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Abstract: The necessity for precise and current data concerning the dynamics of land cover change 

in Indonesia is crucial for efforts to reduce natural vegetation cover due to agricultural expansion. 

The functionality of monitoring systems that incorporate Terra‐MODIS is currently compromised 

by the limited availability of data for the immediate future. This study seeks to assess the potential 

of VIIRS satellite imagery in developing an early warning system for monitoring vegetation cover 

change in Indonesia. The Normalized Differential Open Area Index (NDOAI) computed from the 

8‐day’ VIIRS data was  employed  to detect  changes  in vegetation  cover based on pixel‐by‐pixel 

subtraction in the NDOAI data time series. Evaluating the pixel‐level accuracy of change detection 

is  complicated due  to  the  fact  that we  evaluate  a  change map  at  a  coarser  resolution  than  the 

Landsat‐based  reference map.  The  results  revealed  that  increasing  the  threshold  percentage  is 

associated with improved accuracy. In change detection, there is often a trade‐off between accuracy 

and sensitivity. A threshold that is too low may result in false positives, while a threshold that is too 

high may lead to missed changes. This study demonstrates that when a threshold value of less than 

20% is applied, Landsat can identify vegetation cover changes at an earlier stage. Conversely, when 

a threshold value greater than 20% is employed, VIIRS will detect the change 4.5 days earlier than 

Landsat. Additionally, VIIRS  is capable of detecting changes 25.4 days and 54.8 days  faster than 

Landsat, respectively, when using thresholds of 40% and 75%. 

Keywords: change detection; temporal vegetation dynamics; open area index; multi temporal VIIRS 

 

1. Introduction 

Tropical forests worldwide have experienced recurrent disturbances over the past few decades, 

which have adversely  impacted biodiversity, hydrology,  livelihoods, and  the global  carbon  cycle 

[1,2]. These disturbances  are primarily  caused by unsustainable  forest  exploitation,  expansion of 

agricultural  lands,  illegal  logging,  and  forest  fires, which  alter  the  structure,  composition,  and 

function of forest ecosystems [3]. Some international initiatives have been launched to restore and 
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conserve  forest  ecosystems,  including  the  Reducing  Emissions  from  Deforestation  and 

Degradation/REDD+ program [4], the Global Restoration Initiative [5], and the Bonn Challenge [6]. 

According  to  the  results  of  COP  16  (paragraph  71  of  decision  1/CP.16),  National  Forest 

Monitoring  System  (NFMS)  is  a  crucial  component  of  REDD+  implementation  as  it  provides 

information on the status and trends of forest resources, land use, and greenhouse gas emissions and 

removals related to forests. This information enables the measurement, reporting, and verification 

(MRV) of REDD+ activities and their results, which is essential for accessing results‐based payments 

and ensuring environmental integrity [7]. A comprehensive and dependable system for monitoring 

forests is esential to offer precise, prompt, and trustworthy information about changes in forest cover 

to decision‐makers. This data can be utilized to prioritize regions for examination and enforcement, 

and to execute policies and measures to prevent, minimize, or restore forest disturbances [8–10]. 

The  importance of NFMS emphasizes  the need  to develop an early warning system  that can 

effectively  address  various  forest  disturbances,  including  complete  deforestation,  partial 

degradation,  and  the  broader  loss  of  vegetation  cover,  which  are  collectively  referred  to  as 

devegetation  [11].  It  is  crucial  to acknowledge  that devegetation monitoring  is part of  a broader 

initiative to preserve and maintain natural resources in a sustainable manner, as well as to mitigate 

the impacts of environmental degradation [12]. 

Advances in remote sensing technology enable land scientists to monitor rapid on‐going land 

cover change with high temporal resolution satellite data [13]. The monitoring of land cover and its 

seasonal  changes  continuously  in  space  and  time  allows  a  characterization  of  the  vegetation 

dynamics, and consequently it should be possible to consider the rapid vegetation cover change [14]. 

In previous  studies,  the  characterization of vegetation dynamics has often been performed using 

vegetation index values, and the temporal dynamics of these values have been used to detect changes 

in forest cover and its distribution [15–19]. 

