a) <

log, n and, if n # 2, then log, 2+ % < H(a) < log, n, which are the same bounds as for a RID-scale.

11. Cyclic RID-Scales

We may reformulate Theorem Al according to the above definitions.
Theorem 3. Optimal cyclic scales are RID-scales.

Nevertheless, there are many non-optimal cyclic scales that are also RID-scales. Cyclic RID-scales
correspond to partial convergents of continued fractions where the comma is not as low as for optimal
scales, i.e., their closure is not a best approximation, although they belong to a family of relatively good
partial convergents. However, although in most cases a convergent that gives a good approximation (i.e.,
an accurate scale) generates a RID-scale, there are exceptions, such as for n = 200'!. Therefore, there
exist accurate scales that are not RID, and RID-scales that are not accurate.

11.1. Comma and Elementary Intervals of a RID-Scale

It is immediate to identify a RID-scale from its interval comma |¢;,| = |log, v:| = |nlog, h — N|.
As seen in Appendix B, the distance between the tones 19]’» € E, and 0 =y € Elfor0 <j < nis

Kl ¢n]. So, %1\¢n| < Lforall0 <k < nifand only if “1|¢,| < 1, that s, the interval comma is limited
as [¢pn| < 77

Lemma 4. A cyclic scale is RID if and only if |¢n| < +15.

This condition, which is satisfied by all optimal scales, assures us that the value of |¢,| is small
enough to be far from the previously seen degenerate cases of less than n notes, since for every
RID-scale it is fulfilled |¢y| < 715 < min(%, ).

From another point of view, while considering RID-scales we are excluding “bad approximations”
of log, h that satisfy, if ¢, > 0, nlfl <nlog,h— N < % and, if ¢, <O, f% < N —nlog,h < fnlfl.
This fact also has implications on the bounds of the two elementary intervals of cyclic RID-scales, We
distinguish the following cases.

11 Between the notes j = 83 of the respective scales E3, and E,, there is a distance of nearly 1.5 elementary intervals of the

equal temperament scale and between two consecutive notes of the cyclic scale there may be a distance equivalent to 2.1
regular intervals, what means that within some regular intervals there are two notes of the cyclic scale.
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(i) If0 < ¢ < 711, according to Eq. 9, u < 1(1+ ) < 1(1+ 2=1) = 2 Hence'?,
L <u<min(4, 2) (32)
(ii) If —15 < ¢y < 0, according to Eq. 9,d < 1 (1+ M) < 1(1+ 2=1) = 2 Hence'”,
1 <d <min(l,2) (33)

In both cases, the size of the greatest elementary interval of a cyclic RID-scale is lower than %, as stated
in Lemma 3.

11.2. Bias of RID-Scales

For large values of |¢y|, that s, |¢,| > L or |¢,| > 2, Eq. 14 can have a quite arbitrary and non—
symmetrical behavior, but for values |¢,| < ;=7, and in particular for optimal scales with |¢,,| < + T
or |pu] < 4 +m, depending on the value ¢, the bias 6, behaves as proportional to ¢2.

Being |m¢,| < 1and |[M¢,| < 1, we can approximate the logarithms in the following expressions
as

(1+ mpn) In(1 + mey) = mepy + 3mps — §m>P; + O (my)

(1= M) In(1 — M@y) = —Mey + 3 M2¢7 + M35 + Oy(Mpy)

and by substitution into Eq. 14 we get

_ 1 [MmP4mM? 2 M M3 M4+M4 _
O = iy M5 g2 Mo g5 Mot O, ()| =

_ 2 2
= 21nn {(Pn 3M¢§l + = mé\/erM O4(¢71)}

Notice that m|¢,|> = L |meu|* = O3(|¢u|) < Os(|men|) with [mp,| < 1and M|¢,[* = M2|M¢n|3
Os(|¢n]) < O3(|M¢y|) with |M¢,| < 1. The same happens with the higher order terms. Therefore, for
enough small |¢,,| we can use the approximation derived from the following result,