The application of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data with 

high  temporal  resolution  has  been utilized  effectively  for  real‐time  forest monitoring  in  various 

regions, such as the Brazilian Amazon through the DETER system [20], the State of Mato Grosso’s 

Sistema de Alerta de Desmatamento (SAD) [21], and the FORest Monitoring for Action (FORMA) 

initiative which provides twice‐monthly deforestation alerting system for the humid tropical regions 

across Asia, Africa, and Latin America [22]. The research carried out by [23] revealed that MODIS 

data possesses the capacity to deliver consistent information about monthly land cover changes in 

Indonesia, by examining the patterns of vegetation index. 

The development of an early warning system for vegetation cover changes, which utilized Terra‐

MODIS with a resolution of 500x500 meters, has resulted  in  the ability  to provide  information on 

vegetation  changes  every  8  days  [24].  However,  the  use  of  this  change  detection  method  in 

Indonesia’s territory is limited by the spatial resolution of the data, particularly in areas such as Java 

island, where transient land cover changes may result in a feature size that is less than the minimum 

detectable  extent or  complex  land  cover patterns  that  affect  the  threshold value  [25]. Despite  its 

limitations in detecting vegetation changes within an area of ±25 ha, the system remains a valuable 

tool for monitoring vegetation changes in Indonesia due to its ability to provide timely information. 

The utilization of MODIS data in the future is likely to be limited to sensors that are more than 

24 years old, which  is  four  times  their original  six‐year design  life. The Visible  Infrared  Imaging 

Radiometer  Suite  (VIIRS)  sensor, which was  launched  on  the  Suomi NPP  satellite  in  2011, was 

designed to continue the legacy of MODIS for land observation science [26]. VIIRS data are available 

at a spatial resolution of 375 m in five spectral bands, and a range of VIIRS data products have been 

released, including a 500 meter surface reflectance product that uses the same grid system as the 500 

meter MODIS product. Although MODIS records data at a higher resolution of 250 meters in the Red 

and NIR bands, one significant improvement of the VIIRS sensor over the MODIS sensor is its design 

to aggregate data from multiple detectors at lower angles of view and delete data from higher angles 

of view [27]. 

Given  the  anticipated operational use of  satellite data  for monitoring  changes  in vegetation 

cover, which has previously been carried out using MODIS data, it is imperative to conduct research 
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on the potential performance of VIIRS data in the alert system application for monitoring operational 

changes  in vegetation cover on a  regional scale. This study aimed  to evaluate a vegetation cover 

change algorithm based on VIIRS data  toward, with  the goal of  functioning as an early warning 

system to prevent forest disturbances in Indonesia. 

2. Materials and Methods 

2.1. Satellite Data 

A total of 10 Hierarchical Data Format (HDF) tiles of VIIRS data are employed to encompass all 

areas within Indonesia (Figure 1a). The data was obtained from NASA’s Land Processes Distributed 

Active Archive Center (LP DAAC) and the USGS Earth Resources Observation and Science (EROS) 

Center through the website https://e4ftl01.cr.usgs.gov/VIIRS/. In addition to VIIRS data, this study 

used a combination of specific datasets related to water masking, a list of HDF files for Indonesian 

regions, and a list of Indonesia 5x5 degree tiles. These datasets were utilized to automatically execute 

the change detection module, following the process design outlined in the supplementary material 

(Appendix A). The output image is divided into 5x5 degree tiles, as shown in Figure 1b. 

 

Figure 1. a) HDF tile coverage of VIIRS data for all of Indonesia, b) Tile 5x5 degree of Indonesia. 

The VIIRS Surface Reflectance product, also referred to as VNP09H1, provides an estimation of 

land surface reflectance derived from data collected by the Suomi National Polar‐orbiting Partnership 

(Suomi NPP) VIIRS sensor. It includes information from three imagery bands (I1, I2, I3), which closely 

correspond  to  bands  1  (Red),  2  (Near‐Infrared/NIR),  and  6  (Shortwave  Infrared/SWIR)  of  the 

MOD09A1 MODIS product [28,29]. These data are typically available at a resolution of 500 meters, 

which are derived through resampling the native 375m VIIRS resolution in the L2 input product. The 

VNP09H1 product is archived as 8‐day composite product, comprising the best possible observation 

for each pixel during an 8‐day period, based on high observation coverage,  low sensor angle, the 

absence of clouds or cloud shadow and aerosol loading [28]. 

The utilization of mathematical combinations of spectral bands from remote sensing data serves 

to highlight particular features or characteristics of the Earth’s surface, including vegetation, water, 

and other objects [30]. Both SWIR and NIR bands are commonly used  in remote sensing to detect 

changes in vegetation cover, but they serve slightly different purposes and have varying performance 

characteristics. NIR is sensitive to changes in vegetation biomass and leaf area index (LAI), making 

it useful for assessing overall vegetation health and density, while SWIR  is valuable  for detecting 

changes in vegetation moisture content and stress. 

This  study utilized NIR  and SWIR  to  establish  the Normalize Differential Open Area  Index 

(NDOAI), which is designed to detect the change in vegetation cover. The mathematical formula for 

the NDOAI index is provided below: 

𝑁𝐷𝑂𝐴𝐼 ൌ
ௌௐூோ െ ேூோ
ௌௐூோ ൅ ேூோ

 

where SWIR and NIR are reflectance shortwave infrared (SWIR) and near‐infrared (NIR). 

There are several indices leverage the unique spectral properties of NIR and SWIR bands such 

as Normalized Burn Ratio (NBR) to higlights changes in vegetation cover and moisture content after 
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fire events  [31] and Normalized Difference Water  Index  (NDWI)  to detect  the presence of water 

bodies and monitor changes in water content within vegetation as it is sensitive to changes in water 

absortion properties [32,33]. Using both NIR and SWIR bands allows for a complete comprehension 

of the vegetation dynamics as well as their modifications in an ecosystem [34]. 

2.2. Image Data Filtering in Temporal Domain 

The VIIRS  time  series  images  quickly  provide  extensive  data  on  vegetation  cover  changes, 

serving as an early warning system. However, these time‐series datasets inevitably face disruptions 

caused  by  clouds,  atmospheric  changes,  and  aerosol  scattering  [35]. This  interference  introduces 

noise,  degrading  data  quality  and  creating  uncertainty  in  temporal  sequences.  This  makes  it 

challenging to analyze temporal image sequences due to significant variations in the time series data. 

Therefore, the initial step in processing data involves addressing these residual noises in the use of 

VIIRS time series datasets. 

To  tackle  disturbances,  we  use  VIIRS  quality  assurance  data,  specifically  the  cloud  mask 

product, to eliminate cloudy pixels from VIIRS surface reflectance. Additionally, we employ linear 

interpolation to estimate values obscured by clouds. Furthermore, to enhance clarity in the time series 

VIIRS data, we composite VIIRS surface reflectance over a 8‐day period to obtain a higher percentage 

of clear‐sky data. 

For the NDOAI image data, we employed two filtering techniques. Initially, we utilized linear 

interpolation  to  estimate missing  values  caused  by  cloud  cover,  a method  that  has  been widely 

adopted for filling gaps in VIIRS products, similar to the approach used by [36] for MODIS datasets. 

Furthermore, we applied a median moving window over three images of the time series to smooth 

and decrease discontinuities  and  sharp  spikes  in  the VIIRS data. This  approach was  previously 

employed  by  [37]  for  the MODIS  dataset.  Both  of  filtering  approach  is  illustrated  by  Figure  2. 

Applying these filters allows for a clearer definition of the temporal vegetation pattern, which then 

serves  as  fundamental  information  for  a  near‐real‐time  detection  system  for  vegetation  cover 

changes. 

 

Figure 2.  Illustration of  filtering procedure by: a)  linear  interpolation  to estimate unknown values 

caused by cloud, b) median moving window over time series datasets. 
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2.3. Vegetation Cover Change Detection 

This  study  identified  alterations  in  vegetation  cover  by  employing  an  image  differencing 

technique, which involves subtracting pixel values from NDOAI time‐series data on a pixel‐by‐pixel 

basis, with the analysis conducted within a moving window every 8 days. The difference of NDOAI 

value denoted as △NDOAI, which is obtained as follows: 

△NDOAI = NDOAIyear t‐1 – NDOAI8‐days of year 

where year t‐1 is 1 year series of NDOAI from the previous periode and 8‐days of year t is 8‐days 

NDOAI from current year. 