Lemma 5. The bias of a cyclic RID-scale satisfies

gn m ¢n+o3(|4)n|) (34)

11.3. Cyclic Scales of Minimal Bias

As explained in §4, while refining a cyclic scale, in each iteration one of the indices of the extreme
tones remains fixed, while the other increases by a value equal to the one that remains fixed. Let’s see
that in each refinement, the following function appearing in Eq. 34 always increases,

mM

In(m + M) (35)

p(m, M) =

Lemma 6. Forn =m+ M > 2, ¢(m*, M) > p(m, M) withm™ = m+ M, and p(m, M*) > p(m, M)
with M = m + M.

12 We must drstrngursh two cases: (a) M > m, therefore << M < = and < f, since Mu +md =1, we have 2 <u< 47 and

0<d < , which does not add any new limitation. (b) M<m, therefore S<u< and —(1— W) <d < }1 Therefore
the extremes still correspond to n-tone scales by avoiding degenerate cases.

We must distinguish two cases: (a) M > m, therefore % < % < % and % < %; hence, <d< % and s(1=F) <u< %
Once again, the extremes correspond to n-tone scales, not degenerating toward scales of fewer tones. (b) M < m, therefore
% < % and % < % < %; hence, % <d< % and 0 < u < %, which does not add any new limitation.
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Proof. Indeed, it suffices to check that the function y(m, M) = ln(ZTM) satisfies 3711/)1 >0, % > 0.
9 mM _ MIn(m+M)— M M2 In(m+M)+mM(In(m+M)—1)
M) — W) (ot ) >0 <= m+M>2
o _mM__ _ min(m+M)—5 o In(m+M)+mM(In(m+M)-1)
M n(m+M) lnz(m+M)+ = 2t M) >0 <= m+M>2

Note that, for m + M > 2, the above inequalities hold and, if m + M = 2, then M = m = 1, so that the
above results are also valid. [

Corollary 1. Let us write , = p(m, M). If n > n’ then ¥, > ¢,.

With this notation, the bias of a cyclic RID-scale can be estimated from

1
On = 5¥ndn (36)
Theorem 4. Every cyclic RID-scale of minimal bias is optimal.

Proof. We prove it by denying the consequent. Assume two cyclic RID-scales E! i EZ/ such that n > n’
with interval commas satisfying |¢,| > |¢,|, i.e., E is not optimal. Then, applying the previous
corollary to Eq. 36, we have

Y > Y = Ou > O
Therefore, if a cyclic RID-scale is not optimal, it cannot be MB. O

The first cyclic MB-scales for i = 3, i.e., Pythagorean scales, are for n = 5;12;53;665 . .. as shown
in Fig. 2, as well as in Table 1.

12. Conclusions

In the current paper it is proposed to measure the regularity of the intervals of a music scale from
its partition entropy. Among other properties, the fact of being a continuous increasing function of n
for an n-TET scale, which is always the maximum value that the entropy of any n-tone scale can reach,
together with the sub-additivity property, which guarantees that as refining the partition, the entropy
always increases, make this parameter very suitable for our purpose. In order to compare scales with
different number of tones, the entropy relative to the corresponding regular scale is used, which is the
normalized entropy, so that their complementary to 1 quantifies the bias relative to the n-TET scale.

The main application of these concepts is to cyclic scales, whose properties are reviewed and
further investigated in the Appendices. Two situations have been analyzed. First, cyclic scales with
a fixed number of tones, which is a family of modulating temperament scales around one generator.
In this case, the bias only depends on the closure, i.e., the relative size of both elementary intervals.
Second, as cyclic scales are refined, the bias also depends on how many intervals of each size there are.

In order to study such a dependency, it has been necessary to restrict the scales in two ways. On
the one hand, to those having a lower limit of the entropy determined by the condition that their
notes are distributed along each of the intervals of a regular scale (RID-scales). Such a study has been
made in a general way, by determining the maximum bias of several scales, not necessarily cyclic,
having different levels of similarity with a n-TET scale, either from one side or from both sides. Figure
2 displays the similarity levels for cyclic scales. On the other hand, to scales with the comma not
exceeding that of a RID-scale, since in this case the dependency bias-closure is well defined.