The method used for change detection is a straightforward algorithm developed by [23] that has 

been modified  to use an 8‐day data period  instead of  the previous 1‐month period. This method 

compares the differences between the vegetation index data from the previous year (year t‐1) and the 

subsequent 8‐day NDOAI values  from  the  current year using a moving window  for  consecutive 

analysis (as shown in Figure 3). This approach involves systematically analyzing every new VIIRS 

data available and has the potential to be operationalized every 8 days to quickly identify vegetation 

changes across Indonesia. 

 

Figure  3. Approach  to  a  simple method  for detecting  vegetation  changes  based  on difference  of 

NDOAI value within a moving window every 8 days. 

To  identify vegetation cover changes, a specific empirical threshold of ‐100 for ΔNDOAI was 

implemented  to  characterize  changes  in vegetation cover. This  threshold was derived  from prior 

research conducted by [25], which  involved  the examination of high‐resolution  imagery and  field 

observations. 

Figure  4 provides a visual  representation of  the  shift  in  the NDOAI value pattern  from  the 

datasets of the previous year to the subsequent 8‐day data, which is employed to track changes in 

vegetation  cover.  Any  difference  value  of NDOAI  greater  than  the  specified  threshold will  be 

considered a vegetation cover change, while values below the threshold do not indicate a change in 

vegetation cover. 
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Figure 4.  Illustration of  the  change  in NDOAI value pattern  from  the previous year datasets and 

subsequent 8‐day data to detect vegetation cover change for every 8‐day. 

2.4. Accuracy Assessment 

2.4.1. Sampling Design for Accuracy Test 

A primary concern of the change detection approach is to assess vegetation cover disturbances 

detected at the pixel or sub‐pixel level of VIIRS. In order to evaluate the VIIRS‐based vegetation cover 

changes, we utilized Landsat data with a 30 m spatial resolution. Moreover, to ensure the accuracy 

of the change detection results in various ecosystems, we referred to more detailed image data, such 

as SPOT 6/7 and Pleiades satellite data, at several selected sites. 

Evaluating the level of accuracy at the pixel level for detecting changes is a complex undertaking 

in this study, as it involves assessing a change map at a lower resolution than the reference map based 

on Landsat data. Binary vegetation change maps usually have two clear categories: change and no‐

change, and the same applies to the subsequent accuracy analysis. However, there is a proportion of 

vegetation disturbance for each VIIRS swath pixel. If no disturbance has occurred within the footprint 

of a VIIRS observation, it is evident that the observation will be labeled as no‐change. Conversely, if 

100% of the VIIRS footprint has changed, it will be labeled as vegetation change. Nevertheless, for 

cases in between, it is somewhat arbitrary to choose a single threshold to separate the two classes. 

The evaluation of the real‐time detection system’s performance was based on a 15.156 reference 

grid  comprised of 100 points per grid. Our objective  is  to accurately  identify areas of vegetation 

disturbance, with a smaller percentage being ideal. To achieve this, we defined the level of vegetation 

disturbance using various disturbance proportions, such as >70%, >40%, >30%, >20%, and <5% of a 

VIIRS pixel size (see Figure 5). For instance, a disturbance proportion of >40% indicates that at least 

40%  of  the  VIIRS  pixel  size  is  disturbed  according  to  the  reference  map.  In  this  case,  VIIRS 

observations with a proportion greater than 20% disturbance are classified as “vegetation change”, 

while observations with less than 5% disturbance are categorized as “no‐change”. Observations with 

a disturbance proportion between 5% and 20% are excluded, as  they cannot be clearly  labeled as 

either vegetation change or no‐change. 

 

Figure 5.  (a) 1x1 degree  fishnet selected  for developing data  reference  (cyan),  (b) VIIRS pixel size 

overlaid with Landsat ETM+ and high‐resolution image with 100‐point dot grid overlay. 
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Number of sample for accuracy test with regard to the percentage of landsat‐based open areas 

is shown  in Figure 6. The  figure  illustrates a decrease  in the amount of data utilized for accuracy 

assessment, accompanied by an increase in the open area within a grid size of 500 m x 500 m. 

 

Figure 6.  Illustrating  the distribution of samples relative  to  the percentage of Landsat‐based open 

areas. 

Accuracy accessment were performed at 500 m x 500 m resolution to determine how the spatial 

resolution  influenced  the ability of VIIRS  to detect changes, and  to quantify  the minimum size of 

disturbed patches that we could reliably detect. Even though the optimal threshold may vary with 

viewing  geometry  and  spatial  resolution,  only  one  threshold was  applied  to  detect  vegetation 

disturbance for simplicity. 

Moreover, Landsat typically has a 16‐day revisit cycle, meaning it captures images of the same 

location every 16 days. Harmonized periods between VIIRS and Landsat were required to assess the 

temporal accuracy of the system. We converted the VIIRS datasets to a 16‐day  interval, aiming to 

align the temporal resolution of the VIIRS data with the Landsat data. 

2.4.2. Evaluating Model Performance 

In  change  detection,  it  is  often more  critical  to  ensure  that  all  actual  changes  are  detected 

(minimizing omission error). Omission errors can lead to a failure to identify genuinely important 

changes. Producer accuracy measures the extent to which the detection method can recognize the 

actual changes. This is important for assessing the performance of the change detection method used. 

Therefore, to evaluate the results of the comparisons between Landsat’s reference data and the 

change detection method, we computed the following measures for each change detection: 

(a)  omission error, which was calculated as the ratio of the number of changed pixels in the ground 

“truth” polygons that were not identified by the method to the total number of changed pixels 

in Landsat’s reference change bitmap, 

(b)  accuracy, which was determined as  the ratio of  the number of changed pixels  in  the ground 

“truth” polygons that were also identified by the method to the total number of changed pixels 

in Landsat’s reference change bitmap. 

3. Results 

3.1. Vegetation Cover Change of VIIRS Observations 

Regarding the near‐real time detection method of vegetation cover change, there are numerous 

sites  that  indicated occurrences of devegetation  events. The distribution of devegetation  in  2022, 

which was detected by  the method  is  shown  in Figure  7. The utilization of  temporal vegetation 

patterns, as indicated by the NDOAI pattern, enabled the detection of changes in vegetation cover, 

revealing specific attributes of these changes, including their location and occurred every eight days. 
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Figure 7. Distribution of vegetation cover change in 2022 detected by the devegetation method. 

3.2. Spatial Accuracy of the Change Detection Results 

There is often a trade‐off between accuracy and sensitivity in change detection. A threshold that 

is too low may result in false positives, while a threshold that is too high may lead to missed changes. 

Striking  the  right  balance  is  essential  for  achieving  optimal  temporal  accuracy  in  capturing 

meaningful changes over time. 

Figure 8 presents  the  results of  the 8‐day devegetation  analysis  conducted using VIIRS and 

Landsat data for the selected site in the year 2022, revealing a similarity between the two datasets. 

The  comparable  outcomes  underscore  the  reliability  and  consistency  of VIIRS  in  capturing  and 

characterizing  vegetation  cover  changes  over  short  temporal  intervals  compared  to  the medium 

resolution of Landsat. 
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Figure 8. The result of devegetation analysis conducted for the selected site in the year 2022 using a) 

VIIRS and b) Landsat. 

The results of the comparison between the vegetation cover changes depicted in Figure 9, which 

were derived from the examination of VIIRS and Landsat data, correspond to the outcomes of the 

area analysis. 

 

Figure  9.  Comparison  of  devegetation  analysis  results  based  on  (a)  VIIRS,  (b)  Landsat,  and  (c) 

Combination of both for the selected site in Riau, Sumatra. 

In pursuit of the overarching goal of identifying changes in vegetation cover at an early stage, a 

threshold of 20% of the open area  in a 500 m × 500 m grid was used to assses the accuracy of the 

VIIRS‐based vegetation cover change. This approach is rooted in the understanding that resources 

can  be  optimized without  compromising  the  accuracy  of  the  detection  process  by  focusing  on 

representative changes over a total area of 500 m × 500 m (25 ha). 

Table 1 displays the results of an accuracy assessment based on different threshold values for 

Landsat‐based open areas. The thresholds represent the percentage of open areas considered for the 

accuracy assessment of the method to detect a vegetation cover change in 500 m x 500 m of VIIRS 

data. 