We prove that any cyclic scale of minimal bias (MB-scale), i.e., whose bias is lower than that of the
cyclic scales of fewer tones, is necessarily optimal, i.e., corresponds to a best rational aproximation
of log, h. Therefore, in relation to the closure, scales can be ordered in nested families, from worst to
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best, as cyclic, accurate, and optimal scales, whilst in relation to their regularity, they can be ordered in
nested families as cyclic, RID, optimal, and MB-scales.
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Abbreviations

The following abbreviations are used in this manuscript:

BRA Best rational approximation (optimal scale)
GRA  Good rational approximation (accurate scale)
I Xn maximum distance 1/xn to n-TET

MB Minimal bias

n-TET  n-tones of equal temperament

0ss One-side similar

RID Regular interval distributed

Appendix A. Bounds for the Elementary Intervals and Closure of Cyclic Scales
The notes of a cyclic scale E!! divide the circle of the octave into 1 intervals of width log, U or
log, D, beginning and ending in the pitch class of the fundamental, so that
Mlog, U +mlog, D =1 (A1)

According to the definitions of U, D, and <y, these intervals can be referred to the elementary interval
of the equal temperament scale as

log, U = 1 + % 1og, 1u; logy D = 1 — 2llog, 1 (A2)
We may determine their bounds by distinguishing between the cases 7, greater or less than 1.

(i) If v, > 1, then U > D. Depending on the scale, we have:

(a) The closure of an optimal cyclic scale satisfies 1 < v, < % < Uy, hencel < v, < D < U. By
taking logarithms and taking into account Eq. A2 we get

0<logy,yn <logy,D=1—-Mlgg v, = 0<log,yn < (A3)

1
n+M
The elementary intervals satisfy

_2

1 1. 1
TZ+7M<lOg2D<ﬁ’ ﬁ<10g2u<n+M

(b) The closure of a non-optimal cyclic scale satisfies 1 < % < Yn < Vm,hencel < D < 7, < U.
Then, by taking logarithms,
log, D = % — % log, vn <log,vn = ﬁ < log, Tn (Ad)
log, vn <log, U = % + % log,yn = log,n < ﬁ

Therefore,
0<log, D < ﬁ; HLM <log, U < ﬁ
(c) For an accurate cyclic scale, to the above condition 0 < log, D < log, v, < log, U we must
add that of a good rational approximation, that can be written as

0 < Llog,7n < f;log, D < Llog, U
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Then, % log, vn < %#, hence log, v, < ﬁ, and, since Eq. A4 is still valid, we get
the following bounds,

1, 2 1 1
an<log2'yn<m, <log2D<n+M, i <logo U < 5.+ 53
Thus, in case (i), either for optimal or non-optimal scales, it is satisfied,
m>1= 0<log,7n <4y 0<log,D<l, Ll<log U< (A5)

(ii) If v, < 1, then D > U. Depending on the scale, we have:

(a) The closure of an optimal cyclic scale satisfies "} < i < ¥ < 1, hence % < % < qp <L
Then, by taking logarithms,

—log,U=—1—"]og 7, <logy,1n <0 = n+m <log,1n <0 (A6)
The elementary intervals satisfy
n+m <log,U<i; 1 <log2D< wrm

(b) The closure of a non-optimal cyclic scale sat1sf1es M<n < - - <1, hence + 5 <7< u <1
Then, by taking logarithms,

—log,D = -1 +Mlog2'yn <log,vyn = —% <log, 1n <

1

(A7)
log, y7n < —log, U= —35 — % log2 Yn = log,vn < — atm

Then, the elementary intervals satisfy

0 <log, U <

<log2D< -

n+m ’ l’ler
¢) For an accurate cyclic scale, to the above condition —log, D < log, 74, < —log, U < 0 we
Y &2 t9) 5]
must add that of a good rational approximation, that can be written as