Table 1. Accuracy assessment results with Landsat‐based open area in a 500 m x 500 m grid. 

Percentage of open area 

(set as the threshold) 
Number of sample  Omission Err.  Accuracy 

~5%  15156  31,80%  68,20% 

20%  12749  26,33%  73,67% 

30%  11772  24,69%  75,31% 

40%  10702  22,98%  77,02% 

50%  9473  21,00%  79,00% 

75%  5844  17,30%  82,70% 
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Table 1 shows that the accuracy of the system increased progressively with higher thresholds: at 

5%, the accuracy was 68.20%; at 20%, a slightly higher 73.67%; at 30%, it improved to 75.31%; at 40%, 

it increased to 77.02%; at 50%, it further improved to 79.00%; and at the highest threshold of 75%, the 

system  achieved  a  peak  accuracy  of  82.70%.  The  trend  indicates  that,  in  general,  increasing  the 

threshold percentage is associated with an improvement in accuracy. Higher thresholds lead to more 

selective change identification, potentially reducing false positives and enhancing overall accuracy 

in the system’s analysis. 

3.3. Temporal Accuracy of the Change Detection Results 

The use of high temporal resolution satellite data is crucial for monitoring rapid changes and 

short‐term events, such as wildfires, deforestation, and urban development. However, the accuracy 

of  change detection  results  in near‐real‐time  systems  is a  critical  issue. The  temporal accuracy of 

change detection results represents the system’s ability to accurately capture and represent changes 

over time. 

Devegetation  analysis  based  on  data  from  both  the  VIIRS  and  Landsat  satellite  imagery 

demonstrates a high degree of spatial similarity in the results obtained. However, there are notable 

differences in the time periods during which the changes are detected, as shown in Figure 10. 

 

Figure 10. A temporal comparison of the 16‐day devegetation analysis results for the selected site in 

Riau, Sumatra, based on: a) VIIRS and b) Landsat data. 

A  threshold  in  a  change  detection  algorithm  plays  a  pivotal  role  in  determining  what  is 

considered a significant change. A lower threshold might lead to the detection of smaller changes, 

potentially enhancing the temporal precision of the algorithm. Conversely, a higher threshold may 

filter  out  smaller  variations,  emphasizing more  substantial  alterations  and  potentially  reducing 

temporal precision. 

Figure 11 provides specific numerical insights in detection speed between VIIRS and Landsat 

using difference  level of  thresholds.  If a  threshold value of  less  than 20%  is applied, Landsat will 

identify devegetation at an earlier stage. Specifically, a 5% open area, equivalent to 1.25 hectares, will 

be detected 20.2 days sooner than VIIRS (‐1.26), and a 10% open area, corresponding to 2.5 hectares, 

will be identified 11.8 days ahead of VIIRS (0.74). 
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Figure 11. The disparity  in detection  speed between VIIRS and Landsat using difference  level of 

thresholds as a reference point; a) 5%, b) 20%, c) 40% and d) 75%. 

Meanwhile, a threshold value greater than 20% is employed, VIIRS will identify devegetation 

4.5 days earlier compared to Landsat. Furthermore, with 40% open area (10 hectares) and 75% open 

area (18.75 hectares), VIIRS  is capable of detecting the change 25.4 days and 54.8 days faster than 

Landsat, respectively. 

The thresholds in each region represent variations, as demonstrated by the different time periods 

in which changed areas can be detected. The Sumatra and Kalimantan regions show that VIIRS can 

detect changes more rapidly than Landsat‐based systems when the threhold is set at 20% of the total 

open  area  (Figure  12). However,  other  regions  like  Sulawesi,  and  Papua  present  challenges  in 

identifying patterns, as the detected changed areas are limited in these areas. The optimal threshold 

may vary depending on the specific characteristics of the data, the type of changes being monitored, 

and  the desired  level of accuracy. Therefore, considering  the context and adjusting  the  threshold 

accordingly is crucial for achieving the best temporal accuracy in change detection. 

 

Figure  12.  A  comparison  of  different  time  frames  between  VIIRS  and  Landsat‐based  datasets, 

highlighting alterations in specific regions identifiable through the application of a 20% threshold. 
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4. Discussion 

4.1. Minimum Detectable Patch Size 

The effectiveness of a change detection method can be evaluated by determining the minimum 

detectable patch size, which is a critical metric. Establishing a standard requirement for this factor is 

challenging  due  to  the  diverse  types  and  sizes  of  vegetation  disturbances.  The  coarse  spatial 

resolution of VIIRS data presents challenges in characterizing vegetation disturbances on a per‐pixel 

basis. Typically,  the minimum detectable patch  sizes  reported  in MODIS‐based  change detection 

systems [20,38,39] range from 15 to 50 hectares. While the reference of VIIRS‐based systems remains 

limited,  it’s worth  noting  that  similar moderate‐resolution  satellites  such  as MODIS  have  been 

extensively utilized as a benchmark for assessing VIIRS performance. This is important to note since 

the  average  patch  size  of  vegetation  disturbances  in  tropical  regions  often  includes  small‐scale 

disturbances  that are  less  than 10 hectares. As a  result, a change detection system operating at a 

minimum  scale of  15  to  50 hectares may underestimate  the  extent of human‐induced vegetation 

disturbances. 

Utilizing a higher threshold value results in a larger area of detected change, which can impact 

the accuracy of the algorithm. Establishing a threshold of 2.5 hectares (10% of the 500 × 500 VIIRS 

grid  size)  enabled  the  algorithm  to  correctly  identify  90.78%  of  the  altered  regions,  although  its 

accuracy was  only  69.5%. On  the  other hand,  employing  a  threshold  of  5 ha  (20%)  allowed  the 

algorithm to detect 86% of the changed regions, while maintaining an accuracy of 73.7%. It is worth 

noting that the algorithm achieved an accuracy of over 80% when using a threshold of 12.5 hectares 

for identifying altered areas. 

The accuracy of the system is closely linked to both the number of samples and the threshold 

utilized. The greater  the diversity and quantity of  samples,  the more precise  the accuracy of  the 

system can be gauged, offering a more comprehensive insight into its performance across a range of 

scenarios. At  the same  time,  the chosen  threshold has a significant  impact on  the precision of  the 

system, as different  thresholds can  lead  to varying  results  in  identifying alterations. Locating  the 

appropriate  equilibrium  between  a  sufficient  number  of  representative  samples  and  an  optimal 

threshold  is  essential  for  achieving  accurate  and  reliable outcomes  in  the  analysis  and detection 

abilities of the system, as demonstrated in Figure 13. 

 

Figure 13. The relationship between accuracy, sample quantity, and the thresholds. 

It  is  crucial  to  acknowledge  that  the  detected  disturbed  area  can  differ  across  regions.  For 

instance,  in  Sumatra,  the minimum  detectable  size was  observed  to  be  8.68  hectares, while  in 
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Kalimantan, it was 5.98 hectares. Sulawesi exhibited a minimum detectable size of 4.44 hectares, and 

in  Papua,  it  was  7.33  hectares.  This  regional  variation  highlights  the  impact  of  geographical 

characteristics on both the accuracy and the detected change areas. 

An effective change detection system that acquires daily images and can identify disruptions at 

the  VIIRS  pixel  or  subpixel  level  can  significantly  improve  the monitoring  of  vegetation  cover 

disturbances. The technique described in this paper allows for the per‐pixel detection of vegetation 

disturbances based on VIIRS data, as matching predicted and observed images precisely in terms of 

footprints and sensor responses. However, the small number of patches was not enough to determine 

the minimal  detectable  patch  size  with  certainty.  Additionally,  the  study  was  limited  to  Java, 

Sulawesi, and Papua, which further reduced the reliability of the results. To determine the smallest 

detectable area of disturbance, a more extensive accuracy assessment, involving a larger sample size 

and covering broader geographic regions, is necessary. 

4.2. Near Real‐Time Monitoring 

VIIRS  imagery  and  associated  products  provide  almost  daily  coverage  of  Indonesia, 

revolutionizing  the  study  and  observation  of  the  Earth.  This  paper  presents  a  research  on  the 

potential performance of VIIRS data to facilitate near real‐time monitoring of vegetation disturbance. 