—%logzD < —%logzu < %logz'yn <0

Then, + - logs yn > Hmnt#%, hence — ﬁ < log, vn, and, since Eq. A7 is still valid, we get
the followmg bounds,

1 1 . 1
“om < logZ Tn < T ntm’ n+m < logZD < 2n + Zm’ 7 < logZU < n+m

Thus, in case (ii), either for optimal or non-optimal scales, it is satisfied,

Tm<1l= —%<log27n<0; 0<log2U<%; %<log2D<% (A8)
Table A1 summarizes the above results over the octave Sp. Notice that, for optimal scales, equations
A3 and A6 give the following bounds, similarly to the theory of continued fractions,

1
nn+M)’

1

(i) (ii) m

N
logzh—n‘ <

logzh—‘

Appendix B. Deviation of a Cyclic Scale from »n-TET

We calculate the interval between the notes with ordinal j of the respective scales E!! and E,},

corresponding to the tones ¢; € El' and 19]’- =21 € E,). According to equations A2 and Al, the
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cyclic scale | ¢n >0 ‘ $n <0
0<¢n < iim “im < ¢n <0
optimal Lcu< 2y nim <u<y
n-:M<d<rlz %<d<n£m
A <on< — < Pn < =g
non-optimal i <u< ﬁ O<u< njm
0<d< ity e <4< g
A <<z |~z << —itm
accurate P2 << At sk e <u<
t<d< 1y Gl <d < A+
0<gn<py —m <P <0
in general Lou<d l<u<i
0<d<l G<d<g

Table Al. Bounds for ¢, = log, vn, u = log, U and d = log, D, depending on the type of cyclic scale.

deviations of each note of E,ﬁl with regard to E,I compensate each other and, in the end, they close
exactly the octave. If the tone ¢; corresponds to the iteration v, then j = Nk —n[k] [17, Eq. 28].

Therefore, [k] = Nl;_j . Bearing in mind that log, 7,=nlog, h — N, the scale note log, ¢;=1log, vy is

) .
log, 8 = klogy h — [k] = - log, yu+ % (A9)

Lemma A1l. The interval that separates the two notes is

k .
1(9;, 19]’) = log, ¢; — log, ; = log, vw; j=0,...,n—1 (A10)

Therefore, all of these intervals have the same sign, which is positive if 7, > 1 and negative if
Tn < 1. By taking absolute value, the interval between these close notes becomes a distance,

k k A
/ . !
d(d), %) _—;|10g27n|—ﬁ7€ﬂr j=0,...,n—1 (AL1)

As expected, these distances increase with the iterations, so that the maximum is reached by last
iterate, k = n — 1, i.e., dmax = max; d(l9j, 19]’) = an kn. Then, a condition such as dmax < ﬁ, for A >0,

becomes x, < , which, in cents is

1
A(n—1)

¢(kn) < 752 (A12)

For an optimal cyclic scale, according to equations A3 and A6, — w%m <log, 1 < ﬁ, so that
|log, 7| < L and k|log, vu| < 1in Eq. A11. Therefore, we conclude d(v;, 19]’) <L
Theorem A1l. The notes 9;, i # 0, of an optimal cyclic scale EI' and the ones of the corresponding n-TET scale
E,l alternate, i.e., for 0 < i < n either (i) 8/ < ¢; < 07, or (i) 0], < 0; < 0.

Such a situation is also possible for non-optimal scales, although there are exceptions where the
tones do not alternate. For instance, in a non-optimal scale with 7, < 1, Eq. A7 implies m|log, vx| < 1.
But, in a cyclic scale where M>m, the condition k|log, .| < 1, Vk, stated in case (ii) is not fulfilled. An
example of such a situation is the 29-tone scale, with m = 12 and M = 17, where |log, .| "' = 27.7.
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The 28-th tone vp3 = 1 (454.74 cents) is below 19{2 (496.55 cents) more than a factor 2% (41.38 cents),
and between 1, and ¢13 = vy1 there are two consecutive tones 9], and 9}, of the 29-TET scale.
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