The methodology involved using Landsat time‐series images, which serves as a main reference for 

spatio‐temporal comparison with the VIIRS‐based analysis results. 

Figure 14  shows  that  there  is a  significant difference  in detection  speed between VIIRS and 

Landsat when more than 40% threshold (>10 ha) or less than 5% (<5 ha) of open areas within a 500 × 

500 m grid size is used. The data shows an average time gap of 4.45 days (0.28) indicating a consistent 

pattern when using 20% of threshold. However, it is important to note that there is a considerable 

range  of  variation, with  a deviation  of  48 days  (3.0), which  highlights  the  impact  of  the  chosen 

threshold on the temporal accuracy and variability in detection speed between these two datasets. 

 

Figure  14. Temporal discrepancy  in detection  time  between VIIRS  and Landsat  based  on  on  the 

threshold level set by the percentage of open area within a 500 x 500 m grid size. 

A  system monitoring vegetation disturbance  at high  spatial  and  temporal  resolution would 

provide valuable  information  for managing and protecting  forests. By  the method, we attempt  to 

identify areas 5 ha or larger of vegetation disturbance in Indonesia every 2 weeks based on VIIRS 

data. 
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4.3. Future Improvement 

This  study  aimed  to precisely match  the  observed VIIRS  and Landsat  images using  careful 

consideration.  Although  a  basic  image  differencing  algorithm  showed  promising  results  in 

subsequent  change detection,  it  still  requires  refinements  to  improve  its performance. Obtaining 

accurate predictions of Landsat images for a specific day is essential, as it serves as the reference data 

for  accessing  the  results  of  VIIRS‐based  change  detection.  Accurate  predictions  depend  on  the 

availability of Landsat images, and cloud cover can reduce the availability of useful images. 

The method used to infer the changes between the predicted and observed observations plays a 

significant  role  in determining  accuracy. This  study  tested only  the most basic method of  image 

differencing, and the thresholds were determined empirically for a small area. However, applying 

these thresholds to larger areas may be problematic. Further testing of other methods is necessary, as 

robust, non‐empirical methods are preferred for large‐scale applications, as demonstrated by more 

advanced methods applied in remote sensing‐based change detection. 

Third, a significant portion of the ommission errors identified in the accuracy assessment were 

related  to  areas where  vegetation  disturbances  had  occurred  prior  to  the  study  period. As  the 

predicted time series was based on one year of observations preceding the study period, the time‐

series model incorrectly classified these regions as intact forests, resulting in commission errors when 

comparing predictions  to actual observations. Future  iterations of  the  fusion method will use this 

updated algorithm, which is expected to reduce the number of commission errors. Moreover, it is 

essential to evaluate the method on Java to provide a comprehensive assessment of the minimum 

detectable patch size and near real‐time performance. 

5. Conclusions 

The  study  indicated  that  increasing  the  threshold  percentage  corresponds  with  enhanced 

accuracy.  In  change detection,  there  is  typically  a  trade‐off  between precision  and  sensitivity. A 

threshold that is set too low may result in false positives, while a threshold that is set too high may 

lead  to missed  changes.  The  accuracy  assessment  results  revealed  a  consistent  pattern:  as  the 

threshold percentage of open areas increases, the system’s accuracy improves progressively. Lower 

thresholds are associated with lower accuracy rates, while higher thresholds yield higher accuracy, 

with the optimal level attained at 82.70% at a threshold of 75%. Nonetheless, it is noteworthy that the 

optimal equilibrium between resource utilization and accuracy  is achieved at a  threshold of 20%, 

where  the system attains an accuracy of 73%. The 20% change  in  the VIIRS pixel size  that can be 

detected is sufficient for use as a near‐real‐time system for the national scale of Indonesia. 

This research demonstrates that applying a threshold value of less than 20% with Landsat can 

enable  the  identification of vegetation cover changes at an earlier stage. Conversely, employing a 

threshold value greater than 20% with VIIRS will result in identifying changes 4.5 days earlier than 

Landsat. Furthermore, VIIRS  is  capable of detecting  changes 25.4 days and 54.8 days  faster  than 

Landsat, respectively, when using thresholds of 40% and 75%. 
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paper posted on Preprints.org, Figure S1: title; Table S1: title; Video S1: title. 
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